4 Gaps of (I,m)-uniform mixed hypergraphs

Definition 4.1 A mized hypergraph, H, is (I, m)-uniform if each C-edge consists of
vertices and each D-edge consists of m wvertices. If | = m = r, then we say that H is

r-uniform.
Definition 4.2 We say that a mixed hypergraph is a bihypergraph if C = D.

Definition 4.3 Let H be a mized hypergraph, and e be an edge with two vertices u, v,
contraction of e is the replacement of u and v with a new vertex whose incident edges are

the edges other than e that were incident u or v.

Theorem 4.4 Let H = (X,C,D) where |C| =1 for all C € C. Ifl = 2 then H has no
gap. If l > 2 and let k be a gap of H, then k > 1.

Proof. If [ = 2, then for all C' € C, by contraction we can use a new vertex to
replace C. Then we have a new mixed hypergraph H' = (X', C’,D’), and S(H) = S(H').
Because C' = ¢, H' has no gap. Therefore, H has no gap.

If [ > 2, let ¢ be a strict t-coloring of H, t < [ — 1, and {X;, Xs,...,X;} be the
feasible partition with respect to ¢, | X;| # 1. Choose a € X;, and let {Y7,Y5,... Y1} be
the feasible partition with respect to ¢, where Y; = X; for 1 < <t —1,Y;, = X; — {a},

and Y;11 = {a}.Then we prove that ¢ is a strict (¢ + 1)-coloring of H:

For all D € D, there are dy,dy € D such that d, € X;,ds € X for ¢ # j. Therefore
di € Yy,dy € Yy for i/ # j'. For all C' € C, since |C| =1 and t + 1 < [, by Pigeonhole
Principle, there are ¢j,co € C such that ¢y, ¢y € Y; for some i. So ¢ is a strict (¢ + 1)-

coloring of ‘H. Thus, k > 1. [

Theorem 4.5 Let H = (X,C,D) where |D| =m > 3 for all D € D. Let n = |X| and
s = [F], then we can rewrite n = sh+m —1—s,sh+m —2—s,..., or sh+m — 2s,

h € N, up ton modulo s. If H has a gap at k, then k < h.
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Proof. Let ¢ be a strict t-coloring of H, ¢ > h + 1, and {X;, Xs,..., X;} be the

feasible partition with respect to c.

If m is even, then m = 2s, and n = sh,sh+1,..., or sh+ s — 1. If m is odd, then
m=2s—1,and n = sh — 1,sh,..., or sh+ s — 2. Then by Pigeonhole Principle, there
exists X; such that |X;| = ¢ < s+ 1, for some 1 < i < ¢, and there exist X; such that
| X;| < m—gq, for some j #i,1 <j <t Set|Xy|]=¢<s+1and|X;_1|] <m —gq, then
| X U X ] <m.

Let V; = X;for 1 <i<t—2,Y, 1 =X, 1UX;, and {Y¥},Y5,..., X; 1} be the feasible
partition with respect to . For all C' € C, there are two members of C' have the same
X, then these two vertices have the same Y;. For all D € D, since D ¢ X, for 1 <i <t,
DY forl1<i<t—2 and |D|=m and |Y;-1]| = |Xi-1UX| <m,so D ¢ Y, ;. Hence,
' is a strict (¢ — 1)-coloring of H. Therefore, if H has a gap at k, then k < h. O

Theorem 4.6 Let H be a (I, m)-uniform mized hypergraph where n, s, and h are defined
as above. If s <[, then 'H has a gap at k if and only if | < k < h.

Proof. By theorem 4.4 and theorem 4.5, we know that if H has a gap, thenl < k < h.
Then we prove the converse, that is for [ < k < h, we can find a (I, m)-uniform mixed

hypergraph has a gap at k.

If miseven and n =b (mod s), 0 <b<s—1. Let Aand A;, 0 <i <s—1, are sets

of vertices,
( 3\

11 Airz2 -+ Q1hp

Q21 Q22 -+ QG2p
A= ,

Qs1 Qg2 -+ Qsp

\ /

AO = gb, and Az = {ai,hﬂ}, 1 S 1 S s—1. Then X = AU (U?:O Az)
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If mis odd and n = b (mod s), -1 < b<s—2. Let A and A, 0 <i < s—1, are

sets of vertices,

( A
ai Q12 a1,h—1 ai,p
azq Qg9 - a2 h—1 a2 p
A - 9
As—11 As—1,2 *°° (As—_1h—1 Gs—1h
Qs 1 Qg2 e Qs h—1 )

\

AO = ¢7 Al = {as,h}, and Az = {ai_l’h+1}, 2 S 1 S s—1. Then X = AU (Ufi_é Az)

Let Bj = {CLL]‘,CLQJ,...,GSJ}QX, 1< j < h + 17 and C = {O - X | |C| = l, at least
two elements of C' are in some Bj, 1 < j < h+ 1}, and D = {D C X | |D| = m, at least

two elements of D are in some B;, 1 <j < h+1}.

Let ¢ be a coloring of H. If there exist c¢(a;, ;) # c(ai, ;) for some i; # i and
1 <j < h+1, then because a;, ;,a;, ; and any other [ — 2 vertices form a C-edge, c is at
most ({ — 1)-coloring. Suppose c(a; ;) =i for all 7, j, then ¢ is a strict s-coloring, and by
the proof of theorem 4.4, s,s +1,...,0l =1 € S(H). If c(ay;) = claz;) = -+ = c(as,)
for all 1 < j < h+ 1. Since Bj, U Bj,, 1 < ji,j2 < h, contains at lease one D-edge,
c(ay ) # c(ayj,). Hence, ¢ is a strict h-coloring or a strict h + 1-coloring. Let c(a; ;) = j
for all 4, j, then ¢ is a strict (h+1)-coloring, let ¢(a; ;) = j for 1 < j < h, and ¢(a; p11) = h,

then c is a strict h-coloring. Therefore, H has gaps at k, | < k < h. O

Theorem 4.7 The minimum number of vertices of a bad (1, m)-uniform mized hypergraph

is s(I—1)+m, s =[%F].

Proof. Let H is a bad (I, m)-uniform mixed hypergraph. By theorem 4.6, the gap
is between [ — 1 and h. To find the minimum number of vertices, it implies that h = [+ 1.

Hence, by theorem 4.5, minimum n is sh+m —2s =s(l+1)+m—2s=s(l—1)+m. O

Finally, we consider r-uniform mixed hypergraphs. Since [ = m =7, s = [Z] =

[5] <r = 1. Hence, all facts of (I, m)-uniform can be generalized to r-uniform.
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Corollary 4.8 By theorem 4.6, a r-uniform mized hypergraph has a gap at k if and only

if r < k < h where h is as above.

In the proof of theorem 4.6, we consider r-uniform mixed hypergraphs, the hyper-
graph we constructed becomes a r-uniform bihypergraph. Hence, we have another corol-

lary about r-uniform bihypergraphs.

Corollary 4.9 A r-uniform bihypergraph has a gap at k if and only if r < k < h.

And we also can find the minimum number of vertices of a r-uniform mixed hyper-

graph (or a r-uniform bihypergraph) which has gaps.

Corollary 4.10 Let H = (X,C, D) be a r-uniform mized hypergraph (or r-uniform bihy-
pergraph). If H has a gap, then the minimum number of vertices is | X| =n = s(r—1)+r

where s = [5].
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