
1 Introduction

In this thesis, all meromorphic functions are defined in the whole complex

plane.

In 1929, Nevanlinna [4, 5] proved that if two non-constant meromorphic func-

tions f and g share five distinct values, then they are identical, and if f and g

share four distinct values, then f is a Möbius transformation of g. Therefore, it is

natural to ask what happens if f and g share three distinct values? Obviously, we

can not expect that f and g have some particular relation. However, if we impose

some other conditions, for example, multiplicities, order, deficient values and some

others on f and g, then we can get some further relations between f and g. In this

thesis, we will use the theory of value distribution to study some well-known results

in these aspects, especially, the results proved by H. X. Yi [10, 11, 12] and H. Ueda

[8, 9].

In the next section, we review some basic theories of value distribution. Two

meromorphic functions sharing three values and their basic properties are studied in

section 3. In section 4, we study the relation between multiplicities and uniqueness

for two meromorphic functions that share three values. Finally, we study the rela-

tion between deficient values and uniqueness for two meromorphic functions that

share three values in section 5.
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2 Basic Theory of Value Distribution

In this section, we will review some basic theories in value distribution which

can be found in [1, 2, 14].

First of all, we define the positive logarithmic function.

Definition 2.1 For x ≥ 0, define

log+ x = max(log x, 0) =





log x if x ≥ 1

0 if 0 ≤ x < 1.

It is obvious that

log x = log+ x− log+ 1

x

hold for all positive numbers x.

Definition 2.2 Let f(z) be a meromorphic function. For r > 0, we define

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ.

which is the average of the positive logarithm of | f(z) | on the circle | z | = r.

Definition 2.3 Let f(z) be a meromorphic function. For r > 0, we define

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt + n(0, f) log r,

where n(t, f) denotes the number of poles of f(z) in the disc | z | ≤ t, multiple poles

are counted according to their multiplicities. n(0, f) denotes the multiplicity of poles

of f(z) at the origin. N(r, f) is called the counting function of poles of f(z).

Definition 2.4 Let f(z) be a meromorphic function. For r > 0, we define

T (r, f) = m(r, f) + N(r, f).

T (r, f) is called the characteristic function of f(z).
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Definition 2.5

m

(
r,

1

f − a

)
=

1

2π

∫ 2π

0

log+ 1

|f(reiθ − a)|dθ.

Definition 2.6

N

(
r,

1

f − a

)
=

∫ r

0

n
(
t, 1

f−a

)
− n

(
0, 1

f−a

)

t
dt + n

(
0,

1

f − a

)
log r,

where n
(
t, 1

f−a

)
denotes the number of zeros of f(z)−a in the disc | z | ≤ t counting

multiplicities and n
(
0, 1

f−a

)
denotes the multiplicity of zeros of f(z) − a at the

origin.

Definition 2.7

T

(
r,

1

f − a

)
= m

(
r,

1

f − a

)
+ N

(
r,

1

f − a

)
.

From the Poisson-Jensen’s formula, we have

T (r, f) = T

(
r,

1

f

)
+ O(1).

Furthermore, the characteristic functions of f(z) and 1
f(z)−a

are related as follows.

Theorem 2.8 (The first fundamental theorem) Suppose that f(z) is meromor-

phic in | z | < R (≤ ∞) and a is any complex number. Then, for 0 < r < R, we

have

T

(
r,

1

f − a

)
= T (r, f) + log | cλ |+ ε(a, r),

where cλ is the first non-zero coefficient of the Laurent expansion of 1
f(z)−a

at the

origin, and

| ε(a, r) | ≤ log+ | a |+ log 2.
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Now, we can state the most remarkable result in the theory of value distribu-

tion, namely, the second fundamental theorem. First, we recall the definition of a

meromorphic function.

Definition 2.9 Let f(z) be a meromorphic function. The order of f(z) is defined

to be

λ = lim
r→∞

log+ T (r, f)

log r
,

and the lower order of f(z) is defined to be

µ = lim
r→∞

log+ T (r, f)

log r
.

Theorem 2.10 (The second fundamental theorem) Suppose f(z) is a non-

constant meromorphic function and a1, a2, a3, · · · , aq are q (≥ 3) distinct values in

the extended complex plane. Then

(q − 2)T (r, f) <

q∑
j=1

N

(
r,

1

f − aj

)
−N1(r) + S(r, f),

where N1(r) = 2N(r, f)−N(r, f ′)+N
(
r, 1

f ′

)
, and S(r, f) = m

(
r, f ′

f

)
+m

(
r,

q∑
j=1

f ′

f − aj

)
+

O(1). Moreover, S(r, f) satisfies

(i) S(r, f) = O(log r) if f(z) is of finite order,

(ii) S(r, f) = O(log T (r, f) + log r) if f(z) is of infinite order.

For 0 < r < R, let n
(
0, 1

f−a

)
be the number of distinct zeros of f(z) − a in

| z | ≤ r, and any of them be counted only once. Let

n

(
0,

1

f − a

)
=





0 if f(0) 6= a,

1 if f(0) = a.
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and

N

(
r,

1

f − a

)
=

∫ r

0

n
(
t, 1

f−a

)
− n

(
0, 1

f−a

)

t
dt + n

(
0,

1

f − a

)
log r,

which is called the reduced counting function of f(z)− a.

Theorem 2.11 (Another form of the second fundamental theorem) Suppose

f(z) is a non-constant meromorphic function and a1, a2, a3, · · · , aq are q (≥ 3) dis-

tinct values in the extended complex plane. Then

(q − 2)T (r, f) <

q∑
j=1

N

(
r,

1

f − aj

)
+ S(r, f),

where S(r, f) is given as in theorem 2.10.

Definition 2.12 Let f(z) be a non-constant meromorphic function and a be any

complex number. The deficiency of a with respect to f(z) is defined by

δ(a, f) = lim
r→∞

m
(
r, 1

f−a

)

T (r, f)
= 1− lim

r→∞

N
(
r, 1

f−a

)

T (r, f)
.

It is obvious that 0 ≤ δ(a, f) ≤ 1.

Definition 2.13 If δ(a, f) > 0, then the complex number a is called a deficient

value of f(z). The deficient value is also called exceptional value in the sense of

Nevanlinna.
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3 Functions Sharing Three Common Values

In this section, we will study the basic properties of two meromorphic functions

which share three values CM.

First, we introduce some symbols and definitions.

Let f(z) and g(z) be meromorphic functions and a ∈ C∞. If every zero of

f(z)− a is also a zero of g(z)− a (ignoring multiplicity), then we write

f = a ⇒ g = a or g = a ⇐ f = a.

If each zero z0 of f(z) − a with multiplicity νf (z0) is also a zero of g(z) − a with

multiplicity νg(z0) ≥ νf (z0), then we write

f = a → g = a or g = a ← f = a.

Hence f = a ⇔ g = a means that f − a and g − a have the same zeros (ignoring

multiplicity), f = ∞ ⇔ g = ∞ means that f(z) and g(z) have the same poles

(ignoring multiplicity), f = a  g = a means that f(z)− a and g(z)− a have the

same zeros (counting multiplicity), and f = ∞  g = ∞ means that f(z) and g(z)

have the same poles (counting multiplicity).

Definition 3.1 Let f(z) and g(z) be non-constant meromorphic functions and a

be a complex number.

(i) If f = a  g = a, it is said that f(z) and g(z) share a CM;

(ii) If f = a ⇔ g = a, it is said that f(z) and g(z) share a IM.

Let f(z) and g(z) be non-constant meromorphic functions sharing three distinct

values a1, a2, a3 CM, without loss of generality, we assume that a1 = 0, a2 = 1,

a3 = ∞, otherwise, we can consider the following two functions

F (z) =
f(z)− a1

f(z)− a3

· a2 − a3

a2 − a1

and G(z) =
g(z)− a1

g(z)− a3

· a2 − a3

a2 − a1

,

which share 0, 1, ∞ CM.
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Theorem 3.2 [5]. Let f(z) and g(z) be non-constant meromorphic functions. If

f(z) and g(z) share distinct values a1, a2 and a3 IM, then

T (r, f) < 3T (r, g) + S(r, f),

T (r, g) < 3T (r, f) + S(r, g).

Theorem 3.3 [5]. Let f(z) and g(z) be non-constant meromorphic functions shar-

ing 0, 1, ∞ CM. If f(z) 6≡ g(z) then

(i) there exist two entire functions β(z) and γ(z) satisfying eβ(z) 6≡ 1, eγ(z) 6≡ 1,

eβ(z) 6≡ eγ(z) such that

f(z) =
eβ(z) − 1

eγ(z) − 1
and g(z) =

e−β(z) − 1

e−γ(z) − 1
. (3.1)

(ii)

T (r, g) = O(T (r, f)), (r →∞, r /∈ E),

T (r, eβ) = O(T (r, f)), (r →∞, r /∈ E),

T (r, eγ) = O(T (r, f)), (r →∞, r /∈ E).

Proof . Since f(z) and g(z) share 0, 1, ∞ CM, then there exist two entire functions

α(z) and β(z) such that

f(z)

g(z)
= eα(z) and

f(z)− 1

g(z)− 1
= eβ(z). (3.2)

f(z) 6≡ g(z) implies that eα(z) 6≡ 1, eβ(z) 6≡ 1, eβ(z)−α(z) 6≡ 1. And so from (3.2), we

get

f(z) =
eβ(z) − 1

eβ(z)−α(z) − 1
and g(z) =

e−β(z) − 1

e−β(z)+α(z) − 1
,

which gives (3.1) with γ(z) = β(z)− α(z). By Theorem 3.2, we have

T (r, g) < 3T (r, f) + S(r, f). (3.3)
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This together with (3.2) implies

T (r, eα) ≤ T (r, f) + T (r, g) + O(1)

< 4T (r, f) + S(r, f)

and

T (r, eβ) ≤ T (r, f) + T (r, g) + O(1)

< 4T (r, f) + S(r, f). (3.4)

Hence

T (r, er) = T (r, eβ−α)

≤ T (r, eβ) + T (r, eα) + O(1)

< 8T (r, f) + S(r, f). (3.5)

By (3.3), (3.4) and (3.5), we complete the proof of Theorem 3.3 ❑

Definition 3.4 Let A = {f |f is a non-constant meromorphic function satisfy

N(r, f) + N
(
r, 1

f

)
= S(r, f)}. Members in A are called functions of class A.

It is clear that all functions in A are transcendental meromorphic functions.

Theorem 3.5 [3]. Suppose f(z), g(z), h(z) ∈ A share 1 IM. Then at least two of

them are the same.

Theorem 3.6 [6]. Let gj(z) (j = 1, 2, · · · , p) be transcendental entire functions

and aj (j = 1, 2, · · · , p) be non-zero constants. If
∑p

j=1 ajgj(z) = 1, then
∑p

j=1 δ(0, gj) ≤
p− 1.

Theorem 3.7 [6]. Let fj(z) (j = 1, 2, 3) be meromorphic functions and f1(z) be

nonconstant. If
3∑

j=1

fj(z) ≡ 1
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and
3∑

j=1

N

(
r,

1

fj

)
+ 2

3∑
j=1

N(r, fj) < (λ + o(1))T (r) (r ∈ I),

where λ < 1, T (r) = max1≤j≤3{T (r, fj)} and I ⊂ (0,∞) is of infinite linear mea-

sure, then f2(z) ≡ 1 or f3(z) ≡ 1.

Definition 3.8 Let f(z) be a meromorphic function and a be any finite value. If

f(z)− a has no zeros, then a is called a Picard exceptional value of f(z).

Theorem 3.9 [3]. There are at most two distinct non-constant meromorphic func-

tions sharing three distinct values CM.

Proof . Suppose Theorem 3.9 is not true. Without loss of generality, we assume

that the three shared values are 0, 1, ∞, then there exist three non-constant mero-

morphic functions f(z), g(z) and h(z) sharing 0, 1,∞, and f(z) 6≡ g(z), f(z) 6≡ h(z),

g(z) 6≡ h(z).

If two of 0, 1, ∞, say 0, ∞, are the Picard exceptional values of f , then by

Theorem 3.5, we see that at least two of f(z), g(z), h(z) are identically equal to

each other, which contradicts the assumption. Hence at least two of 0, 1, ∞, say 0,

∞, are not the Picard exceptional values of f(z). Hence f(z) has poles and zeros.

Since f(z) and g(z) share 0, 1, ∞ CM, by Theorem 3.3, we have

f(z) =
eβ1(z) − 1

eγ1(z) − 1
and g(z) =

e−β1(z) − 1

e−γ1(z) − 1
, (3.6)

where β1(z) and γ1(z) are entire functions, and eβ1(z) 6≡ constant, eγ1(z) 6≡ constant,

eβ1(z) 6≡ eγ1(z).

Similarly, from the assumption that f(z) and h(z) share 0, 1,∞ CM, we obtain

f =
eβ2(z) − 1

eγ2(z) − 1
and h =

e−β2(z) − 1

e−γ2(z) − 1
, (3.7)

where β2(z) and γ2(z) are entire functions, and eβ2(z) 6≡ constant, eγ2(z) 6≡ constant,

eβ2(z) 6≡ eγ2(z).
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Equations (3.6) and (3.7) give

f(z) =
eβ1(z) − 1

eγ1(z) − 1
=

eβ2(z) − 1

eγ2(z) − 1
. (3.8)

If eβ1(z) ≡ eβ2(z), then from (3.8), we get eγ1(z) ≡ eγ2(z), which together with (3.6) and

(3.7) gives that g(z) ≡ h(z). This contradicts the assumption, and so eβ1(z) 6≡ eβ2(z).

If eβ2(z)−β1(z) ≡ c, where c (6= 0, 1) is a constant, then (3.8) shows that the zeros of

f(z) must be the zeros of eβ1(z) − 1 and the zeros of eβ2(z) − 1 = ceβ1(z) − 1. This

is impossible because eβ1(z) − 1 and ceβ1(z) − 1 have no common zeros, and hence

eβ2(z)−β1(z) 6≡ constant.

Similarly, if eγ1(z) ≡ eγ2(z), then from (3.8), we get eβ1(z) ≡ eβ2(z), which together

with (3.6) and (3.7) gives that g(z) ≡ h(z). This contradicts the assumption, and so

eγ1(z) 6≡ eγ2(z). If eγ2(z)−γ1(z) ≡ c, where c ( 6= 0, 1) is a constant, then (3.8) shows that

the poles of f(z) must be the zeros of eγ1(z)−1 and the zeros of eγ2(z)−1 = ceγ1(z)−1.

This is impossible because eγ1(z)−1 and ceγ1(z)−1 have no common zeros, and hence

eγ2(z)−γ1(z) 6≡ constant. (3.8) yields

eγ2(z) − eβ2(z)+γ1(z)−β1(z) + eβ2(z)−β1(z) + eγ1(z)−β1(z) − eγ2(z)−β1(z) = 1. (3.9)

Applying Theorem 3.6 to (3.9) means that at least one of eβ2(z)+γ1(z)−β1(z), eγ1(z)−β1(z), eγ2(z)−β1(z)

is a constant. We distinguish three cases below.

Case 1. Suppose eγ1(z)−β1(z) ≡ k1, where k1 (6= 0, 1) is a constant. Then

eγ1(z) = k1e
β1(z). Substituting this into (3.9) gives

eγ2(z) − k1e
β2(z) + eβ2(z)−β1(z) − eγ2(z)−β1(z) = 1− k1. (3.10)

Again, applying Theorem 3.6 to (3.10), we know that eγ2(z)−β1(z) is a constant.

Let eγ2(z)−β1(z) ≡ c1, then eγ2(z)−γ1(z) = c1
k1

, a contradiction. Hence eγ1(z)−β1(z) 6≡
constant.

Case 2. Suppose eγ2(z)−β1(z) ≡ k2, where k2 (6= 0) is a constant. Then eγ2(z) =

k2e
β1(z). Substituting this into (3.9) yields

k2e
β1(z) − eβ2(z)+γ1(z)−β1(z) + eβ2(z)−β1(z) + eγ1(z)−β1(z) = 1 + k2. (3.11)
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If 1 + k2 = 0, it follows from (3.11) that

−e2β1(z)−β2(z)−γ1(z) + e−γ1(z) + e−β2(z) = 1. (3.12)

Applying Theorem 3.7 to (3.12) gives e2β1(z)−β2(z)−γ1(z) = −1 and e−γ1(z) = −e−β2(z).

And so we deduce that e2(γ1(z)−β1(z)) = 1, a contradiction.

If 1+k2 6= 0, then applying Theorem 3.6 to (3.11), we see that eβ2(z)+γ1(z)−β1(z) =

c2 (6= 0) is a constant. Substituting eγ1(z) = c2e
β1(z)−β2(z) into (3.11) yields

k2e
β1(z) + eβ2(z)−β1(z) + c2e

−β2(z) = 1 + k2 + c2.

Again using Theorem 3.6, we get 1 + k2 + c2 = 0, which follows that

−k2e
2β1(z)−β2(z) − c2e

β1(z)−2β2(z) = 1.

From this and Theorem 3.6, we see that both e2β1(z)−β2(z) and eβ1(z)−2β2(z) are con-

stants, and hence eβ1(z) and eβ2(z) are constants. This contradicts the assumption.

So eγ2(z)−β1(z) is not a constant.

Case 3. Suppose eβ2(z)+γ1(z)−β1(z) ≡ k3, where k3 (6= 0) is a constant. Then

eβ2(z)−β1(z) = k3e
−γ1(z). Substituting this into (3.9) gives

eγ2(z) + k3e
−γ1(z) + eγ1(z)−β1(z) − eγ2(z)−β1(z) = 1 + k3.

From this and by Theorem 3.6, we get k3 = −1. And thus the above equation

becomes

eβ1(z) − eβ1(z)−γ1(z)−γ2(z) + eγ1(z)−γ2(z) = 1. (3.13)

Now applying Theorem 3.7 to (3.13) means −eβ1(z)−γ1(z)−γ2(z) ≡ 1 and eβ1(z) ≡
−eγ1(z)−γ2(z). From this, we obtain e2γ2(z) ≡ −1, this is a contradiction. The proof

of Theorem 3.9 is completed. ❑

Theorem 3.10 [3]. Let f(z), g(z), h(z) and k(z) be non-constant meromorphic

functions and aj (j = 1, 2, 3) be three distinct values in the extended complex plane.

If f(z), g(z), h(z), k(z) share a1, a2 CM and share a3 IM, then at least two of f(z),

g(z), h(z), k(z) are the same.
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Proof . Without loss of generality, we assume that a1 = 0, a2 = ∞, a3 = 1. Sup-

pose that Theorem 3.10 is not true, namely f(z), g(z), h(z), k(z) are different from

one another. By Theorem 3.2, we obtain S(r, f) = S(r, g) = S(r, h) = S(r, k) :=

S(r). For the sake of convenience, we write

N(r, 0) = N

(
r,

1

f

)
, N(r,∞) = N(r, f), N(r, 1) = N

(
r,

1

f − 1

)
.

If two of N(r, 0), N(r,∞), N(r, 1) are S(r), then Theorem 3.5 shows that at least

two of f(z), g(z), h(z) are the same. This contradicts the assumption. Hence

at least two of N(r, 0), N(r,∞), N(r, 1) are not equal to S(r). Without loss of

generality, we may assume that

N(r, 0) 6= S(r), N(r, 1) 6= S(r). (3.14)

Since f(z), g(z), h(z), k(z) share 0, ∞ CM, we have

f(z)

g(z)
= eα(z),

f(z)

h(z)
= eβ(z) and

f(z)

k(z)
= eγ(z), (3.15)

where α(z), β(z), γ(z) are entire functions. If α(z) ≡ c is a constant, then (3.14)

and (3.15) imply that eα(z) ≡ 1, and thus f(z) ≡ g(z). This contradicts the

assumption, and so α(z) is not a constant. Similarly, β(z), γ(z), α(z) − β(z),

α(z)− γ(z), β(z)− γ(z) are not constants. Let

f(z)− 1

g(z)− 1
= A,

f(z)− 1

h(z)− 1
= B and

f(z)− 1

k(z)− 1
= C, (3.16)

where A, B, C are meromorphic functions. From (3.14) and (3.16), we see that

none of A, B, C, A
B

, A
C
, B

C
are constants. Solving g(z) from (3.15) and (3.16) gives

g(z) =
A− 1

A− eα(z)
,

g(z) =
B
A
− 1

B
A
− eβ(z)−α(z)

eβ(z)−α(z),

g(z) =
C
A
− 1

C
A
− eγ(z)−α(z)

eγ(z)−α(z).

The above three equations imply

eα(z)−β(z) =
eα(z)(B − A) + (A− AB)

B − AB
, (3.17)
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eα(z)−γ(z) =
eα(z)(C − A) + (A− AC)

C − AC
, (3.18)

eβ(z)−α(z) =
eβ(z)(A−B) + (B − AB)

A− AB
, (3.19)

eγ(z)−α(z) =
eγ(z)(A− C) + (C − AC)

A− AC
. (3.20)

Formulas (3.17) and (3.19) show that 1 is an IM shared value of eα(z) and eβ(z),

while (3.18) and (3.20) imply that 1 is an IM shared value of eα(z) and eγ(z). Since

0, ∞ are Picard exceptional values of eα(z), eβ(z) and eγ(z), we see that at least

two of eα(z), eβ(z), eγ(z) are the same from Theorem 3.5, which contradicts the

assumption. So we complete the proof of Theorem 3.10. ❑
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4 Multiplicities and Uniqueness

In this section, we study the relation between multiplicities and uniqueness of

two meromorphic functions sharing three values, especially, the result proved by H.

X. Yi. Before stating it, we need the following fact.

Theorem 4.1 [11]. Let h(z) be a non-constant entire function and f(z) = eh(z).

Then

(i) T (r, h) = S(r, f),

(ii) T (r, h′) = S(r, f).

We use nk)(r,
1

f−a
) to denote the zeros of f(z) − a in | z | ≤ r, whose multiplicities

are no greater than k and are counted according to their multiplicities. Likewise, we

use n(k+1

(
r, 1

f−a

)
denote those zeros of f(z)−a in | z | ≤ r, whose multiplicities are

greater than k and are counted according to their multiplicities. The corresponding

counting functions are denoted by Nk)

(
r, 1

f−a

)
and N(k+1

(
r, 1

f−a

)
.

Theorem 4.2 [11]. Let f(z) and g(z) be non-constant meromorphic functions

sharing 0, 1, ∞ CM. If

N(2

(
r,

1

f

)
+ N(2

(
r,

1

f − 1

)
+ N(2(r, f) 6= S(r, f), (4.1)

then f(z) ≡ g(z).

Proof . Suppose f(z) 6≡ g(z). Theorem 3.3 yields

f(z) =
eβ(z) − 1

eγ(z) − 1
and g(z) =

e−β(z) − 1

e−γ(z) − 1
,
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where β(z) and γ(z) are entire functions satisfying eβ(z) 6≡ 1, eγ(z) 6≡ 1, eβ(z) 6≡ eγ(z).

Using Theorem 3.3 again, we get

T (r, eβ) = O(T (r, f)), (r →∞, r /∈ E), (4.2)

T (r, eγ) = O(T (r, f)), (r →∞, r /∈ E),

and thus

T (r, eβ−γ) = O(T (r, f)), (r →∞, r /∈ E).

It is obvious that the multiple zeros of f(z) must satisfy





eβ(z) − 1 = 0,

β′(z) = 0.
(4.3)

If β(z) is a constant, then N(2

(
r, 1

f

)
= 0. If β(z) is not a constant, then from (4.3),

we get

N(2

(
r,

1

f

)
≤ 2N

(
r,

1

β′

)
≤ 2T (r, β′) + O(1). (4.4)

From Theorem 4.1, we have T (r, β′) = S(r, eβ). This and (4.2) lead to

T (r, β′) = S(r, f). (4.5)

(4.4) and (4.5) give

N(2

(
r,

1

f

)
= S(r, f). (4.6)

Obviously, the multiple poles of f(z) satisfy





eγ(z) − 1 = 0,

γ′(z) = 0.

Similar to the above discussion, we can prove

N(2(r, f) = S(r, f). (4.7)

Since

f(z)− 1 =
eγ(z)(eβ(z)−γ(z) − 1)

eγ(z) − 1
,
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we see that the multiple zeros of f(z)− 1 satisfy




eβ(z)−γ(z) − 1 = 0,

β′(z)− γ′(z) = 0.

By the similar way, we can obtain

N(2

(
r,

1

f − 1

)
= S(r, f).

This together with (4.6) and (4.7) yields

N(2

(
r,

1

f

)
+ N(2

(
r,

1

f − 1

)
+ N(2(r, f) = S(r, f),

which contradicts (4.1). Hence f(z) ≡ g(z). ❑

Theorem 4.3 [11]. Let f(z) and g(z) be non-constant meromorphic functions

sharing 0, 1, CM and ∞ IM. If

N∗(r,∞) 6= S(r, f), (4.8)

where N∗(r,∞) is defined to be the counting function of multiple poles of f(z) and

g(z), and is counted according to the smaller multiplicity, then f(z) ≡ g(z).

Proof . Let

β(z) =

(
f ′(z)

f(z)
− f ′(z)

f(z)− 1

)
−

(
g′(z)

g(z)
− g′(z)

g(z)− 1

)

= − f ′(z)

f(z)(f(z)− 1)
+

g′(z)

g(z)(g(z)− 1)
. (4.9)

If β(z) 6≡ 0, then m(r, β) = S(r, f). Since f(z) and g(z) share 0, 1 CM, we see that

the zeros of f(z) and f(z)− 1 are not the poles of β(z), and that the poles of f(z)

are not the poles of β(z) from (4.9). Hence β(z) is an entire function, and thus

T (r, β) = S(r, f).

Suppose z0 is a pole of f(z) with multiplicity p (≥ 2), as well as a pole of g(z) with

multiplicity q (≥ 2). Equation (4.9) shows that z0 is a zero of β(z) with multiplicity

greater than or equal to min{p, q} − 1. Hence we have

N∗(r,∞) ≤ 2N

(
r,

1

β

)
≤ 2T (r, β) + O(1) = S(r, f).
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This contradicts (4.8), so β(z) ≡ 0. And thus (4.9) gives

f(z)

f(z)− 1
≡ c · g(z)

g(z)− 1
, (4.10)

where c (6= 0) is a constant. (4.8) and (4.10) yields c = 1, and thus f(z) ≡ g(z).

❑
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5 Deficient Values and Uniqueness

In this section, we study the relation between deficient values and uniqueness

of two meromorphic functions share three values, especially, the result proved by

H. Ueda. Before stating it, we need the following fact.

Theorem 5.1 [5]. Suppose that f1(z), f2(z), · · · , fn(z) are linearly independent

meromorphic functions satisfying the identity

n∑
j=1

fj(z) ≡ 1.

Then, for 1 ≤ j ≤ n, we have

T (r, fj) ≤
n∑

k=1

N

(
r,

1

fk

)
+ N(r, fj) + N(r,D)−

n∑

k=1

N(r, fk)−N

(
r,

1

D

)
+ S(r),

where D is the Wronskian determinant W (f1, f2, · · · , fn),

S(r) = o(T (r)) (r →∞, r /∈ E),

and

T (r) = max
1≤k≤n

{T (r, fk)},

and E ⊆ (0,∞) is a set of finite linear measure.

In the following, we state an important theorem on the combinations of entire

functions due to Borel.

Theorem 5.2 [5]. If fj(z) (j = 1, 2, · · · , n) and gj(z) (j = 1, 2, · · · , n) (n ≥ 2)

are entire functions satisfying the following conditions.

(i)
n∑

j=1

fj(z)egj(z) ≡ 0;

(ii) The orders of fj(z) are less than that of egh(z)−gk(z) for 1 ≤ j ≤ n, 1 ≤ h <

k ≤ n,
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Then fj(z) ≡ 0, (j = 1, 2, · · · , n).

The above Borel’s theorem plays a very important role in the study of uniqueness

of meromorphic functions.

Theorem 5.3 [8, 9]. Let f(z) and g(z) be non-constant meromorphic functions

sharing 0, 1, ∞ CM. If

lim
r→∞

N
(
r, 1

f

)
+ N(r, f)

T (r, f)
<

1

2
,

then f(z) ≡ g(z) or f(z)g(z) ≡ 1.

Proof . Since f(z) and g(z) sharing 0, 1 CM, we have

f(z)

g(z)
= eα(z) and

f(z)− 1

g(z)− 1
= eβ(z), (5.1)

where α(z) and β(z) are entire functions.

Case 1. Suppose that eβ(z) ≡ c (6= 0) is a constant. If f(z) has at least

one zero, then c = 1, i.e., f(z) ≡ g(z). If f(z) has no zeros and c 6= 1, we have

f(z) − cg(z) = 1 − c 6= 0. Put f1(z) = f(z)−1, g1(z) = g(z)−1, then f1(z), g1(z)

are entire functions satisfying g1(z) = cf1(z)
1−(1−c)f1(z)

. Since g1(z) is an entire function,

1− (1− c)f1(z) = eγ(z), where γ(z) is entire. Hence f(z) = f1(z)−1 = 1−c
1−eγ(z) . Thus

N(r, f) = N

(
r,

1

eγ − 1

)
= (1 + o(1))T (r, eγ)

= (1 + o(1))T (r, f), (r →∞, r /∈ E).

This is impossible.

Case 2. Suppose that eα(z)−β(z) ≡ c (6= 0) is a constant. If c = 1, we have

f(z) ≡ g(z). If c 6= 1, then f(z) = −c(eβ(z)−1)
c−1

. Thus

N

(
r,

1

f

)
= N

(
r,

1

eβ − 1

)
= (1 + o(1))T (r, eβ)

= (1 + o(1))T (r, f), (r →∞, r /∈ E).
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This is impossible.

Case 3. Suppose neither eβ(z) nor eα(z)−β(z) are constants. In this case, we

have

f(z) =
1− eβ(z)

1− eβ(z)−α(z)
and g(z) =

1− eβ(z)

1− eβ(z)−α(z)
e−α(z).

Now, we use the argument of impossibility of Borel’s identity. Put ϕ1(z) = f(z),

ϕ2(z) = −f(z)eβ(z)−α(z) and ϕ3(z) = eβ(z). Then

ϕ1 + ϕ2 + ϕ3 = 1, ϕ
(n)
1 + ϕ

(n)
2 + ϕ

(n)
3 = 0, (n = 1, 2). (5.2)

Further put

4 =

∣∣∣∣∣∣∣∣∣

1 1 1

ϕ′1
ϕ1

ϕ′2
ϕ2

ϕ′3
ϕ3

ϕ′′1
ϕ1

ϕ′′2
ϕ2

ϕ′′3
ϕ3

∣∣∣∣∣∣∣∣∣
and

4′ =

∣∣∣∣∣∣

ϕ′2
ϕ2

ϕ′3
ϕ3

ϕ′′2
ϕ2

ϕ′′3
ϕ3

∣∣∣∣∣∣
. (5.3)

Assume first that 4 = 0. Then by (5.2)

0 =

∣∣∣∣∣∣∣∣∣

ϕ1 ϕ2 ϕ3

ϕ′1 ϕ′2 ϕ′3

ϕ′′1 ϕ′′2 ϕ′′3

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

ϕ1 ϕ2 1

ϕ′1 ϕ′2 0

ϕ′′1 ϕ′′2 0

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
ϕ′1 ϕ′2

ϕ′′1 ϕ′′2

∣∣∣∣∣∣
.

This implies ϕ2 = Cϕ1 + D (C, D : constants), i.e., −f(z)eβ(z)−α(z) = Cf(z) + D.

If C 6= 0, we have f(z) = −D
C+eβ(z)−α(z) , so that

N(r, f) = (1 + o(1))T (r, f), (r →∞, r /∈ E).

This is impossible. Hence C must vanish, i.e., f = −Deα(z)−β(z). Substituting this

into (5.2), we have −Deα(z)−β(z) + eβ(z) = 1 − D. By Theorem 3.6, D = 1 and

eβ(z) = eα(z)−β(z). Thus f(z)g(z) ≡ 1. Assume 4 6≡ 0, then by (5.3) ϕ1 = f = 4′
4 ,

we obtain

m(r, f) ≤ m(r,4′) + m(r,4−1)

≤ m(r,4′) + m(r,4) + N(r,4) + O(1). (5.4)
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Here we estimate m(r,4′) and m(r,4). By (5.1)

T (r, eβ) ≤ T (r, f) + T (r, g) + O(1)

and

T (r, eβ−α) ≤ T (r, eβ) + T (r, e−α)

≤ 2T (r, f) + 2T (r, g) + O(1).

By Theorem 2.10,

(1− o(1))T (r, g) ≤ N

(
r,

1

g

)
+ N

(
r,

1

g − 1

)
+ N(r, g)

≤ N

(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N(r, f)

≤ (3 + o(1))T (r, f), (r →∞, r /∈ E).

Hence

T (r, ϕ3) = T (r, eβ) ≤ (4 + o(1))T (r, f), (r →∞, r /∈ E)

and

T (r, ϕ2) ≤ T (r, f) + T (r, eβ−α) ≤ (9 + o(1))T (r, f), (r →∞, r /∈ E).

Therefore

m(r,4′) = O(log rT (r, f)),m(r,4) = O(log rT (r, f)), (r →∞, r /∈ E).

Substituting these into (5.4), we have

m(r, f) ≤ N(r,4) + O(log rT (r, f)), (r →∞, r /∈ E) (5.5)

and let F = f ′′
f
− 2(f ′

f
)2, then

N(r, F ) ≤ 2N

(
r,

1

f

)
+ N(r, f). (5.6)

Also, a direct computation shows that

4 =

[
f ′′

f
− 2

(
f ′

f

)2
]

(β′ − α′)

+

(
f ′

f

)
[(β′)2 − (α′)2 − 2(β′ − α′)− (β′′ − α′′)]

+ β′(β′′ − α′′) + β′(β′ − α′)− (β′ − α′)[β′′ + (β′)2].
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It follows from this and (5.6)

N(r,4) ≤ 2N

(
r,

1

f

)
+ N(r, f). (5.7)

By (5.5) and (5.7), we have

T (r, f) = m(r, f) + N(r, f)

≤ N(r,4) + O(log rT (r, f)) + N(r, f)

≤ 2N
(
r, 1

f

)
+ N(r, f) + O(log rT (r, f)) + N(r, f)

= 2
[
N

(
r, 1

f

)
+ N(r, f)

]
+ O(log rT (r, f)), (r →∞, r /∈ E).

Hence

lim
r→∞

N
(
r, 1

f

)
+ N(r, f)

T (r, f)
≥ 1

2
.

This is impossible.

This completes the proof of theorem 5.3. ❑

Theorem 5.4 [12]. Let f(z) and g(z) be non-constant meromorphic functions

sharing 0, 1, ∞ CM. If

N1)

(
r,

1

f

)
+ N1)(r, f) < (λ + o(1))T (r), (r ∈ I), (5.8)

where λ < 1
2
, T (r) = max{T (r, f), T (r, g)}, and I is a set in (0,∞) with infinite

linear measure, then f(z) ≡ g(z) or f(z)g(z) ≡ 1.

Proof . Let I1 be the set of r ∈ I such that T (r, f) < T (r, g), and I2 be the set of

r ∈ I such that T (r, g) ≤ T (r, f). Obviously, at least one of I1 and I2 is of infinitely

linear measure. Without loss of generality, we assume that

T (r, g) ≤ T (r, f), (r ∈ I).

Therefore

T (r) = T (r, f), (r ∈ I). (5.9)
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Suppose that f(z) 6≡ g(z). By Theorem 4.2, we have

N(2

(
r,

1

f

)
+ N(2

(
r,

1

f − 1

)
+ N(2(r, f) = S(r, f). (5.10)

Theorem 3.3 implies

f(z) =
eβ(z) − 1

eγ(z) − 1
, g(z) =

e−β(z) − 1

e−γ(z) − 1
, (5.11)

where β(z) and γ(z) are entire functions, and eβ(z) 6≡ 1, eγ(z) 6≡ 1, eβ(z) 6≡ eγ(z).

Using Theorem 3.3 again, we get

T (r, eβ) = O(T (r, f)), (r /∈ E). (5.12)

T (r, eγ) = O(T (r, f)), (r /∈ E). (5.13)

Let f1(z) = f(z), f2(z) = eβ(z) and f3(z) = −f(z)eγ(z). Then (5.11) gives

3∑
j=1

fj(z) ≡ 1. (5.14)

Let T ∗(r) = max{T (r, fj)}, (j = 1, 2, 3). From (5.12) and (5.13), we find

T ∗(r) = O(T (r, f)), (r /∈ E). (5.15)

If fj(z) (j = 1, 2, 3) are linearly independent, then it follows from (5.14), (5.15) and

Theorem 5.1 that

T (r, f1) <

3∑
j=1

N

(
r,

1

fj

)
+ N(r,D)−N(r, f2)−N(r, f3) + S(r, f), (5.16)

where

D =

∣∣∣∣∣∣∣∣∣

f1 f2 f3

f ′1 f ′2 f ′3

f ′′1 f ′′2 f ′′3

∣∣∣∣∣∣∣∣∣
. (5.17)

Obviously, we have
3∑

j=1

N

(
r,

1

fj

)
= 2N

(
r,

1

f

)
. (5.18)

Formulas (5.14) and (5.17) imply that

D =

∣∣∣∣∣∣
f ′2 f ′3

f ′′2 f ′′3

∣∣∣∣∣∣
.
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Hence

N(r,D)−N(r, f2)−N(r, f3) ≤ N(r, f ′′)−N(r, f) ≤ 2N(r, f). (5.19)

From (5.10), (5.16), (5.18) and (5.19), we get

T (r, f) < 2N1)

(
r,

1

f

)
+ 2N1)(r, f) + S(r, f).

This together with (5.8) and (5.9) leads to

T (r) < 2(λ + o(1))T (r), (r ∈ I).

Since λ < 1
2
, the above inequality can not hold. Hence fj(z) (j = 1, 2, 3) are linearly

dependent, that is, there exist constants c1, c2 and c3 (at least one of them is not

zero) such that c1f1(z) + c2f2(z) + c3f3(z) = 0, i.e.,

c1f(z) + c2e
β(z) − c3f(z)eγ(z) = 0. (5.20)

If c2 = 0, then from (5.20) we get eγ(z) = c1
c2

. Substituting the into (5.11) gives

f(z) =
eβ(z) − 1

c1
c3
− 1

,

and thus

N1)

(
r,

1

f

)
= T (r, f) + S(r, f) = (1 + o(1))T (r), (r ∈ I).

This contradicts (5.8), and so c2 6= 0. (5.20) leads to

eβ(z) = −c1

c2

f(z) +
c3

c2

f(z)eγ(z). (5.21)

Formulas (5.21) and (5.14) imply that

(
1− c1

c2

)
f(z)−

(
1− c3

c2

)
f(z)eγ(z) = 1. (5.22)

Note that f(z) is not a constant. If 1 − c1
c2
6= 0, then from (5.22), we see that

1− c3
c2
6= 0 and

f(z) =
1(

1− c1
c2

)
−

(
1− c3

c2

)
eγ(z)

,
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which leads to

N1)(r, f) = T (r, f) + S(r, f) = (1 + o(1))T (r), (r ∈ I).

This contradicts (5.8) too. Hence 1 − c1
c2

= 0, i.e., c1 = c2. Therefore, (5.22) shows

1− c3
c2
6= 0 and

f(z) =
c2

c3 − c2

e−γ(z). (5.23)

Substituting (5.23) into (5.21) gives

eβ(z) =
c2

c2 − c3

(
e−γ(z) − c3

c2

)
,

which implies that c3 = 0 and eβ(z) = e−γ(z). Hence by (5.11), we get f(z) = −e−γ(z)

and g(z) = −eγ(z), and thus f(z)g(z) ≡ 1. ❑

Note that Theorem 5.1 is a generalization of Theorem 5.4.

Theorem 5.5 [10]. Let f(z) and g(z) be non-constant and distinct meromorphic

functions sharing 0,1,∞ CM, and a 6= 0, 1,∞. If δ(a, f) > 1
2
, then a is a Picard

exceptional value of f , furthermore, one and only one of the following cases holds:

(i) (f − a)(g + a− 1) ≡ a(1− a), and f = a(1− eφ), g = (1− a)(1− e−φ);

(ii) f − (1− a)g ≡ a, and f = a
1−eφ , g = a

(a−1)(1−e−φ)
;

(iii) f ≡ ag, and f = aeφ−1
eφ−1

, g = aeφ−1
a(eφ−1)

,

where φ is a non-constant entire function.

Proof . From Theorem 3.3, we deduce

f(z) =
eβ(z) − 1

eγ(z) − 1
and g(z) =

e−β(z) − 1

e−γ(z) − 1
, (5.24)

where β(z) and γ(z) are entire functions, and eβ(z) 6≡ 1, eγ(z) 6≡ 1, eβ(z) 6≡ eγ(z).

Again from Theorem 3.3, we have

T (r, eβ) = O(T (r, f)), (r /∈ E), (5.25)
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T (r, eγ) = O(T (r, f)), (r /∈ E). (5.26)

(5.24) implies

f(z)− 1 =
eγ(z)(eβ(z)−γ(z) − 1)

eγ(z) − 1
. (5.27)

We distinguish the following four cases.

Case 1. Suppose that eβ(z), eγ(z), eβ(z)−γ(z) are not constants. (5.24) and (5.25)

yield

N

(
r,

1

f

)
+N

(
r,

1

eγ − 1

)
−N(r, f) = N

(
r,

1

eβ − 1

)
= T (r, eβ)+S(r, f). (5.28)

Let

f1(z) =
1

a− 1
(f(z)−a)(eγ(z)−1), f2(z) = − 1

a− 1
eβ(z) and f3(z) =

a

a− 1
eγ(z).

It is obvious that fj(z) (j = 1, 2, 3) are entire functions, and from (5.24), we have

3∑
j=1

fj(z) ≡ 1. (5.29)

If fj(z) (j = 1, 2, 3) are linearly dependent, then there exist constants cj (j = 1, 2, 3)

(at least one of them is not zero) such that

c1f1(z) + c2f2(z) + c3f3(z) = 0. (5.30)

If c1 = 0, then (5.30) gives c2f2(z) + c3f3(z) = 0, i.e., − c2
a−1

eβ(z) + c3a
a−1

eγ(z) = 0,

which implies that eβ(z)−γ(z) is a constant. This contradicts the assumption. Hence

c1 6= 0, and equation (5.30) can be written as

f1(z) = −c2

c1

f2(z)− c3

c1

f3(z). (5.31)

Substituting (5.31) into (5.29) yields
(
1− c2

c1

)
f2(z) +

(
1− c3

c1

)
f3(z) = 1, i.e.,

−
(

1− c2

c1

)
· 1

a− 1
· eβ(z) +

(
1− c3

c1

)
· a

a− 1
eγ(z) = 1.

Applying Theorem 3.6, we can get a contradiction. Therefore fj(z) (j = 1, 2, 3)

must be linearly independent. (5.29) and Theorem 5.1 mean that

T (r, f2) < N

(
r,

1

f1

)
+ S(r, f),
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T (r, f3) < N

(
r,

1

f1

)
+ S(r, f).

Hence we have

T (r, eβ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f), (5.32)

T (r, eγ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f). (5.33)

From (5.28), (5.32) and (5.33), we obtain

N

(
r,

1

f

)
< N

(
r,

1

f − a

)
+ S(r, f), (5.34)

N(r, f) < N

(
r,

1

f − a

)
+ S(r, f). (5.35)

(5.25), (5.26) and (5.27) give

N

(
r,

1

f − 1

)
+N

(
r,

1

eγ − 1

)
−N(r, f) = N

(
r,

1

eβ−γ − 1

)
= T (r, eβ−γ)+S(r, f).

(5.36)

Let

g1(z) = −1

a
e−γ(z)(f(z)−a)(eγ(z)−1), g2(z) =

1

a
eβ(z)−γ(z) and g3(z) =

a− 1

a
e−γ(z).

Obviously, gj(z) (j = 1, 2, 3) are entire functions, and (5.24) implies that

3∑
j=1

gj(z) ≡ 1. (5.37)

If gj(z) (j = 1, 2, 3) are linearly dependent, then there exist constants cj (j = 1, 2, 3)

(at least one of them is not zero) such that

c1g1(z) + c2g2(z) + c3g3(z) = 0. (5.38)

If c1 = 0, then (5.38) gives c2g2(z)+ c3g3(z) = 0, i.e., c2
a
eβ(z)−γ(z) + c3(a−1)

a
e−γ(z) = 0,

which implies that eβ(z) is a constant. This contradicts the assumption. Hence

c1 6= 0, and equation (5.38) can be written as

g1(z) = −c2

c1

g2(z)− c3

c1

g3(z). (5.39)
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Substituting (5.39) into (5.37) yields
(
1− c2

c1

)
g2(z) +

(
1− c3

c1

)
g3(z) = 1, i.e.,

(
1− c2

c1

)
· 1

a
· eβ(z)−γ(z) +

(
1− c3

c1

)
· a− 1

a
e−γ(z) = 1.

Applying Theorem 3.6, we can get a contradiction. Therefore gj(z) (j = 1, 2, 3)

must be linearly independent. (5.37) and Theorem 5.1 result in

T (r, g2) < N

(
r,

1

g1

)
+ S(r, f),

i.e.,

T (r, eβ−γ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f). (5.40)

This together with (5.36) leads to

N

(
r,

1

f − 1

)
< N

(
r,

1

f − a

)
+ S(r, f). (5.41)

From (5.34), (5.35), (5.41) and Theorem 2.10 (the second fundamental theorem),

we get

2T (r, f) < N

(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N(r, f) + N

(
r,

1

f − a

)
+ S(r, f)

< 4N

(
r,

1

f − a

)
+ S(r, f)

< 4(1− δ(a, f) + o(1))T (r, f), (r /∈ E), (5.42)

which is impossible due to δ(a, f) > 1
2
.

Case 2. Suppose that eγ(z) ≡ k1, where k1 (6= 0, 1) is a constant. It follows

from (5.24) that

f(z)− a =
1

k1 − 1

{
eβ(z) − [1 + a(k1 − 1)]

}
. (5.43)

Noticing that δ(a, f) > 1
2
, if 1 + a(k1 − 1) 6= 0, then

N

(
r,

1

f − a

)
= N

(
r,

1

eβ − [1 + a(k1 − 1)]

)

= T (r, eβ) + S(r, f)

= T (r, f) + S(r, f). (5.44)
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From (5.44), we obtain δ(a, f) = 0, it is a contradiction. Hence 1 + a(k1 − 1) = 0,

and thus k1 = a−1
a

. Substituting eγ(z) = a−1
a

into (5.24) gives

f(z) = a(1− eβ(z)), g(z) = (1− a)(1− e−β(z)).

Hence

(f − a)(g + a− 1) ≡ a(1− a).

That means (i) holds.

Case 3. Suppose that eβ(z) ≡ k2, where k2 (6= 0, 1) is a constant. By (5.24),

we get

f(z)− a =
(k2 + a− 1)− aeγ(z)

eγ(z) − 1
. (5.45)

Since δ(a, f) > 1
2
, the above equation leads to k2 + a − 1 = 0, i.e., k2 = 1 − a.

Substituting eβ(z) = 1− a into (5.24) gives

f(z) =
a

1− eγ(z)
, g(z) =

a

a− 1
· 1

1− e−γ(z)
.

Hence f − (1− a)g ≡ a. That is (ii).

Case 4. Suppose that eβ(z)−γ(z) ≡ k3, where k3 (6= 0, 1) is a constant. (5.24)

means that

f(z)− a =
(k3 − a)eγ(z) − (1− a)

eγ(z) − 1
. (5.46)

Since δ(a, f) > 1
2
, the above equation leads to k3 − a = 0, and thus k3 = a.

Substituting eβ(z)−γ(z) = a into (5.24) gives

f(z) =
aeγ(z) − 1

eγ(z) − 1
, g(z) =

e−γ(z) − a

a(e−γ(z) − 1)
,

and thus f = ag. Hence we obtain the conclusion (iii) ❑

Theorem 5.6 [10]. Let f(z) and g(z) be non-constant and distinct entire functions

sharing 0, 1 CM, and a 6= 0, 1, ∞. If δ(a, f) > 1
3
, then a and 1− a are the Picard

exceptional values of f(z) and g(z), respectively. Furthermore

(f − a)(g + a− 1) ≡ a(1− a).
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Proof . From Theorem 3.3, we deduce

f(z) =
eβ(z) − 1

eγ(z) − 1
, g(z) =

e−β(z) − 1

e−γ(z) − 1
, (5.47)

where β(z) and γ(z) are entire functions, and eβ(z) 6≡ 1, eγ(z) 6≡ 1, eβ(z) 6≡ eγ(z).

Again from Theorem 3.3, we have

T (r, eβ) = O(T (r, f)), (r /∈ E), (5.48)

T (r, eγ) = O(T (r, f)), (r /∈ E). (5.49)

(5.47) implies

f(z)− 1 =
eγ(z)(eβ(z)−γ(z) − 1)

eγ(z) − 1
. (5.50)

If eβ(z), eγ(z), eβ(z)−γ(z) are not constants. (5.47) and (5.48) yield

N

(
r,

1

f

)
+N

(
r,

1

eγ − 1

)
−N(r, f) = N

(
r,

1

eβ − 1

)
= T (r, eβ)+S(r, f). (5.51)

Let

f1(z) =
1

a− 1
(f(z)− a)(eγ(z) − 1), f2(z) = − 1

a− 1
eβ(z), f3(z) =

a

a− 1
eγ(z).

It is obvious that fj(z) (j = 1, 2, 3) are entire functions, and from (5.47), we have

3∑
j=1

fj(z) ≡ 1. (5.52)

If fj(z) (j = 1, 2, 3) are linearly dependent, then there exist constants cj (j = 1, 2, 3)

(at least one of them is not zero) such that

c1f1(z) + c2f2(z) + c3f3(z) = 0. (5.53)

If c1 = 0, then (5.53) gives c2f2(z) + c3f3(z) = 0, i.e., − c2
a−1

eβ(z) + c3a
a−1

eγ(z) = 0,

which implies that eβ(z)−γ(z) is a constant. This contradicts the assumption. Hence

c1 6= 0, and equation (5.53) can be written as

f1(z) = −c2

c1

f2(z)− c3

c1

f3(z). (5.54)
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Substituting (5.54) into (5.52) yields (1− c2
c1

)f2(z) + (1− c3
c1

)f3(z) = 1, i.e.,

−
(

1− c2

c1

)
· 1

a− 1
· eβ(z) +

(
1− c3

c1

)
· a

a− 1
eγ(z) = 1.

Applying Theorem 3.6, we can get a contradiction. Therefore fj(z) (j = 1, 2, 3)

must be linearly independent. (5.52) and Theorem 5.1 mean that

T (r, f2) < N

(
r,

1

f1

)
+ S(r, f),

T (r, f3) < N

(
r,

1

f1

)
+ S(r, f).

Hence we have

T (r, eβ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f), (5.55)

T (r, eγ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f). (5.56)

From (5.51), (5.55) and (5.56), we obtain

N

(
r,

1

f

)
< N

(
r,

1

f − a

)
+ S(r, f). (5.57)

(5.48), (5.49) and (5.50) give

N

(
r,

1

f − 1

)
+N

(
r,

1

eγ − 1

)
−N(r, f) = N

(
r,

1

eβ−γ − 1

)
= T (r, eβ−γ)+S(r, f).

(5.58)

Let

g1(z) = −1

a
e−γ(z)(f(z)−a)(eγ(z)−1), g2(z) =

1

a
eβ(z)−γ(z) and g3(z) =

a− 1

a
e−γ(z).

Obviously, gj(z) (j = 1, 2, 3) are entire functions, and (5.47) implies that

3∑
j=1

gj(z) ≡ 1. (5.59)

If gj(z) (j = 1, 2, 3) are linearly dependent, then there exist constants cj (j = 1, 2, 3)

(at least one of them is not zero) such that

c1g1(z) + c2g2(z) + c3g3(z) = 0. (5.60)
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If c1 = 0, then (5.60) gives c2g2(z)+ c3g3(z) = 0, i.e., c2
a
eβ(z)−γ(z) + c3(a−1)

a
e−γ(z) = 0,

which implies that eβ(z) is a constant. This contradicts the assumption. Hence

c1 6= 0, and equation (5.60) can be written as

g1(z) = −c2

c1

g2(z)− c3

c1

g3(z). (5.61)

Substituting (5.61) into (5.59) yields
(
1− c2

c1

)
g2(z) +

(
1− c3

c1

)
g3(z) = 1, i.e.,

(
1− c2

c1

)
· 1

a
· eβ(z)−γ(z) +

(
1− c3

c1

)
· a− 1

a
e−γ(z) = 1.

Applying Theorem 3.6, we can get a contradiction. Therefore gj(z) (j = 1, 2, 3) must

be linearly independent. (5.59) and Theorem 5.1 result in T (r, g2) < N
(
r, 1

g1

)
+

S(r, f), i.e.,

T (r, eβ−γ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f). (5.62)

This together with (5.58) leads to

N

(
r,

1

f − 1

)
< N

(
r,

1

f − a

)
+ S(r, f). (5.63)

From (5.57), (5.63) and Theorem 2.10 (the second fundamental theorem), we get

2T (r, f) < N

(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N

(
r,

1

f − a

)
+ S(r, f)

< 3N

(
r,

1

f − a

)
+ S(r, f)

< 3(1− δ(a, f) + o(1))T (r, f), (r /∈ E), (5.64)

which is impossible due to δ(a, f) > 1
3
. Hence at least one of eβ(z), eγ(z), eβ(z)−γ(z) is

a constant. Since f(z) is a non-constant entire function, we see that eβ(z), eβ(z)−γ(z)

are not constants from (5.47), and so eγ(z) is a constant. Suppose that eγ(z) ≡ k1,

where k1 (6= 0, 1) is a constant. It follows from (5.47) that

f(z)− a =
1

k1 − 1

{
eβ(z) − [1 + a(k1 − 1)]

}
. (5.65)

Noticing that δ(a, f) > 1
3
, if 1 + a(k1 − 1) 6= 0, then

N

(
r,

1

f − a

)
= N

(
r,

1

eβ − [1 + a(k1 − 1)]

)

= T (r, eβ) + S(r, f)

= T (r, f) + S(r, f). (5.66)
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From (5.66), we obtain δ(a, f) = 0, it is a contradiction. Hence 1 + a(k1 − 1) = 0,

and thus k1 = a−1
a

. Substituting eγ(z) = a−1
a

into (5.47) gives

f(z) = a(1− eβ(z)) and g(z) = (1− a)(1− e−β(z)).

Hence

(f − a)(g + a− 1) ≡ a(1− a).

The proof of Theorem 5.6 is completed. ❑

Theorem 5.7 [7]. Let f(z) and g(z) are non-constant entire functions with finite

lower order. If f(z) and g(z) share 0 and 1 CM, and if δ(0, f) > 0, δ(1, f) > 0,

then f(z) ≡ g(z).

Theorem 5.8 [10]. Let f(z) and g(z) be non-constant and distinct entire functions

with finite order, and a 6= 0, 1, ∞. If f(z) and g(z) share 0, 1 CM and δ(a, f) > 0,

then a and 1 − a are the Picard exceptional values of f(z) and g(z), respectively.

Furthermore

(f − a)(g + a− 1) ≡ a(1− a).

Proof . From Theorem 3.3, we deduce

f(z) =
eβ(z) − 1

eγ(z) − 1
and g(z) =

e−β(z) − 1

e−γ(z) − 1
, (5.67)

where β(z) and γ(z) are entire functions, and eβ(z) 6≡ 1, eγ(z) 6≡ 1, eβ(z) 6≡ eγ(z).

Again from Theorem 3.3, we have

T (r, eβ) = O(T (r, f)), (r /∈ E), (5.68)

T (r, eγ) = O(T (r, f)), (r /∈ E). (5.69)

(5.67) implies

f(z)− 1 =
eγ(z)(eβ(z)−γ(z) − 1)

eγ(z) − 1
. (5.70)
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If eβ(z), eγ(z), eβ(z)−γ(z) are not constants. (5.67) and (5.68) yield

N

(
r,

1

f

)
+N

(
r,

1

eγ − 1

)
−N(r, f) = N

(
r,

1

eβ − 1

)
= T (r, eβ)+S(r, f). (5.71)

Let

f1(z) =
1

a− 1
(f(z)−a)(eγ(z)−1), f2(z) = − 1

a− 1
eβ(z) and f3(z) =

a

a− 1
eγ(z).

It is obvious that fj(z) (j = 1, 2, 3) are entire functions, and from (5.67), we have

3∑
j=1

fj(z) ≡ 1. (5.72)

If fj(z) (j = 1, 2, 3) are linearly dependent, then there exist constants cj (j = 1, 2, 3)

(at least one of them is not zero) such that

c1f1(z) + c2f2(z) + c3f3(z) = 0. (5.73)

If c1 = 0, then (5.73) gives c2f2(z) + c3f3(z) = 0, i.e., − c2
a−1

eβ(z) + c3a
a−1

eγ(z) = 0,

which implies that eβ(z)−γ(z) is a constant. This contradicts the assumption. Hence

c1 6= 0, and equation (5.73) can be written as

f1(z) = −c2

c1

f2(z)− c3

c1

f3(z). (5.74)

Substituting (5.74) into (5.72) yields
(
1− c2

c1

)
f2(z) +

(
1− c3

c1

)
f3(z) = 1, i.e.,

−
(

1− c2

c1

)
· 1

a− 1
· eβ(z) +

(
1− c3

c1

)
· a

a− 1
eγ(z) = 1.

Applying Theorem 3.6, we can get a contradiction. Therefore fj(z) (j = 1, 2, 3)

must be linearly independent. (5.72) and Theorem 5.1 mean that

T (r, f2) < N

(
r,

1

f1

)
+ S(r, f),

T (r, f3) < N

(
r,

1

f1

)
+ S(r, f).

Hence we have

T (r, eβ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f), (5.75)
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T (r, eγ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f). (5.76)

From (5.71), (5.75) and (5.76), we obtain

N

(
r,

1

f

)
< N

(
r,

1

f − a

)
+ S(r, f). (5.77)

(5.68), (5.69) and (5.70) give

N

(
r,

1

f − 1

)
+N

(
r,

1

eγ − 1

)
−N(r, f) = N

(
r,

1

eβ−γ − 1

)
= T (r, eβ−γ)+S(r, f).

(5.78)

Let

g1(z) = −1

a
e−γ(z)(f(z)−a)(eγ(z)−1), g2(z) =

1

a
eβ(z)−γ(z) and g3(z) =

a− 1

a
e−γ(z).

Obviously, gj(z) (j = 1, 2, 3) are entire functions, and (5.67) implies that

3∑
j=1

gj(z) ≡ 1. (5.79)

If gj(z) (j = 1, 2, 3) are linearly dependent, then there exist constants cj (j = 1, 2, 3)

(at least one of them is not zero) such that

c1g1(z) + c2g2(z) + c3g3(z) = 0. (5.80)

If c1 = 0, then (5.80) gives c2g2(z)+ c3g3(z) = 0, i.e., c2
a
eβ(z)−γ(z) + c3(a−1)

a
e−γ(z) = 0,

which implies that eβ(z) is a constant. This contradicts the assumption. Hence

c1 6= 0, and equation (5.80) can be written as

g1(z) = −c2

c1

g2(z)− c3

c1

g3(z). (5.81)

Substituting (5.81) into (5.79) yields
(
1− c2

c1

)
g2(z) +

(
1− c3

c1

)
g3(z) = 1, i.e.,

(
1− c2

c1

)
· 1

a
· eβ(z)−γ(z) +

(
1− c3

c1

)
· a− 1

a
e−γ(z) = 1.

Applying Theorem 3.6, we can get a contradiction. Therefore gj(z) (j = 1, 2, 3) must

be linearly independent. (5.79) and Theorem 5.1 result in T (r, g2) < N
(
r, 1

g1

)
+

S(r, f), i.e.,

T (r, eβ−γ) < N

(
r,

1

f − a

)
+ N

(
r,

1

eγ − 1

)
−N(r, f) + S(r, f). (5.82)
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This together with (5.78) leads to

N

(
r,

1

f − 1

)
< N

(
r,

1

f − a

)
+ S(r, f). (5.83)

From (5.77) and (5.83), we obtain

δ(0, f) = 1− lim
r→∞

N
(
r, 1

f

)

T (r, f)
≥ 1− lim

r→∞

N
(
r, 1

f−a

)

T (r, f)
= δ(a, f) > 0

and

δ(1, f) = 1− lim
r→∞

m
(
r, 1

f−1

)

T (r, f)
≥ 1− δ(a, f) = lim

r→∞

m
(
r, 1

f−a

)

T (r, f)
= δ(a, f) > 0.

Then by theorem 5.7, we get f(z) ≡ g(z), which contradicts the assumption of

Theorem 5.8. Since f(z) is non-constant, (5.67) imply eβ(z) and eβ(z)−γ(z) are not

constants. Hence eγ(z) is a constant. Suppose that eγ(z) ≡ k1, where k1 (6= 0, 1) is

a constant. It follows from (5.67) that

f(z)− a =
1

k1 − 1

{
eβ(z) − [1 + a(k1 − 1)]

}
. (5.84)

Noticing that δ(a, f) > 0, if 1 + a(k1 − 1) 6= 0, then

N

(
r,

1

f − a

)
= N

(
r,

1

eβ − [1 + a(k1 − 1)]

)

= T (r, eβ) + S(r, f)

= T (r, f) + S(r, f). (5.85)

From (5.85), we obtain δ(a, f) = 0, it is a contradiction. Hence 1 + a(k1 − 1) = 0,

and thus k1 = a−1
a

. Substituting eγ(z) = a−1
a

into (5.67) gives

f(z) = a(1− eβ(z)), g(z) = (1− a)(1− e−β(z)).

Hence

(f − a)(g + a− 1) ≡ a(1− a).

The proof of Theorem 5.8 is completed. ❑
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