FRERTIEELE LT AL

HRGE 2 A R B3 2 RESF (D
FiasEL ([

e T B Y

4 % % NSC 100-2221-E-004-003-

ﬁi = 8 B o 100#08* 01l p 2 101#07% 31p
=LA S R S 9/ R & &

oo R AARRERELEREEF LG

S B TR APEAEENN A FEMAR 2 ERT R AN

P& % K 101 #0900 280p



P gt B

e M

¥R

v ke

.

WP E P RER A - BATHE S SRR Rk E G ks
A A L b
E’—jq:;E.x_{_—:‘J»_';q: o 3\ fra%,,ﬂ L_\E',I;EHW—‘J.%‘J '*ﬁé‘i’ffﬁ—% 1L
> E - ﬁ;’iPRjZ‘F&Fﬁm,:‘ e oo lg'%éF NDES m«&ﬂ—}* H A=

‘—"fﬁ"’:’igﬁrf%ﬂu%ﬁ‘%f‘«}é\ :};Ei——léq*'fﬂsi

\m: ﬁ



TR R PR B Gl B SR et & SR s
P 3 S E S S S S S O O O RO O
¥ DURFSRGT R SR SUIRTY S e Rl RS REHER. 3¢
PR PP PP PEPEPE PP E PO PO PSS

srE - CIv(EpIAGEHE RS HEHE

SHEHSE © NSC 100-2221-E-004-003
ATHART 0 1004E8 H1HZE 1014E7H31H

APEERFA ¢ BT

EEERA

AR RS L AE DU T R 2 I
[REBIINE Z S E D s — 0

[ JiRE K e i it A2 B A R —

[V s B P By S i e R S R 20—
B SR FER T BB MA TE S & —

BUTHLAL ¢ EITEOA RS B R

o R OB 1010 £ 09 A 1 H



TTEbE B X R 2 B vy S e a5 AR
DAREAR 2 B AR SRR S5 R T M
Calculating Balance Equations of A Fork-Type Queue By State-Aggregate
Approach

e ARSE . NSC 100-2221-E-004-003
BITHARR : 10044208 H 01 HZ#R 101407 H 31 H

Abstract. Stationary probabilities are fundamen-
tal in response to various measures of performance in
queueing networks. Solving stationary probabilities
in Quasi-Birth-and-Death(QBD) type Markov Chain
normally are dependent on the structure of the queue-
ing network. In this paper, a new computing scheme
is developed for attaining stationary probabilities in
queueing networks of the fork-type. This scheme pro-
vides a general approach to reducing the complexity
of computing algorithm. The result becomes more
significant when a large buffer size is involved but
cannot be ignored. The background theorem of this
approach is proved and provided with an illustrated
example in this paper.

1 System  Description and

Model Formulation

Consider a fork-type queueing model as shown in Fig-
ure 1. There are two work stations: the buffer space
at the first station is fairly larger than that at the
second station. Without loss of generality, we as-
sume it is infinite at the first buffer but the size at
the second buffer is B. All jobs after service at the
first station are transferred immediately to the second
station with probability q. With this simple model,
we will show how to construct a computing procedure
to obtain stationary probabilities with product form.
In general, this scheme provides a direct approach to
reducing the complexity of computing algorithm.

Assume that jobs arrive at the first station accord-
ing to a Poisson process with rate A and join an infi-
nite waiting space at station 1. After service in sta-
tion 1, with probability ¢, the job moves to a queue of
finite capacity B at station 2. In other words, with
probability 1 — ¢, the job leaves the system. Each
queue is served by a single server with exponential
service time of rate of 11 and ps. Note that the model
belongs to the class of Markovian queueing network
with blocking at the second station. Let n(t) and
m(t) be the number of jobs present at time ¢ in sta-
tion 1 and 2, respectively. The process {(n(t), m(t)),
t > 0} is a Markov process on state space U;>ol()
with 1(7) = {(¢,0),..., (¢, B)}, ¢ > 0. In the long run,
let (n,m) present the system state and their possible
transitions be given in the table 2.6.

The infinitesimal generator (transition rate ma-
trix) Q has a block-tridiagonal structure, indicating a
quasi-birth-and-death(QBD) process. Note that the
last case when the second stage buffer is full orm = B
in the state-transition table, we assume that the job
departed from station 1 leaves the system with prob-
ability 1 (i.e. the job leaves immediately when all
buffer at station 2 is occupied) or we may say that
the job which finds the buffer in station 2 is full get-
s lost. This assumption is obviously made for the
purpose of the fork-type structure. Apparently, if
the buffer size and the service rate at the second sta-
tion are large enough, the probability of reaching this
blocking state can be negligible. In fact, solving the
stationary probability of states with m = B is one of



major concerns of this approach.

2 Model with special solutions

2.1 M/M/c— /M/d/B

Consider a folk type queueing system where service
times of each server are independent and identically
distributed (i.i.d.) random variables subjecting to ex-
ponential distributions with service rate ug, k = 1, 2.
Interarrival times of jobs are also i.i.d. random vari-
ables subjecting to an exponential distribution with
arrival rate A. Assume the service times and inter-
arrival times are mutually independent. The service
discipline is First come first served (FCFS). Under
the stability condition of the system A < pj, the
stationary state probabilities may be obtained and
denoted by 7, .
We consider the matrix Q namely

B, A,
Ay A Ay
A A Ag
Q= Azs Ags
Ay

where By, Ag, A; and Ay are (B+ 1) x (B+1)
matrices, i.e.,

A

[ —(\+ kp1) 0 0
M2 —(A+ kpr + p2) 0
22 —(A+ kpy + 2up2)

Aip =

kpi(1—q) kpigq 0
kpi(1—q) kpag
Azn = ° ..
kpi(l—q) kpag
kp
where
=l m if n<eg @2.1)
Tl e if n>ec )
and
- 0 0 0 0
) — (X + p2) 0 0 0
0 240 — (X 4+ 2u9) 0 0
3u2
By =
dpg —(X +dpg)
dué

Let 7 be the stationary probability associated with
Q, namely, 7Q = 0. Define w = (mwg, 71, 72,...)
where 7,=(mpn0, Tn,1," - ,Tn,B), for n=0,1,2,---. At
first, assume d = 1 in the following lemmas.

Lemma 2.1 From state balance equations, we have
the following equation by aggregately addition for each
n >0, ie.,

XN Tp—1,0+Tn-1,1+ . +Tn_1,B) + kp1 (Tn,0 +mn,1 +
e + ﬂ'n,B) =0

where k =n if 1 <n < C; k =C, otherwise.

dpa —(A+ kpa + dus)

dpa —(X + kpa + dus)

—(X\ + dpo)




Proof.
Let e be a column vector of accordingly size with
every entry of 1. We consider

(7’!‘0B1 + 7r1A21)e =0

which expresses the state balance equations of having
0 job at stage 1. It gives
—Amo,0 + pemon + pa(l — @m0+
—(p2 + N)mo,1 + 2p2mo,2 4+ pa1qmio + (1 — q)mia+
—(2p2+ M) o2 +3p2mo 3 +p1gmi +pr(1—q)my o+ ...
—((d—=1)pu2+AN)mo,4—1 +dpomo,a+ p19m1,d—2+ p1 (1 —
qQ)T1d—1+
—(dpg + N)mo,a + dpemogr1 + p1qmia—1 + pa(l —
q)7r17d + ...
—(dpz + N)mo,p—1 + dpemo,p + p1qm1,B—2 + p1(1 —
q)m1,B-1+
—(dpe + N o, + p19m1,8-1 + pam, = 0.

After a few simple algebra it is rewritten as con-
cisely

—)\(71'0’0+7T0,1+...+7I'0’B)+p,1(7(1,0+W1’1+....+7T1,B) =0.

(2.2)
and the expressions of state balance equations when
there are n > 0 jobs at stage 1, are

(ﬂ'nAo + Wn+1A1(n+1) + 7rn+2A2(n+2))e =0.

It may be rewritten elaborately as

Ao — (A 4+ kp)Tni1,0 + Homnyrn + K5 pa(l —
@) Tr42,0 + AT 1 — (A +Epy + po)Tpy11 + fonir2 +
E*p1qmnio0 + kK*pi(l — @)mpi21 + Ampe — (A +
kpi 4 po)mnq1,2 + pomny1,3 +k* p1qmnpo +E pa (1 —
Q)Tny2,2 + oo F AT a1 — (A kpy + p2)Tni1,B—1 +
WoTtnt1,B + Kk p1qmnio B—2 + k*p1(1 — ¢)Tpio, -1 +
Mps — (A + kpa + p2)mns1,8 + K*p1qmns2,5-1 +
k*pimnye 5 = 0.

where k and k* are associated with n+1 and n+2
as defined in (2.1) respectively. By further calculation
we obtain

Mo + Tng + oo + o B) — (A + kpr)
(Tn+1,0 + Tng1,1 + oo + Tny1,B)
+E*p1 (12,0 + Tpt21 + . + Tppo p) = 0.

(2.3)

From (2.2) and (2.3) as n = 0, we have
Mmoo +mo,1+ .o +7m0,8) — (A +p1)(m0+ 711+ +

7['1’3) + 2[1,1(7'('270 + 2,1 + ...+ 71'2’3) =0.

and
—)\(71'070-1-71'0’1—|—...+7T()VB)+,UJ1(71’110—1-71'1,14—....—1-71'1’3) =
0

together which implies —A(m1,0 + 71,1 + ... + 71,B) +
2/11(71’2,0 + 71+ ...+ 71'2,3) =0.

By the similar manner, we can iteratively derive the
expressions according to each n > 1. g

Lemma 2.2 With eachm, m =0,1,--- , B, we have
,U'2)(770,m+1 + 71 mg1 A+ ) = 01G(T1, 0 + 2702 1 + 373, +
...)=0.

Proof.

Let e, be a unit column vector with the pth entry of
l,for1<p< B+ 1.

First, we consider the equations when there is 0 job
at stage 2, namely,

(moB1 + w1Ag1)er + Y 2o (miAg + g1 Aqip) +
Tit2Agit2))er = 0.

It gives

—Amo,0 + p2mo, + pi(l — @)m 0+

Amo,0 — (A4 p1) 10 + pomiy + 2p1(1 — g)ma 0+
A1,0— (A+2p1) 72,0+ poma 1 +3p1 (1—¢)m30+... = 0.
By further aggregation of corresponding states, we
have

—p1q(mi0 + 2m20 + oo + CTe o + o) + p2(mo,1 + T
+..+me—11+...) =0.
(2.4)

Secondly, consider when there are p — 1 jobs at stage
2, for2<p<B+1.
It gives similar expressions as (moB1 + w1 Az )e, +
Yoito(miAo + mit1Ag(iy1) + TitaAs(iyz))e, = 0.
It results in
—(p2+X)To.n+ 2o nt1+H1971 -1+ p1(1—¢) 71 0+
AMon — (A4 p1 + p2)T1 0 + R2m1nt1 + 201972 n—1 +
2p1 (1 —q) o+ A1 0 — (A 201+ p2) T2+ poTo nt1+
3p1qm3n—1 + 3u1(1 — q)mgpn + - = 0.
By further aggregation of corresponding states, we
have

—p2(mon + Tin + o) + p2(Ton41 + Tipgr + o)
—p1q(Tin + 2720 + 33 0 + o) + p1g(T1 -1+
27y -1 +3m3p_1+-:-)=0
(2.5)
By (2.4) and (2.5) as n = 1, we have

—p1q(m1,14+2m2 14373 14...) Fp2(mo 2+ 712 +...) = 0.



By the similar manner, we can iteratively derive the
expressions according to each m > 1. Thus the sta-
tionary state probability is derived and the following
lemma concludes the result. (]

Lemma 2.3 The solution has the form of
= (I m.,i)(n2)™ and ~v is a normal-
ization constant that makes the balance equations
satisfied with the probability law.

Proof.

By Lemma 2.1 we have n > 0

ATpe = kuimy €.

It produces

Ao VAT m1) (o)™ =
ke Yo o Y100 11,4) (n2)™ implies 9141 = k%l,
where k is n + 1 when n 4+ 1 < C; k = C otherwise.
To prove the form of 1, ;, We define for 0 <m < B,
Pm = To,m + T1,m + ...

P;n = 7T1,m + 27T2,m +

By Lemma 2.2, it derives poPy1 = q,ulP,'n.
Furthermore, it gives

p2 3o Y(ITizy ms) (n2)™

Tn,m

= g Son” ATy ) ()™ implying,
NIQ( +2H1 2p1 +3H_A1ﬁﬁ)
= I,L2772(1 + K ‘|‘ u_);ﬁ + )
Therefore, we have 7, = %. Hence, we prove the
form of 7. O
Conclusively, it is easy to derive + by
S oS Tum = 1 whose form is given in
Theorem 2.1. Hopefully, the same pattern and

proof of solutions may be applied for the model of
M/M/c— /M/d/B.

Theorem 2.1 The stationary state probability for
M/M/c — /M/d/B with its components which have

the form of Tpm = Y(ITi=y m,i)(ITj21 m2.,5), where

_ ﬁ if 1<i<c
o S i>c
A gy 1<j<d
My =4 W .'7
’ i if j=>d

and
_ =1 Ai
7= 1+ZZ, Z_:E E Ml))
59 A
1+Z T+ MZQ

j=d

S,

Proof.
By the same approach used in Lemma 3.1 we have
Ampe = kpuimap1€

AY D, ’Y(H?:l ) ([T 72,5)

= kpa Yoo V(T2 m1,0) ([T72 m2,5). By comparing

with each term for n > 0, it yields 1y ; = k)‘? where

k=1if ¢ < cand n o = 1; otherwise £k = ¢. Thus,

we prove the form of 7y ;.

Next, for a fixed m, we define:

Pm = To,m +771,m + ...

P7,n = 71'17m —|— 271'27m —|—

The same approach as used in Lemma 3.2 it gives

k',ungH = ,uquT',L. It can be rewritten as

K o 3on o YTy m) (T2 712.5)

= p1q 2,y YLy m) 152 m2,5)-

It can be further 51mphﬁed as

ku2n2m+1(1+ + +.) =
A A A )

p1 2p1 3py Tt .
By comparing with each term for B > m > 0, it

- 424 A4

'ulq( p1 2p1

n1 2#1

yields 7 ; = kf‘—iz, where k' is j when j < d < B;
otherwise k¥ = d. Thus, we prove the form of 7y ;.

By the same argument as described previously, it
is easy to prove the total probability law holds for
Ym0 Zﬁ:o Tn,m = 1. O

Consider a folk-type queueing system as drawn in
Figure 2 where there are ¢, d and g servers of service
rates 1, ue and pg at station 1,2 and 3 respectively.
The stationary probability is given in the following
theorem.

Theorem 2.2 The stationary state probability for
M/M/c — /M/d/B with probability of q and
M/M/c — /M/g/H with probability of 1 — q and
its components which have the form of

= Y(ILiZy m) (TG m25) ([Tk=1 m3.k), where

Tn,m,p



M, and 12 ; are defined as before but

A-g)x ; <
M3k = { aan i; 1 ;i< !
gHus L =9

and

= (14 ST )+ X (3R ()
( + I A>J+2J J(B)AE)~4(L2))
x(1+ DIz () (H22)k
+ 3 (2)g(Lykg (U2,
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Figure 1: A simple fork-type queueing Model

From  To Rate Condition

(n,m) (n+1,m) A for n>0

(n,m) (mn—1,m+1) piq for n>00<m<B-1

(n,m) (n—1,m) uwi(l—q) for n>00<m<B-1

(n,m) (na m — 1) H2 for m2>1

(n,m) (n—1,m) 1 for n>0m=B

Table 1: State transition table
T S1 g S

| >

— I

Sy

1-q

Figure 2: A folk-type tandem queue model with a

state dependent probability
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I. Introduction — main issues

Two Main Goals:
To achieve sufficient security-level.
To offer good customer service (or less waiting time).

Questions:

Does increasing required security level always lead to
increasing customer waiting cost?

Which configuration of security-check facility performs
better? Two-stage or One-stage inspection?

m—— g

Related Literature —a sample

Queueing models - El-Taha and Maddah (2006),
Zhang (2009), Whitt (2008, 2009), etc.

Security-Check Models - Kobza and Jacobson (1997),

Jacobson et al. (2001), Lee et al (2009), Babu et al
(2006), and Zhang (2009).

—Determine the Abstract Level

Modeling the critical factors (components)

Ignoring the non-significant details

Developing a realistic model to represent the practical
system

Keeping the mathematical tractability and simplicity
(both exact and approximation approaches)

Red : realistic level
Blue: math tractability

Model detail level

2012/9/28

P

Our approach

Develop a stylized two-stage queueing model to
capture the main features of the system.

Discover the performance characteristics and identify
the major impacts of the key decision variabie.
Validate these properties discovered via simulation
model

II. Modeling - An abstract model to capture the main
characteristics of the system

JFigure 1: Two Stage Inspection Quene Based on Truck-
erossings at Blaine, WA/ Surrey, BC

simulation I P—
verification . .
Properties Discovered < b |

1 — p) of customers are inspected briefly
Stage 1
senver /
/

/

proportion (p) of customers (either vehicles or persons) are selected for further inspection




Exact Analysis v.s Approximation Approach

If the exact (but complex) analysis is feasible, do
we need the approximation approach?

It depends..
Purpose of the study

- performance evaluation/optimization for systems
with predictable general behaviors;

- insights generation for systems with unknown
behaviors.

Computational complexity of the exact approach

Robustness and accuracy of the approximation
approach.

When is an approximation approach
worthwhile for insight generation?

Captures the main characteristics of the system

Needs realistic conditions
e.g. Heavy traffic condition
Is accurate and robust enough
Has Relatively simple computations
Reveals the fundamental relationship between the

main performance measure(s) and the key decision
variable(s) for a given set of system parameters.
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Exact Analysis

Computational approach - algorithm-based and no-
closed form formulas.

More restrictive assumptions.
Computational complexity v.s Realistic modeling.
But...

Can be used to verify the approximations in special
cases.

(The details of this section may be omitted in presentation)

In realty. the actual proportion of customers for further inspection i= determined by (a) screening

stanrdard, and (b} random number generation

Proportion in (a), denoted by p,, is not controllable and proportion in
(b), denoted by p,, is controllable.
Actual proportion p= p_+ p, is also controllable via p,.
Define the events 4 =The inspection system gives an alarm;
and T =The customer carries a threat. Denote the event of further inspection (or no further
inspection| by FI (or FI7). For a given P(FT) = p, We have some useful probabilities defined as
follows: 8¢ = PIAIT N ET).Bpge (T).alp) = PITIFI). 3(p) = P{T|FI%).

Since the inspection procedure for further ins is stricter than that of stage 1's primary

inspection, we have 857 > 857+ In addition, for an effective initial screeini

¢ performed in stage 1,

it is reasonable to assume alp) = P(T|FI} > r = PIT) = 3(p) = P(T|FI).

e key-d ariablé isp—p
customers for further inspection —
details may be omitted in presentation)

(this section is technical and

2d stage queue performance (as the 1°¢ stage is trivial) based on bounds:

1 o Y
AL I -(_ LY
Et1 S haos 2\ell=ra)  wir=Ap)
solve the functional equation of A{e(l — z}} = = for the root. denoted by ry.

Key approximation — LST of Inter-arrival times for 2°¢ Stage Queue(based on

heavy traffic condition) .

Als
Further approximation:
E(Tt)approz = 13
where a and b are the regression co; ven parameter aet of Aoy pg.and 1 and 15 alaol

increasing and conver in p
Then, we can establish the convexity of the performance measures in the
key decision variable.

Sufficient security level

Carryinga threat | No threat
Narm [ TA A
Clear | | TC

Ho: a customer does not carry a threat;

Ha: a customer carries a threat.

Rejecting Ho is equivalent to generating an “alarm”
Accepting Ho is equivalent to generating a “clear”

P(FC)=P(Type 2 Error) - fatal; P(FA)=P(Type 1 PITA fip) = Bpralplp + 8 5(p)1 = p).
Error) — increasing congestion level

Minimize P(FC) is equivalent to Maximize P(TA) for FiTA) i an increa
a given P(T)=P(TA)+P(FC).

function of p.

In practice, the minimum p = py is determined by

ensuring a sufficiently high P(TA) (or a sufficiently low P{FC)) is achieved,
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ost of Raising Security Level
An Example

For a given initial Higherp = higher P(T®|FI)=1-a(p)

screening procedure, we have alp) = pgm = (1 — pgly, where 5 = P(T]sebected for further inspection

=> More non-threat-carrying customers need to go
through further inspection..

by initial screening procedure). For example, suppose that = = P(T) = 0.02,8p; = 0,99, 8pp =
080, = 0.048, p; = 0.05 (these values are in the same magnitutde as the data provided by the
Bureau of Transportation Statistics 3006} and If we want the probability of false clear (Type 11
error) is o more than 0.002 or P(FC) = 0.002. a required. security level, using this data set, Question: If you are a customer crossing the border, do
r = alpip + 4p)il = pl.p = pg+ pealpl = pgr + (1 = pg)y and the P{TA) expression we can you like a higherp ora IOWEI'p?

find pg = 0.2479, This means that to ensure the security level to be achieved, at least 24.79% of
customers should be subject to further inspection. Since p = pe+pe = pp = 0.247% and p. = 0.05.we
have pg = 0.1979, In other words, as long a5 the we use random number generation to select at Any answers??

least 19.79% of customers for futher inspection. the security level can be reached.

o is determine ized

min E(WC) = (1 - p)E(Tihy + plEMNT) + 1/ps, + E(T2))ha
"

Implication of capacity status

E(WClapprax = (1 = p)E(T )by 4 plE(WT) + 1)1ty + E(T)appreslhiz

Subject to LT et st e s
e {po. Poin} < P < Proas L
where pg is the required security-check level (the minimum proportion of customers needed to go "
~
through further inspection) and Paax = 1/ A and Poin = 1 — pia(1/4 — /gty ) which are determined N ’/
by ensuring both stage queues are stable 3 ~ ~
~ T P o b
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Numerical lllustrations and Model
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Table 1. Performance of a Single Server TSCS with A = 8.5,y = 20,y = 15,00 =

Timc-ttage Selective Inipetion Sytemn [TSCY)




ique Advantage o

3 [ 7r G
012 03513 | o4ss0 oams | open
013 02974 | 04000 04381 | 0.0979
0.14 02578 03792 0.4333 0.1107
015 | 02275 0.3567 0.5285 0.1262
016 02036 0.3483 0.5634 01452
017 0.1842 0.3437 10,5900 01601
o1t 01682 | 03453 06343 | 02000
019 01588 | 0353 06595 | 02418
020 01433 0368 0.7048 0.3012
021 0135 | omene 0700 | 03928
022 01249 04274 0.7752 0.5515
021 01173 | 04803 08105 | 08350
02+ 01106 | 05617 08457 | 18935
0.23 01086 06960 0.8510 nfinity
026 | 0093 | 05488 08162 | infinity
0.27 00544 | 15766 09514 | infinity
0.28 0.0900 5.5666 0.9867 infinity

Table 3. Performance Differentiation Between Low-risk and High-risk Customers in o Two Stage
Security Check Stngle Server System X = 528571, oy =300, pra =600 =150y =T ha =2,

E(Dy) = E(T [ B D) 2 E(Dyappesn = EOVT+1/py + E(WT fuppren+1/1

IV Practical Value of the Study
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(http:/ fwww.weog.org /Data.aspx ).
Figure 9. Pacific Highway Crossing Station -Southbound Traffic Data on July 9 2010

Information from our model

The optimal p* obtained from the TSCS model are 0.21 and 0.22 for the two periods of interes
Both optimal propertions for further inspection significantly reduce the average waiting times t
about 10 minutes for these two periods as shown in Figure 10, Note that the performance chai]
acteristics of the TSCS model have been verified by extensive simulations. In addition. using th|
optimal p* can also improve the security screening level as P{FC) is reduced fram 0.000935 o
g = 0.11 to 0LOODSET at p* = 0.21. Another implication is that the optimal p® is relatively insens
tive to the arrival rate change (almost the same p* for the two periods) due to the congestion-hasef

staffing (adjusting the number of apen booths according to the queve length - see Zhang 2009
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Real-Dataset
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Figure 7. Fit All Options to a Dataset of Phase 1 (Initial Screening) Durations at & Barder-Crosang

Station

Figure 10 presents the performance curves for these two periods computed from the TSCS model.

With the security dataset used in Section 2.2, we obtain the minimum py = 0.109 for achieving
PIFC) < 0,001, In practice, a 0.11 < py < 0.12 was used and our TSCS medel in Figure 10 ghows
the average waiting times at these practical pg's are hetween 53 and 50 minutes for the period of
12:00 to 15:00 and between 48 and 33 minutes for the period 17:00 to 20:00, respectively, Thed
average waiting times are consistent with the actual recorded average waiting times of 54 minut
for 12:00 to 15:00 and 34 minutes for 17:00 to 20:00 in the right graph of Figure 9.
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Figure 10. Average Waiting Time as a Function of p for Two Heavy Traffic Periods on July 9, 2010 at

Pacific Highway South Crossings with Service Rates of 50 Vehicles per Hour for Stage 1 and 15 Vehicles

Hogs for Stace 9

V Conclusion

Addressed the issue of trade-off between security level
and customer service quality

Combined - analytical model, approximations,

simulations, and empirical studies
Generated valuable information and insights for

practitioners

Stimulate more future research topics - e.g. we are
now working on the multi-class customer security-
check system for airport checkpoints.
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