4 Gaps of (l, m)-uniform mixed hypergraphs

Definition 4.1 A mixed hypergraph, \mathcal{H} , is (l, m)-uniform if each C-edge consists of l vertices and each \mathcal{D} -edge consists of m vertices. If l = m = r, then we say that \mathcal{H} is r-uniform.

Definition 4.2 We say that a mixed hypergraph is a bihypergraph if C = D.

Definition 4.3 Let \mathcal{H} be a mixed hypergraph, and e be an edge with two vertices u, v, contraction of e is the replacement of u and v with a new vertex whose incident edges are the edges other than e that were incident u or v.

Theorem 4.4 Let $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ where |C| = l for all $C \in \mathcal{C}$. If l = 2 then \mathcal{H} has no gap. If l > 2 and let k be a gap of \mathcal{H} , then $k \ge l$.

Proof. If l = 2, then for all $C \in C$, by contraction we can use a new vertex to replace C. Then we have a new mixed hypergraph $\mathcal{H}' = (X', \mathcal{C}', \mathcal{D}')$, and $S(\mathcal{H}) = S(\mathcal{H}')$. Because $\mathcal{C}' = \phi$, \mathcal{H}' has no gap. Therefore, \mathcal{H} has no gap.

If l > 2, let c be a strict t-coloring of \mathcal{H} , t < l - 1, and $\{X_1, X_2, \ldots, X_t\}$ be the feasible partition with respect to c, $|X_t| \neq 1$. Choose $a \in X_t$, and let $\{Y_1, Y_2, \ldots, Y_{t+1}\}$ be the feasible partition with respect to c', where $Y_i = X_i$ for $1 \le i \le t - 1$, $Y_t = X_t - \{a\}$, and $Y_{t+1} = \{a\}$. Then we prove that c' is a strict (t + 1)-coloring of \mathcal{H} :

For all $D \in \mathcal{D}$, there are $d_1, d_2 \in D$ such that $d_1 \in X_i, d_2 \in X_j$ for $i \neq j$. Therefore $d_1 \in Y_{i'}, d_2 \in Y_{j'}$ for $i' \neq j'$. For all $C \in \mathcal{C}$, since |C| = l and t + 1 < l, by Pigeonhole Principle, there are $c_1, c_2 \in C$ such that $c_1, c_2 \in Y_i$ for some i. So c' is a strict (t + 1)-coloring of \mathcal{H} . Thus, $k \geq l$. \Box

Theorem 4.5 Let $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ where $|D| = m \ge 3$ for all $D \in \mathcal{D}$. Let n = |X| and $s = \lceil \frac{m}{2} \rceil$, then we can rewrite $n = sh + m - 1 - s, sh + m - 2 - s, \ldots$, or sh + m - 2s, $h \in \mathbb{N}$, up to n modulo s. If \mathcal{H} has a gap at k, then k < h.

Proof. Let c be a strict t-coloring of \mathcal{H} , $t \ge h + 1$, and $\{X_1, X_2, \ldots, X_t\}$ be the feasible partition with respect to c.

If m is even, then m = 2s, and n = sh, sh + 1, ..., or sh + s - 1. If m is odd, then m = 2s - 1, and n = sh - 1, sh, ..., or sh + s - 2. Then by Pigeonhole Principle, there exists X_i such that $|X_i| = q \le s + 1$, for some $1 \le i \le t$, and there exist X_j such that $|X_j| < m - q$, for some $j \ne i, 1 \le j \le t$. Set $|X_t| = q \le s + 1$ and $|X_{t-1}| < m - q$, then $|X_t \cup X_{t-1}| < m$.

Let $Y_i = X_i$ for $1 \le i \le t-2$, $Y_{t-1} = X_{t-1} \cup X_t$, and $\{Y_1, Y_2, \ldots, X_{t-1}\}$ be the feasible partition with respect to c'. For all $C \in \mathcal{C}$, there are two members of C have the same X_i , then these two vertices have the same Y_i . For all $D \in \mathcal{D}$, since $D \nsubseteq X_i$ for $1 \le i \le t$, $D \nsubseteq Y_i$ for $1 \le i \le t-2$, and |D| = m and $|Y_{t-1}| = |X_{t-1} \cup X_t| < m$, so $D \nsubseteq Y_{t-1}$. Hence, c' is a strict (t-1)-coloring of \mathcal{H} . Therefore, if \mathcal{H} has a gap at k, then k < h. \Box

Theorem 4.6 Let \mathcal{H} be a (l, m)-uniform mixed hypergraph where n, s, and h are defined as above. If $s \leq l$, then \mathcal{H} has a gap at k if and only if $l \leq k < h$.

Proof. By theorem 4.4 and theorem 4.5, we know that if \mathcal{H} has a gap, then $l \leq k < h$. Then we prove the converse, that is for $l \leq k < h$, we can find a (l, m)-uniform mixed hypergraph has a gap at k.

If m is even and $n \equiv b \pmod{s}$, $0 \le b \le s - 1$. Let A and A_i , $0 \le i \le s - 1$, are sets of vertices,

$$A = \left\{ \begin{array}{cccc} a_{1,1} & a_{1,2} & \cdots & a_{1,h} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,h} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s,1} & a_{s,2} & \cdots & a_{s,h} \end{array} \right\},\,$$

 $A_0 = \phi$, and $A_i = \{a_{i,h+1}\}, \ 1 \le i \le s - 1$. Then $X = A \cup (\bigcup_{i=0}^b A_i)$.

If m is odd and $n \equiv b \pmod{s}$, $-1 \leq b \leq s-2$. Let A' and A'_i , $0 \leq i \leq s-1$, are sets of vertices,

$$A = \left\{ \begin{array}{ccccccc} a_{1,1} & a_{1,2} & \cdots & a_{1,h-1} & a_{1,h} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,h-1} & a_{2,h} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{s-1,1} & a_{s-1,2} & \cdots & a_{s-1,h-1} & a_{s-1,h} \\ a_{s,1} & a_{s,2} & \cdots & a_{s,h-1} \end{array} \right\}$$

 $A_0 = \phi, \ A_1 = \{a_{s,h}\}, \ \text{and} \ A_i = \{a_{i-1,h+1}\}, \ 2 \le i \le s-1. \ \text{Then} \ X = A \cup (\bigcup_{i=0}^{b+1} A_i).$

Let $B_j = \{a_{1,j}, a_{2,j}, \dots, a_{s,j}\} \cap X$, $1 \leq j \leq h+1$, and $\mathcal{C} = \{C \subseteq X \mid |C| = l$, at least two elements of C are in some B_j , $1 \leq j \leq h+1\}$, and $\mathcal{D} = \{D \subseteq X \mid |D| = m$, at least two elements of D are in some B_j , $1 \leq j \leq h+1\}$.

Let c be a coloring of \mathcal{H} . If there exist $c(a_{i_1,j}) \neq c(a_{i_2,j})$ for some $i_1 \neq i_2$ and $1 \leq j \leq h+1$, then because $a_{i_1,j}, a_{i_2,j}$ and any other l-2 vertices form a \mathcal{C} -edge, c is at most (l-1)-coloring. Suppose $c(a_{i,j}) = i$ for all i, j, then c is a strict s-coloring, and by the proof of theorem 4.4, $s, s+1, \ldots, l-1 \in S(\mathcal{H})$. If $c(a_{1,j}) = c(a_{2,j}) = \cdots = c(a_{s,j})$ for all $1 \leq j \leq h+1$. Since $B_{j_1} \cup B_{j_2}, 1 \leq j_1, j_2 \leq h$, contains at lease one \mathcal{D} -edge, $c(a_{1,j_1}) \neq c(a_{1,j_2})$. Hence, c is a strict h-coloring or a strict h+1-coloring. Let $c(a_{i,j}) = j$ for all i, j, then c is a strict (h+1)-coloring, let $c(a_{i,j}) = j$ for $1 \leq j \leq h$, and $c(a_{i,h+1}) = h$, then c is a strict h-coloring. Therefore, \mathcal{H} has gaps at $k, l \leq k < h$. \Box

Theorem 4.7 The minimum number of vertices of a bad (l, m)-uniform mixed hypergraph is s(l-1) + m, $s = \lceil \frac{m}{2} \rceil$.

Proof. Let \mathcal{H} is a bad (l, m)-uniform mixed hypergraph. By theorem 4.6, the gap is between l-1 and h. To find the minimum number of vertices, it implies that h = l+1. Hence, by theorem 4.5, minimum n is sh + m - 2s = s(l+1) + m - 2s = s(l-1) + m. \Box

Finally, we consider r-uniform mixed hypergraphs. Since l = m = r, $s = \lceil \frac{m}{2} \rceil = \lceil \frac{r}{2} \rceil \leq r = l$. Hence, all facts of (l, m)-uniform can be generalized to r-uniform.

Corollary 4.8 By theorem 4.6, a r-uniform mixed hypergraph has a gap at k if and only if $r \le k < h$ where h is as above.

In the proof of theorem 4.6, we consider r-uniform mixed hypergraphs, the hypergraph we constructed becomes a r-uniform bihypergraph. Hence, we have another corollary about r-uniform bihypergraphs.

Corollary 4.9 A r-uniform bihypergraph has a gap at k if and only if $r \le k < h$.

And we also can find the minimum number of vertices of a r-uniform mixed hypergraph (or a r-uniform bihypergraph) which has gaps.

Corollary 4.10 Let $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ be a *r*-uniform mixed hypergraph (or *r*-uniform bihypergraph). If \mathcal{H} has a gap, then the minimum number of vertices is |X| = n = s(r-1) + rwhere $s = \lceil \frac{r}{2} \rceil$.