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UNIT ROOT TESTING IN THE PRESENCE OF HEAVY-TAILED

GARCH ERRORS

GAOWEN WANG1∗ AND WEI-LIN MAO2
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Summary

We derive the asymptotic distributions of the Dickey–Fuller (DF) and augmented DF (ADF)
tests for unit root processes with Generalized Autoregressive Conditional Heteroscedastic
(GARCH) errors under fairly mild conditions. We show that the asymptotic distributions
of the DF tests and ADF t-type test are the same as those obtained in the independent
and identically distributed Gaussian cases, regardless of whether the fourth moment of the
underlying GARCH process is finite or not. Our results go beyond earlier ones by showing
that the fourth moment condition on the scaled conditional errors is totally unnecessary.
Some Monte Carlo simulations are provided to illustrate the finite-sample-size properties of
the tests.

Key words: augmented Dickey–Fuller tests; Lindeberg condition; martingale invariance princi-
ple; self-normalized sums.

1. Introduction

Unit root tests with independent and identically distributed (i.i.d.) errors having zero
mean and finite variance were proposed by Dickey & Fuller (1979, 1981) and are referred to
as Dickey–Fuller (DF) tests. They have recently found widespread application in economic
time series. Obviously, the i.i.d. assumption is very restrictive in practice. The tests have
been extensively studied in the econometric literature, and various generalizations have been
proposed for handling unit root processes with errors being dependent, heteroscedastic or
heavy-tailed: see Phillips & Xiao (1998) and Stock (1994) for reviews. However, Autoregres-
sive Conditional Heteroscedastic (ARCH) (Engle, 1982) and Generalized ARCH (GARCH)
(Bollerslev, 1986) models are the most popular volatility models, and are widely used in
empirical finance. Recently, non-stationary autoregressive (AR) models with GARCH-type
errors have received increasing attention in the literature. Investigations by Pantula (1988),
Ling & Li (1998, 2003), Seo (1999), and Ling, Li & McAleer (2003) have been at the forefront
of research in this area; see Li, Ling & McAleer (2002) for a review of the theory.

In the present paper we are interested in the asymptotics of unit root pro-
cesses with GARCH-type errors. Formally, consider the following AR(1)–GARCH(p, q)
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process:

yt = φyt−1 + ut , φ = 1, (1)

ut = ztσt , σ 2
t = w + α(L)u2

t + β(L)σ 2
t , (2)

where w > 0, α(L) = α1 L + · · ·+ αq Lq , αi ≥ 0, i = 1, . . . , q, and β(L) = β1L + · · · + β p L p,
β j ≥ 0, j = 1, . . . , p; L denotes the backshift operator and the scaled conditional errors zt

are i.i.d.(0,1) random variables. Furthermore, it is assumed in this paper that α(1) + β(1) < 1
and that all the roots of the polynomials [1 − α(L) − β(L)] and [1 − β(L)] lie outside the
unit circle. Together, these assumptions ensure that the {ut} process is strictly stationary and
ergodic with finite variance (Bougerol & Picard, 1992; Ling & McAleer 2002). Note that,
when E(u2

t ) < ∞ but E(u4
t ) = ∞, the distribution of the GARCH(p, q) process is said to be

heavy-tailed in the sense of Mikosch & Stărică (2000, p. 1429) and Li et al. (2002, p. 263).
When αi = β j = 0 for all i , j , the {ut} process defined in (2) reduces to i.i.d. random

variables. Given y0 = 0 and observations {y1, . . . , yn}, the asymptotic distributions of DF
tests needed to test the null hypothesis of φ = 1 against φ < 1 can be found in White (1958),
Dickey & Fuller (1979, 1981), Phillips (1987), and Chan & Wei (1988). In addition, it has
been shown that augmented-DF (ADF) tests for an AR(M) process with i.i.d. errors, M > 1,
developed by Dickey & Fuller (1979), have the same asymptotic distributions as DF tests.
See chapter 17 of Hamilton (1994) for full details.

When the ut are GARCH-type errors with E(u4
t ) < ∞, the asymptotic distributions of

DF tests are the same as those obtained in the i.i.d. case (Pantula 1988; Ling & Li, 1998,
2003; Ling et al., 2003). It is reasonable to conjecture that ADF tests should have the same
asymptotic distributions as DF tests (cf. Pantula, 1986, p. 73). However, when the ut are
GARCH-type errors with E(u2

t ) < ∞ but E(z4
t ) = ∞, there is presently no asymptotic theory

for DF tests nor for ADF tests, see Ling (2004, p. 66) and Li et al. (2002).
With this in mind, we apply the self-normalized limit theorems for square-integrable mar-

tingale difference sequences in Hall (1979, theorem 2) or Hall & Heyde (1980, theorem 4.1)
to derive the asymptotic distributions of DF and ADF tests. Our purpose is to eliminate or
to weaken the fourth moment condition, i.e. E(z4

t ) < ∞. Throughout the paper, we make the
following assumptions.

Assumption 1. E(z2
t ) = 1 and α(1) + β(1) < 1.

We show in this paper that, under the above assumptions, the asymptotic distribu-
tions of DF tests for AR(1)–GARCH(p, q) models and of ADF t-type tests for AR(m)–
GARCH(p, q) models, m ≥ M , are the same as those given by Dickey & Fuller (1979). It
means that the DF and ADF t-type tests are nuisance parameter-free and asymptotically robust
to GARCH-type heteroscedasticity, even though the fourth moment condition is not satisfied.
In other words, the fourth moment condition on the scaled conditional errors zt has no effect
on the validity of the DF and ADF t-type tests and is totally unnecessary. Moreover, the
asymptotic distributions of ADF tests are obtained under the condition that the coefficients of
a linear process are absolutely summable. By contrast, in the context of short-memory linear
processes, the coefficients are typically assumed to be one-summable or (1/2)-summable.
Because we impose less restrictive assumptions on the coefficients of the linear process, it
may be regarded as an improvement, and further extension, of results in Phillips & Solo
(1992), Stock (1994), Phillips & Xiao (1998) and Chang & Park (2002).
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UNIT ROOT TESTS WITH GARCH ERRORS 275

The paper contains some Monte Carlo simulations illustrating the finite-sample-size
properties of the tests. In all the simulations, for simplicity, we let ut follow a GARCH(1,1)
process. Overall, the simulation results indicate that, for moderately large sample sizes (e.g.
n ≥ 105), the tests have reasonably good size performance even though the GARCH(1,1)
process is near-integrated and its fourth moment is infinity. However, our results also reveal
that the size of the tests deteriorates slightly when the volatility parameter in the GARCH(1,1)
process is relatively large (cf., Kim & Schmidt, 1993).

The paper is organized as follows. Section 2 presents the self-normalized version of the
DF tests. Their asymptotic distributions are given in the same section. Extensions to the ADF
tests for AR(m)–GARCH(p, q) models, m ≥ M , are made in Section 3. In these two sections
we give some conclusions and provide comparisons with related works. Section 4 examines
the finite-sample distortions of the DF and ADF tests by means of Monte Carlo simulations.
The proofs are given in Section 5.

Throughout the paper, we use the following notation: →a.s., →p, and ⇒ denote con-
vergence almost surely, convergence in probability, and weak convergence of probability
measures on D[0, 1] under the Skorokhod topology, respectively. W (r ) is a standard Brown-
ian motion, 0 ≤ r ≤ 1. O p(1) (op(1)) stands for a sequence of random variables that is bounded
(converges to zero) in probability. The indicator of a set A is denoted by I (A). The symbol =:
means equality by definition, and 	 x
 denotes the largest integer less than or equal to x .

2. DF tests with GARCH errors

Let

Sn =
n∑

t=1

ut , V 2
n =

n∑
t=1

u2
t .

The quotient Sn/V n is the so-called self-normalized sum. Given y0 = 0 and observations
{y1, . . . , yn}, to test the null hypothesis φ = 1 against the alternative φ < 1, the DF ρ̂n and
τ̂n tests based on the least squares (LS) regression of yt on yt−1 have the self-normalized
representations as follows:

ρ̂n = n(φ̂n − 1) =
(

1

n

n∑
t=1

y2
t−1

)−1 ( n∑
t=1

yt−1ut

)

=
1
2 [(Sn/Vn)2 − 1]
1
n

∑n−1
t=1 (St/Vn)2

, (3)

τ̂n = (φ̂n − 1)

(∑n
t=1 y2

t−1

σ̂ 2
u

)1/2

(4)

=
1
2 [(Sn/Vn)2 − 1]√

1
n

∑n−1
t=1 (St/Vn)2

+ op(1), (5)
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where φ̂n = (
∑n

t=1 y2
t−1)−1∑n

t=1 yt−1 yt is the LS estimator of φ in (1), and σ̂ 2
u =

(n − 1)−1∑n
t=1(yt − φ̂n yt−1)2. Similarly, under the null hypothesis, the DF ρ̂cn and τ̂cn tests

based on the LS regression of yt on yt−1 with a constant c are as follows:

ρ̂cn = n(φ̂cn − 1) =
[

1

n

n∑
t=1

(yt−1 − ȳ−1)2

]−1 [ n∑
t=1

(yt−1 − ȳ−1)ut

]

=
1
2 [(Sn/Vn)2 − 1] − 1

n (Sn/Vn)
∑n−1

t=1 St/Vn

1
n

[∑n−1
t=1 (St/Vn)2 − 1

n

(∑n−1
t=1 St/Vn

)2
] , (6)

τ̂cn = (φ̂cn − 1)

[∑n
t=1(yt−1 − ȳ−1)2

σ̂ 2
cu

]1/2

(7)

=
1
2 [(Sn/Vn)2 − 1] − 1

n (Sn/Vn)
∑n−1

t=1 St/Vn√
1
n

[∑n−1
t=1 (St/Vn)2 − 1

n

(∑n−1
t=1 St/Vn

)2
] + op(1), (8)

where σ̂ 2
cu = (n − 2)−1∑n

t=1(yt − ĉn − φ̂cn yt−1)2, ȳ−1 = n−1∑n
t=1 yt−1, and φ̂cn and ĉn are

the LS estimators of φ and c, respectively. For more details on (3), (5), (6) and (8), see Wang
(2006). Clearly, if the sequence {St/V n , 1 ≤ t ≤ n} has an asymptotic distribution, then so do
the DF tests, ρ̂n, τ̂n, ρ̂cn and τ̂cn .

We are now ready to state one of our main results.

Theorem 1. Let {yt} and {ut} be generated according to (1)–(2). Suppose that Assumption 1
holds. Then, as n → ∞,

S	nr

Vn

⇒ W (r ), 0 ≤ r ≤ 1, (9)

and

(a)

ρ̂n ⇒ 1

2

W 2(1) − 1∫ 1
0 W 2(r ) dr

;

(b)

τ̂n ⇒ 1

2

W 2(1) − 1[∫ 1
0 W 2(r ) dr

]1/2 ;

(c)

ρ̂cn ⇒
1
2

[
W 2(1) − 1

]− W (1)
∫ 1

0 W (r ) dr∫ 1
0 W 2(r ) dr −

[∫ 1
0 W (r ) dr

]2 ;
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(d)

τ̂cn ⇒
1
2

[
W 2(1) − 1

]− W (1)
∫ 1

0 W (r ) dr{∫ 1
0 W 2(r ) dr −

[∫ 1
0 W (r ) dr

]2
}1/2 .

Remark 1. The study by Ling et al. (2003) contains a recent development in estimation and
testing for unit root processes with GARCH(1,1) errors, especially the maximum likelihood
estimation. However, there is an error in the cited paper on page 185. The error is that the DF
t-tests should be defined by τ̂n and τ̂cn (see (4) and (7)), not by

Lt =
(

n∑
t=1

y2
t−1

)1/2

(φ̂n − 1) and Lμ,t =
[

n∑
t=1

(yt−1 − ȳ−1)2

]1/2

(φ̂cn − 1).

Remark 2. Pantula (1986, p. 73) posed a conjecture that DF tests are asymptotically valid for
GARCH(p, q) errors except in the integrated variance case. Theorem 1 affirms the conjecture.
Consequently, as shown by simulations in Kim & Schmidt (1993), the effects of GARCH
errors in DF tests are a small-sample problem.

3. ADF tests with GARCH errors

In this section, we will establish asymptotic results for ADF tests for a unit root process
with the errors being dependent and heavy-tailed. The ADF tests were derived by Dickey
& Fuller (1979), and are often used to control for serial correlation by adding higher-order
autoregressive terms in the regression. In the light of Theorem 1, it is natural to ask whether
ADF tests could also hold under the same weaker assumptions. As this section will show, this
is indeed the case.

Throughout this section, we assume that the time series yt is generated by an AR(M)
process,

(1 − φ1L − φ2L2 − · · · − φM L M )yt = ut , (10)

where φ1 + · · · + φM = 1, 1 < M < ∞, and the ut are defined as in (2). As in Hamilton (1994,
p. 518), under the null hypothesis that φ1 + · · · + φM = 1, the {yt} process can be written as

�yt = (1 − ξ1L − · · · − ξM−1L M−1)−1ut

or

�yt = εt =
∞∑
j=0

θ j ut− j , (11)

where ξ j = −(φ j+1 + · · · + φM ), j = 1, 2, . . . , M − 1. Let θ (1) = ∑∞
j=0 θ j . Assume that

all roots of (1 − ξ 1z − · · ·− ξ M−1zM−1) = 0 lie outside the unit circle and, without loss
of generality, that θ (1) �= 0. Because the moving average coefficients θ j in (11) decay
geometrically, we say that the {�yt} or {εt} process is a short-memory linear process
(cf. Hall, 1992, p. 118).
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We now consider the following AR(m) regression model:

yt = c + φ1 yt−1 + · · · + φm yt−m + ut ,

which can equivalently be written as

�yt = c + (φ − 1)yt−1 + ξ1�yt−1 + · · · + ξm−1�yt−(m−1) + ut

= (φ − 1)yt−1 + � Zt + ut , (12)

where M ≤ m < ∞, φ = φ1 + · · ·+ φM + · · · + φm , ξ j =−(φ j+1 + · · ·+ φm), j = 1,
2, . . . , m − 1, � = (c, ξ 1, . . . , ξm−1), and Zt = (1, �yt−1, . . . , �yt−(m−1))�. Un-
der the null hypothesis φ1 + · · · +φM = 1, we have c = 0, φM + i = 0 for i > 0,
φ = φ1 + · · · + φM + · · · +φm =φ1 + · · ·+ φM = 1 and ξ i = 0 for i ≥ M .

Before applying the Frisch–Waugh–Lovell (FWL) theorem (see Davidson &
MacKinnon, 1993, p. 19), we first introduce some notation. Let

R0t = �yt −
(

n∑
t=1

�yt Z�
t

)(
n∑

t=1

Zt Z�
t

)−1

Zt , (13)

R1t = yt−1 −
(

n∑
t=1

yt−1 Z�
t

)(
n∑

t=1

Zt Z�
t

)−1

Zt (14)

be the residuals obtained by regressing �yt and yt−1 on Zt , and let �̂ be the LS estimator
of � in (12). Then regression (12) can be written as a regression equation in the residuals as
follows:

R0t = (φ − 1)R1t + ũt , (15)

where ũt = ut + (� − �̂)Zt (cf. Johansen, 1995, p. 91). The FWL theorem states that the
regressions (12) and (15) have the same residuals, and that the estimate of (φ − 1) is the same
from the two regressions. As our main focus is on testing φ − 1 = 0, in order to assist in
deriving the asymptotic distributions of ADF tests we restrict our attention to (15).

Given y−(m−1) = · · ·= y0 = 0 and observations {y1, . . . , yn}, when testing φ = 1 against
φ < 1 the ADF ρ-type and t-type test statistics based on the LS regression of R0t on R1t are
as follows:

ADFρ = n(φ̂A,n − 1) =
∑n

t=1 R0t R1t

n−1
∑n

t=1 R2
1t

, (16)

ADFτ = (φ̂A,n − 1)

(∑n
t=1 R2

1t

σ̂ 2
R

)1/2

=
∑n

t=1 R0t R1t(∑n
t=1 R2

1t σ̂
2
R

)1/2 , (17)

where (φ̂A,n − 1) = (
∑n

t=1 R2
1t )

−1∑n
t=1 R0t R1t is the LS estimator of (φ − 1) in (15), and

σ̂ 2
R = (n − 1)−1∑n

t=1[R0t − (φ̂A,n − 1)R1t ]2.
We are now in a position to present another main result of this paper.
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Theorem 2. Let {yt} and {ut} be generated according to (10) and (2), respectively. Suppose
that Assumption 1 holds. If the regression (15) is estimated by ordinary LS, then, as n → ∞,

(a)

ADFρ ⇒
1
2

[
W 2(1) − 1

]− W (1)
∫ 1

0 W (r )dr

θ (1)

{∫ 1
0 W 2(r )dr −

[∫ 1
0 W (r )dr

]2
} ;

(b)

ADFτ ⇒
1
2

[
W 2(1) − 1

]− W (1)
∫ 1

0 W (r )dr{∫ 1
0 W 2(r )dr −

[∫ 1
0 W (r )dr

]2
}1/2 .

Remark 3. We note again that, under Assumption 1, the GARCH errors given in (2) are
allowed to have a heavy-tailed distribution. To the best of our knowledge, it has not yet
been shown rigorously in the literature that the ADF t-type test for time series with weakly
dependent, heteroscedastic and heavy-tailed errors has the same asymptotic distribution as
the corresponding DF test for the data generating process given in (1)–(2). In addition, in
the context of short-memory linear processes, the coefficients θ j are typically restricted to
be one-summable (i.e.,

∑∞
j=0 j |θ j | < ∞) or (1/2)-summable (i.e.,

∑∞
j=0 j1/2|θ j | < ∞) for

validating the functional central limit theorem (cf. Phillips & Solo, 1992; Phillips & Xiao,
1998; Chang & Park, 2002). These conditions are, however, weakened in Theorem 2.

Remark 4. A work by Hansen & Rahbek (1998), which was brought to our attention by
a reviewer, contains material related to the present paper. These authors used an operational
drift criterion from Markov chain theory to show that both the strong law of large numbers and
the functional central limit theorem hold for a simple multivariate ARCH(1) process. Based
on the obtained results, they showed that the procedure developed, for example in Johansen
(1995) for cointegration analysis of vector autoregressive models, is robust to the errors. If
their results are true, then, as DF and ADF tests are special cases of multivariate cointegration
tests, the results given in Theorems 1 and 2 seem to be a consequence of the results given by
Hansen & Rahbek (1998). However, the asymptotic distributions of DF tests in Theorem 1 are
derived using the self-normalized representations of the tests given in (3), (5), (6) and (8) first
and then by applying a self-normalized invariance principle found in Hall (1979, theorem 2)
or Hall & Heyde (1980, theorem 4.1). The proofs in Section 5 below clearly show that the
fourth moment condition on the scaled conditional errors of the GARCH process is totally
unnecessary. We note in passing that the above-mentioned theorem 2 or theorem 4.1 is a
self-normalized limit theorem for martingale differences. These theorems are a little different
from the martingale functional central limit theorem in Brown (1971, theorem 3) or Hall
& Heyde (1980, theorem 4.4). Based on the self-normalized representations and the limit
theorem, our approach has the advantage that the results in Theorem 1 come very easily. On
the other hand, the method adopted for obtaining Theorem 2 is based only on simple algebraic
manipulations on the coefficients θ j of the short-memory linear process εt in (11), together
with the asymptotic distribution of self-normalized sums in (9). It seems to be quite simple
at a technical level. Moreover, the role of the summable coefficients of the linear process is
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280 GAOWEN WANG AND WEI-LIN MAO

easily understood, and the coefficient condition required in Theorem 2 is weak, as noted in
Remark 3. For these reasons, our approach can be quite useful for pedagogical purposes.

Remark 5. In the framework of Phillips (1987), the underlying errors in a unit root process
are allowed to be serially dependent and heteroscedastic, as we permit in (10) or (11). Under
the unit root hypothesis, we can see from (11) that

1

n

n∑
t=1

yt−1εt = 1

2

[(∑n
t=1 εt

)2

n
−
∑n

t=1 ε2
t

n

]

(cf. Hamilton, 1994, p. 476). Phillips (1987, p. 296) applied an invariance principle established
by Herrndorf (1984, corollary 1), together with the continuous mapping theorem, to derive the
asymptotic distribution of (

∑n
t=1 εt )2/n under a sufficient condition that supt E|εt |γ < ∞ for

some γ > 2. He showed, by applying the strong law of McLeish (1975, Theorem 2.10), that∑n
t=1 ε2

t /n →a.s. limn→∞ n−1∑n
t=1 E(ε2

t ) under a sufficient condition that supt E|εt |γ+δ < ∞
for some γ > 2 and any δ > 0. Since the moment conditions imposed in the present paper
are slightly weaker than the above, and since mixing is a more restrictive assumption than
ergodicity (see Stout, 1974, Theorem 3.5.4, p. 173), Theorem 2 can be considered as a slight
extension of theorem 3.1 of Phillips (1987).

Remark 6. It is well known that the Lindeberg condition is a sufficient (as well as necessary)
condition for the central limit theorem for independent random variables (see, for example,
Chung, 2001, theorem 7.2.1). More precisely, let ut be independent random variables with
mean zero and finite variances, and set s2

n = E(S2
n) = E(V 2

n). Then the Lindeberg condition is
as follows:

1

s2
n

n∑
t=1

E
[
u2

t I(|ut | > εsn)
] → 0 for all ε > 0 and as n → ∞

(see also Lemma 1(b) in Section 5 below). As is usual, when the ut are independent but not
identically distributed, only the case where all variances are finite is not sufficient for the
Lindeberg condition to hold. Thus, a sufficient condition for the Lindeberg condition would
be Liapounov’s condition, i.e.,

1

s2+δ
n

n∑
t=1

E |ut |2+δ → 0 for some δ > 0 and as n → ∞

(see Chung, 2001, p. 219). It is stronger than the Lindeberg condition, but is easily check-
able and frequently used in practice. Similarly, when {ut} is a zero-mean, square-integrable
martingale difference sequence, the Lindeberg condition is sufficient for the martingale cen-
tral limit theorem and the invariance principle; see Brown (1971, theorem 3), Hall (1979,
theorem 2), Hall & Heyde (1980, theorems 4.1 and 4.4) and Billingsley (1995, theorem 35.12).
However, as in the independent case, the assumption of finite variances is not sufficient to
imply the Lindeberg condition (cf., Billingsley, 1995, pp. 362–363). If the assumption is suffi-
cient, the Lindeberg condition required in the above theorems will be redundant. As a result, it
seems that the statement in Hansen & Rahbek (1998, p. 10, lines 11–12) may not be rigorous.
Moreover, the proof in Hansen & Rahbek (1998, p. 10, lines 17–19) also looks suspicious,
because one can find a similar proof in Hamilton (1994, example 17.2, p. 482), where the finite
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fourth moment condition is imposed. A further paper related to ours is Pantula (1988). He
applied the invariance principle in Hall & Heyde (1980, theorem 4.4) to derive the asymptotic
distributions of unit root tests for AR–ARCH processes under the fourth moment condition
on the ARCH errors. Similar to Liapounov’s condition, a finite fourth moment is sufficient
for the Lindeberg condition to hold. In contrast to Pantula (1988), our proof of the Lindeberg
condition in Lemma 1(b) below is based on a generalization of Kolmogorov’s inequality given
in Chung (2001, corollary 1, p. 347). The inequality requires only the existence of the second
moment.

4. Monte Carlo simulations

We have shown that the four DF-type tests and the ADF t-type test have standard
asymptotic distributions in the preceding sections. Here we try to find out how large the
sample size n should be so that the asymptotic results become approximately true. We
examine the size (percentages of rejections under the null hypothesis) distortions of the tests
in finite samples by means of Monte Carlo simulations. For the well-established empirical
relevance, we let ut follow the simple, but important, GARCH(1,1) process.

The data generating process for the DF tests was the following AR(1)–GARCH(1,1)
process:

yt = yt−1 + ut , ut = ztσt , σ 2
t = w + αu2

t−1 + βσ 2
t−1,

where w > 0, α + β < 1, zt = T4,t/
√

2 and T 4,t are i.i.d. Student-t random variables with
four degrees of freedom. It is obvious that E(zt ) = 0, E(z2

t ) = 1 and E(z4
t ) = ∞. The process

also implies that E(u2
t ) = w/(1 − α − β) < ∞ but E(u4

t ) = ∞. Similarly to Kim & Schmidt
(1993), without loss of generality we set y0 = 0, w = 0.05 and σ 2

0 = w/(1 − α − β). In this
experiment, only three parameters, namely α, β and n, need to be specified. The DF ρ̂n, τ̂n, ρ̂cn

and τ̂cn tests in (3), (5), (6) and (8) were then performed on the generated data. When the
sample size n went to infinity (was equal to 100), the corresponding critical values of the tests
(lower-tail tests) at the nominal 5% level were −8.1, −1.95, −14.1 and −2.86 (−7.9, −1.95,
−13.7 and −2.89), respectively (see, for example, Banerjee et al., 1993, pp. 102–103).

In the Monte Carlo experiment for the ADF tests, for simplicity we chose only the ADF
t-type test, i.e., ADF τ , because its asymptotic distribution is nuisance parameter-free and the
same as that of τ̂cn; see Theorem 1(d) and Theorem 2(b). This means that the critical values
of −2.86 and −2.89 could be applied directly. Specifically, the data generating process for
ADF τ was assumed to be the following AR(4)–GARCH(1,1) process:

yt = 0.1yt−1 + 0.2yt−2 + 0.3yt−3 + 0.4yt−4 + ut ,

where the ut were defined as in the above experiment. Similarly, we set y−3 = · · ·= y0 = 0,
w = 0.05 and σ 2

0 = w/(1 − α − β). There are also only three parameters, namely α, β and
n, that need to be specified in this experiment. Because the data were generated by setting
M = 4, without loss of generality we set m = 8 for the regression model in (12). Based on
regression (15), the ADF t-type test, ADF τ , in (17) was performed on the generated data.

In the two experiments, we created n + 50 observations and discarded the first 50 ob-
servations to reduce the effect of the initial conditions. Samples of size n = 102, 103, 104

and 105 were used in the experiments, respectively. These large values of n can arise with
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high-frequency financial data, and, more importantly, they are provided to show the validity
of the asymptotic distributions in Theorems 1 and 2.

Tables 1 and 2 give the proportion of rejections under the unit root null hypothesis for
a 5% lower-tail test. The results reported in the tables were based on 10 000 replications for
each simulation for various values of α, β and n. All simulations were performed using the
econometric package EViews 3.1. (1999).

TABLE 1.
Finite-sample size properties of the DF and ADF tests for a 5% nominal level.

(α, β) n ρ̂n τ̂n ρ̂cn τ̂cn ADFτ

(0.00, 0.00) 102 0.0497 0.0486 0.0453 0.0481 0.0573
103 0.0485 0.0495 0.0473 0.0491 0.0489
104 0.0519 0.0509 0.0502 0.0526 0.0533
105 0.0502 0.0494 0.0520 0.0514 0.0512

(0.05, 0.90) 102 0.0562 0.0536 0.0526 0.0585 0.0667
103 0.0517 0.0517 0.0550 0.0579 0.0572
104 0.0481 0.0485 0.0509 0.0525 0.0545
105 0.0512 0.0513 0.0527 0.0515 0.0505

(0.10, 0.85) 102 0.0602 0.0601 0.0619 0.0651 0.0737
103 0.0568 0.0573 0.0622 0.0658 0.0652
104 0.0486 0.0493 0.0540 0.0549 0.0573
105 0.0504 0.0506 0.0524 0.0504 0.0511

(0.15, 0.80) 102 0.0638 0.0625 0.0692 0.0741 0.0766
103 0.0605 0.0606 0.0695 0.0722 0.0689
104 0.0531 0.0521 0.0588 0.0587 0.0586
105 0.0500 0.0493 0.0530 0.0545 0.0534

(0.20, 0.75) 102 0.0684 0.0691 0.0746 0.0801 0.0793
103 0.0616 0.0613 0.0766 0.0781 0.0697
104 0.0540 0.0530 0.0622 0.0611 0.0595
105 0.0512 0.0512 0.0564 0.0563 0.0541

(0.25, 0.70) 102 0.0739 0.0722 0.0796 0.0865 0.0797
103 0.0658 0.0636 0.0804 0.0821 0.0711
104 0.0558 0.0547 0.0665 0.0630 0.0623
105 0.0517 0.0529 0.0630 0.0645 0.0574

(0.30, 0.65) 102 0.0763 0.0745 0.0861 0.0913 0.0805
103 0.0676 0.0666 0.0853 0.0848 0.0715
104 0.0577 0.0563 0.0680 0.0673 0.0645
105 0.0554 0.0537 0.0632 0.0617 0.0582

(0.35, 0.60) 102 0.0778 0.0771 0.0900 0.0938 0.0803
103 0.0679 0.0682 0.0871 0.0894 0.0736
104 0.0607 0.0605 0.0703 0.0714 0.0650
105 0.0573 0.0572 0.0640 0.0629 0.0581

Notes. The data generating process (DGP) for the DF tests in columns 3–6 is yt = yt−1 + ut , where
ut = ztσ t = zt (w + α u2

t−1 + β σ2
t−1)1/2, w = 0.05, σ2

0 = w/(1 −α − β) and zt are i.i.d. Student-t random
variables with four degrees of freedom. The DGP for the ADF t-type test in column 7 is yt = 0.1 yt−1 + 0.2
yt−2 + 0.3 yt−3 + 0.4 yt−4 + ut , where ut are defined as above. The ADF t-type test is based on an
AR(8) regression model in Equation (12). The test statistics ρ̂n, τ̂n , ρ̂cn , τ̂cn and ADFτ are defined in
Equations (3), (4), (6), (7) and (17), respectively.
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TABLE 2.
Finite-sample size properties of the DF and ADF tests for a 5% nominal level.

(α, β) ρ̂n τ̂n ρ̂cn τ̂cn ADFτ

(0.05, 0.91) 0.0514 0.0508 0.0546 0.0515 0.0517
(0.05, 0.92) 0.0541 0.0521 0.0539 0.0530 0.0528
(0.05, 0.93) 0.0532 0.0529 0.0534 0.0525 0.0524
(0.05, 0.94) 0.0551 0.0535 0.0527 0.0551 0.0548
(0.10, 0.86) 0.0503 0.0502 0.0525 0.0524 0.0511
(0.10, 0.87) 0.0524 0.0513 0.0526 0.0529 0.0529
(0.10, 0.88) 0.0498 0.0497 0.0587 0.0571 0.0566
(0.10, 0.89) 0.0558 0.0553 0.0636 0.0646 0.0638
(0.15, 0.81) 0.0518 0.0508 0.0544 0.0562 0.0554
(0.15, 0.82) 0.0518 0.0510 0.0572 0.0578 0.0570
(0.15, 0.83) 0.0526 0.0517 0.0619 0.0634 0.0609
(0.15, 0.84) 0.0590 0.0573 0.0698 0.0717 0.0704

Note. n = 105. See notes to Table 1.

The first section in Table 1 reports results for i.i.d. samples (no conditional heteroscedas-
ticity, i.e. α = 0 and β = 0). It is proposed as a benchmark for comparison. The other results
in Table 1 were obtained by varying n, α and β, for fixed α +β = 0.95. As expected from
Theorems 1 and 2, the proportion of rejections tends steadily to 0.05 as n increases. It turns
out that the DF and ADF t-type tests are actually robust to general GARCH errors in larger
sample sizes, even if the fourth moment of the errors goes to infinity. However, it can be seen
from Table 1 that the size of the tests deteriorates slightly when the volatility parameter α is
relatively large (cf. Kim & Schmidt, 1993). Note, however, that the degree of over-rejection
is slight when the sample size n is greater than or equal to 105.

The results in Table 2 were obtained by varying α and β, for 0.95 < α + β < 1 and
for fixed n = 105. Note that the volatility parameter α in the table was chosen to be in the
range often observed in empirical studies; see Kim & Schmidt (1993, p. 288) and references
therein. The main purpose of the table is to answer the following question: for such a large
sample size, do the DF and ADF t-type tests suffer from serious size distortions when α + β

approaches 1 (i.e. the GARCH(1,1) process is near-integrated)? It is readily seen from Table 2
that, when α is relatively small, the proportion of rejections is not too far away from 0.05
as α + β approaches 1. This means that, when the volatility parameter α is not too large and
the sample size is large enough, the size of the tests deteriorates slightly even if the GARCH
process is near-integrated and its fourth moment is infinity. This result is consistent with the
finding of Kim & Schmidt (1993, p. 295) that near-integrated GARCH errors do not lead to
a severe over-rejection problem for the tests.

In summary, the simulation results suggest that, if the GARCH process is near-integrated
or the volatility parameter in the process is relatively large (or both), then smaller size
distortions of the DF and ADF t-type tests require larger sample sizes, such as n ≥ 105.

5. Proofs

In this section, we will prove Theorem 1 of Section 2 and Theorem 2 of Section 3. The
proofs are based on the self-normalized limit theorem for martingale difference sequences in
Hall (1979, theorem 2) or Hall & Heyde (1980, theorem 4.1, p. 99); see also Phillips & Solo
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(1992, theorem 2.6). Before applying the theorem, we need the following lemma. Let ut be
as in (2) and set s2

n = E(S2
n) = E(V 2

n).

Lemma 1. Let {ut} be a GARCH( p, q) process defined by (2). Then under Assumption 1,
we have

(a)

V 2
n

s2
n

→a.s. 1;

(b)

1

s2
n

n∑
t=1

E[u2
t I(|ut | > εsn)] → 0 for all ε > 0 and as n → ∞.

Proof of Lemma 1. For part (a), let ηt = u2
t − σ 2

t = σ 2
t (z2

t − 1). It follows from (2) that

[1 − α(L) − β(L)]u2
t = w + [1 − β(L)]ηt . (18)

Note that σ 2
u = E(u2

t ) = w/[1-α(1) − β(1)]. Since all the roots of [1 − α(L) − β(L)] and
[1 − β(L)] lie outside the unit circle, we can rewrite (18) as

u2
t = σ 2

u + 1 − β(L)

1 − α(L) − β(L)
ηt =: σ 2

u +
∞∑

i=0

πiηt−i , (19)

where the coefficients π i are absolutely summable (cf. Brockwell & Davis, 1991, theo-
rem 3.1.1). By (19), a simple calculation gives

V 2
n = nσ 2

u +
n∑

t=1

∞∑
i=0

πiηt−i = nσ 2
u +

∞∑
i=0

πi

n∑
t=1

ηt−i =: nσ 2
u + Mn. (20)

Then, by (20) we have s2
n = nσ 2

u , since E(ηt−i) = 0 for i ≥ 0 and the sequence {π i} is absolutely
summable.

Now all we need to show is that Mn/n →a.s. 0 as n → ∞. It is well known that, when
w > 0, α(1) + β(1) < 1 and E(z2

t ) < ∞, {ut , σ 2
t } is strictly stationary and ergodic (Bougerol

& Picard, 1992). By theorem 3.5.8 in Stout (1974, p. 182), {ηt} is stationary ergodic. On the
other hand, it follows from Assumption 1 that E|z2

t | < ∞, and then from Chung (2001, p. 51,
exercise 10) that E|z2

t − a| < ∞ for every a. Since zt is independent of σ 2
t , it is easy to see

that

E|ηt | = E|σ 2
t (z2

t − 1)| = E|σ 2
t | E|z2

t − 1| < ∞,

provided that E|σ 2
t | = E(σ 2

t ) = σ 2
u < ∞. Now, applying theorem 3.5.7 in Stout (1974,

p. 181), we obtain that, for all i ≥ 0,
∑n

t=1 ηt−i/n →a.s. E(ηt ) = 0 as n → ∞. This gives that
Mn/n →a.s. E(ηt )

∑∞
i=0 πi = 0, since, again, {π i} is absolutely summable. Hence, Lemma

1(a) holds.
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For part (b), Hall (1979, p. 372) showed that, if {V 2
n/s2

n} is uniformly integrable, Lemma
1(b) is equivalent to

max
1≤t≤n

|ut/sn| →p 0 (21)

(see also Phillips & Solo, 1992, theorem 2.6). So, with Lemma 1(a), we need only show that
(21) holds. Since s2

n → ∞ as n → ∞ and {ut} is a strictly stationary and ergodic martingale
difference sequence with E(u2

t ) < ∞ for all t , by corollary 1 in Chung (2001, p. 347) we
have, for all ε > 0,

lim
n→∞ Pr

(
max
1≤t≤n

|ut | ≥ εsn

)
≤ lim

n→∞
E(u2

t )

ε2s2
n

= 0,

which implies condition (21). The proof of Lemma 1 is complete.

Proof of Theorem 1. By theorem 4.1 in Hall & Heyde (1980, p. 99), the invariance principle
(9) follows directly from Lemma 1. The results of parts (a)–(d) follow from (3), (5), (6) and
(8), together with the continuous mapping theorem (Billingsley, 1968). The proof of Theorem
1 is complete.

Remark 7. It is clear from the proof above that Theorem 1 remains true even if E(z2+δ
t ) = ∞

for all δ > 0.
Next, to prove Theorem 2 of Section 3, we use the following notation and lemmas.

Recall from (11) that �yt = εt = ∑∞
j=0 θ j ut− j and θ (1) = ∑∞

j=0 θ j �= 0. Assume without
loss of generality that

∑∞
j=0 |θ j | < ∞. Let Sε,n = ∑n

t=1 εt , and let Sj,n = ∑n
t=1 ut− j and

V 2
j,n = ∑n

t=1 u2
t− j , j ≥ 0. In particular, put S0,n = Sn and V 2

0,n = V 2
n .

Lemma 2. Let {yt} and {ut} be generated according to (10) and (2), respectively. Suppose
that Assumption 1 holds. Then, as n → ∞,

Sε,	nr

Vn

⇒ θ (1)W (r ), 0 ≤ r ≤ 1.

Proof of Lemma 2. Some elementary algebra gives

Sε,	nr

Vn

=
∑	nr


t=1

∑∞
j=0 θ j ut− j

Vn
=
∑	nr


t=1

∑∞
j=0 θ j (ut + ut− j − ut )

Vn

=
∞∑
j=0

θ j
S	nr

Vn

+
n∑

j=0

θ j (Sj,	nr
 − S	nr
)
Vn

+
∞∑

j=n+1

θ j (Sj,	nr
 − S	nr
)
Vn

. (22)

It follows from Theorem 1 that

Sj,	nr
 − S	nr

Vn

= Sj,	nr

Vj,n

Vj,n

Vn
− S	nr


Vn
(23)

is O p(1). Since the coefficients θ j are absolutely summable (cf. Brockwell & Davis, 1991,
theorem 3.1.1), it is necessary to have

∑∞
j=n+1 θ j → 0 as n → ∞. By this and by (23), the
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third term on the right-hand side of (22) is obviously O p(1). Note that, for 1 ≤ j ≤ n,

Sj,	nr
 − Sj−1,	nr
 =
	nr
∑
t=1

[ut− j − ut−( j−1)] = u1− j − u	nr
−( j−1). (24)

With this, the second term in (22) can be written as

n∑
j=0

θ j
(
Sj,	nr
 − S	nr


)
Vn

=
n∑

j=1

θ j

Vn

{[
Sj,	nr
 − Sj−1,	nr


]+ [
Sj−1,	nr
 − Sj−2,	nr


]+ · · · + [
S1,	nr
 − S	nr


]}

=
n∑

j=1

θ j

Vn

{[
u1− j − u	nr
−( j−1)

]+ [
u1−( j−1) − u	nr
−( j−2)

]+ · · · + [
u0 − u	nr


]}

= 1

Vn

{
(θ1 + · · · + θn)

[
u0 − u	nr


]+ (θ2 + · · · + θn)
[
u−1 − u	nr
−1

]
+ · · · + θn

[
u1−n − u	nr
−(n−1)

]}
. (25)

Let � j = ∑n
k= j θk for 1 ≤ j ≤ n. Then, (25) can be rewritten as

n∑
j=0

θ j (Sj,	nr
 − S	nr
)
Vn

=
n∑

j=1

� j u1− j

Vn
−

n∑
j=1

� j u	nr
−( j−1)

Vn
=: Q1,n − Q2,n. (26)

Note that {u j} is a strictly stationary ergodic martingale difference sequence. Since
V 2

n/n →a.s. σ
2
u (by Lemma 1(a)) and � j → 0 as j, n → ∞, it then follows from the Toeplitz

lemma (Stout, 1974, p. 120) that

E(Q2
1,n) = 1

n

n∑
j=1

�2
j → 0 as n → ∞. (27)

By (27), the weak law of large numbers (Petrov, 1995, p. 134) implies that Q1,n →p

E(Q1,n) = 0. The proof of Q2,n →p 0 is similar to that of Q1,n and hence the details are omit-
ted. Moreover, we also need to show that E(Q1,n Q2,n) = 0. It follows from Hölder’s inequal-
ity (see Chung, 2001, p. 50) that | E(Q1,n Q2,n)| ≤ E|Q1,n Q2,n | ≤ [E(Q2

1,n) E(Q2
2,n)]1/2 →

0. Putting these results together yields E(Q1,n − Q2,n)2 → 0, implying that Q1,n − Q2,n →p

E(Q1,n − Q2,n) = 0 by the weak law of large numbers. As for the first term of (22), it is readily
seen from Theorem 1 that

∞∑
j=0

θ j
S	nr

Vn

⇒ θ (1)W (r ), 0 ≤ r ≤ 1.

This completes the proof of Lemma 2.

Lemma 3. Let {yt} and {ut} be generated according to (10) and (2), respectively. Suppose
that Assumption 1 holds. If the regression (15) is estimated by ordinary LS then, as n → ∞,
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(a)

1

V 2
n

n∑
t=1

R0t R1t = θ (1)

2

[(
Sn

Vn

)2

− 1

]
− Sn

Vn

1

n

n−1∑
t=1

Sε,t

Vn
+ op(1);

(b)

1

nV 2
n

n∑
t=1

R2
1t = 1

n

n−1∑
t=1

(
Sε,t

Vn

)2

−
(

1

n

n−1∑
t=1

Sε,t

Vn

)2

+ op(1);

(c)

σ̂ 2
R = V 2

n

n
+ op(1).

Proof of Lemma 3. Note from (11) that, under the unit root hypothesis, Zt = (1, εt−1, . . . ,
εt−(m−1))�. Since εt is a short-memory linear process whose innovations are stationary ergodic
martingale differences with finite variance, and since, by Hölder’s inequality, E|εt εt− j |
≤ [E(ε2

t ) E(ε2
t−j)]

1/2 < ∞ for all j, it follows from Stout (1974, theorems 3.5.7 and 3.5.8) that
for j ≥ 0, n−1∑n

t=1 εt− j →a.s. E(εt− j ) = 0 and n−1∑n
t=1 εtεt− j →a.s. E(εtεt− j ) = σ 2

u c j as
n → ∞, where c j = ∑∞

i=0 θiθi+ j . Let ϒm = diag[
√

n, Vn, . . . , Vn] be a diagonal matrix of
order m with

√
n at the (1,1)th entry and V n elsewhere on the diagonal. Note from Lemma

1(a) that V 2
n/(n σ 2

u) →a.s. 1. Then, as n → ∞,

(
ϒ−1

m

n∑
t=1

Zt Z�
t ϒ−1

m

)−1

→a.s.

[
1 0
0 C−1

]
, (28)

where

C =

⎡
⎢⎢⎢⎣

c0 c1 . . . cm−2

c1 c0 . . . cm−3
...

...
. . .

...
cm−2 cm−3 . . . c0

⎤
⎥⎥⎥⎦ . (29)

On the other hand, it is easy to see that

1

Vn

n∑
t=1

ut Z�
t ϒ−1

m =
(∑n

t=1 ut√
nVn

,

∑n
t=1 utεt−1

V 2
n

, . . . ,

∑n
t=1 utεt−(m−1)

V 2
n

)
. (30)

Write yt−1 = ε1 + · · · + εt− j−1 + εt− j + · · · + εt−1 = yt− j−1 + εt− j + · · · + εt−1 for
1 ≤ j ≤ m − 1. Then it follows from Lemma 1(a) and the above that∑n

t=1 yt−1εt− j

V 2
n

=
∑n

t=1 yt− j−1εt− j

V 2
n

+
∑n

t=1 ε2
t− j

V 2
n

+ · · · +
∑n

t=1 εt−1εt− j

V 2
n

=
∑n

t=1 yt− j−1εt− j

V 2
n

+ c0 + c1 + · · · + c j−1 + op(1). (31)
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Similarly to Hamilton (1994, p. 476), noting that yt = Sε,t , we have from Lemma 1(a) that,
for 1 ≤ j ≤ m − 1,

1

V 2
n

n∑
t=1

yt− j−1εt− j = 1

2

[
y2

n− j

V 2
n

−
∑n

t=1 ε2
t− j

V 2
n

]

= 1

2

[(
Sε,n− j

Vn

)2

− c0

]
+ op(1). (32)

Then it follows from (31) and (32) that

ϒ−1
m

∑n
t=1 Zt yt−1

Vn
=
(∑n

t=1 yt−1√
nVn

,

∑n
t=1 εt−1 yt−1

V 2
n

, . . . ,

∑n
t=1 εt−(m−1) yt−1

V 2
n

)�

=
(∑n

t=1 yt−1√
nVn

,
1

2

[(
Sε,n−1

Vn

)2

− c0

]
+ c0 + op(1), . . . ,

1

2

[(
Sε,n−(m−1)

Vn

)2

− c0

]
+ c0 + · · · + cm−2 + op(1)

)�
.

(33)

Now we prove part (a). Under the unit root hypothesis, the data generating process in
(11), i.e. �yt = εt , can be written as

�yt = �Zt + ut , (34)

where �= [c, ξ 1, . . . , ξ M−1, ξ M , . . . , ξm−1] = [0, ξ 1, . . . , ξ M−1, 0, . . . , 0]. By (13)–(14) and
(34), it is easy to show that

R0t = �Zt + ut −
[

n∑
t=1

(�Zt + ut ) Z�
t

](
n∑

t=1

Zt Z�
t

)−1

Zt

= ut −
(

n∑
t=1

ut Z�
t

)(
n∑

t=1

Zt Z�
t

)−1

Zt , (35)

and

1

V 2
n

n∑
t=1

R0t R1t =
∑n

t=1 ut yt−1

V 2
n

−
∑n

t=1 ut Z�
t

Vn
ϒ−1

m

×
(

ϒ−1
m

n∑
t=1

Zt Z�
t ϒ−1

m

)−1

ϒ−1
m

∑n
t=1 Zt yt−1

Vn

= : An − Bn.
(36)

Recall from Lemma 1(a) that V 2
n/n →a.s. σ

2
u , and note from Lemma 2 that Sε,n− j/V n = O p(1)

for 1 ≤ j ≤ m − 1. Since the θ j are absolutely summable, it is sufficient to show that, for
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j ≥ 1,
∑n

t=1 utεt− j/V 2
n =

∑∞
i=0 θi

∑n
t=1 ut ut− j−i/V 2

n = op(1) as n → ∞. Then, by (28),
(30), (33) and the above, it is evident that

Bn =
∑n

t=1 ut√
nVn

∑n
t=1 yt−1√

nVn
+ op(1) = Sn

Vn

1

n

n−1∑
t=1

Sε,t

Vn
+ op(1). (37)

As for the term An in (36), noting that yt−1 = ∑t−1
k=1 εk = ∑t−1

k=1

∑∞
j=0 θ j uk− j , we can

write

An = 1

V 2
n

n∑
t=1

ut

t−1∑
k=1

∞∑
j=0

θ j uk− j = 1

V 2
n

∞∑
j=0

θ j

n∑
t=1

ut (St−1 + Sj,t−1 − St−1)

= 1

V 2
n

∞∑
j=0

θ j

n∑
t=1

ut St−1 + 1

V 2
n

n∑
j=0

θ j

n∑
t=1

ut (Sj,t−1 − St−1)

+ 1

V 2
n

∞∑
j=n+1

θ j

n∑
t=1

ut (Sj,t−1 − St−1)

=: A1,n + A2,n + A3,n.
(38)

Similarly to (32), it follows that

A1,n = 1

V 2
n

∞∑
j=0

θ j
1

2

(
S2

n −
n∑

t=1

u2
t

)
= θ (1)

2

[(
Sn

Vn

)2

− 1

]
. (39)

Similarly to (24)–(26), the second term in (38) can be written as

A2,n = 1

V 2
n

n∑
j=0

θ j

n∑
t=1

ut (Sj,t−1 − St−1) = 1

V 2
n

n∑
t=1

ut

n∑
j=0

θ j (Sj,t−1 − St−1)

= 1

V 2
n

n∑
t=1

ut

⎛
⎝ n∑

j=1

� j u1− j

⎞
⎠− 1

V 2
n

n∑
t=1

ut

⎛
⎝ n∑

j=1

� j ut− j

⎞
⎠

=: A21,n − A22,n . (40)

Recall from Lemma 1(a) that V 2
n/n →a.s. σ 2

u . Note that E(ui u j ) = 0, E(ui u j ukul) = 0,
E(u2

i u j uuk) = 0 and E(u2
i u2

j ) = E(u2
i ) E(u2

j ) = σ 4
u for i �= j �= k �= l. Then, similarly to

(27), we have E(A21,n) = 0 and

E(A2
21,n) = 1

n

n∑
j=1

�2
j → 0 as n → ∞. (41)

This implies that A21,n →p 0 by the weak law of large numbers. By arguments similar
to those shown above and in (27), the proofs of A22,n →p 0 and then A2,n →p 0 are
obvious and hence omitted. As for the third term in (38), note from the third term in (22)
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that
∑∞

j=n+1 θ j (Sj,	nr
 − S	nr
)/Vn = op(1), and from (9) in Theorem 1 that
∑n

t=1 ut/Vn =
Sn/Vn = Op(1). These two results imply that

A3,n = 1

V 2
n

∞∑
j=n+1

θ j

n∑
t=1

ut (Sj,t−1 − St−1) = 1

V 2
n

n∑
t=1

ut

∞∑
j=n+1

θ j (Sj,t−1 − St−1)

=
n∑

t=1

ut

Vn

∞∑
j=n+1

θ j (Sj,t−1 − St−1)

Vn

→p 0 as n → ∞. (42)

Considering the above results together, the proof of Lemma 3(a) follows.
For part (b), by (14) and by noting that yt−1 = Sε,t−1, we have

1

nV 2
n

n∑
t=1

R2
1t =

∑n
t=1 y2

t−1

nV 2
n

− 1

n

(∑n
t=1 yt−1 Z�

t

Vn
ϒ−1

m

)(
ϒ−1

m

n∑
t=1

Zt Z�
t ϒ−1

m

)−1

×ϒ−1
m

∑n
t=1 Zt yt−1

Vn

=:
1

n

n−1∑
t=1

(
Sε,t

Vn

)2

− Hn. (43)

It is readily seen from (28), (33) and Lemma 2 that

Hn =
(

1

n

n∑
t=1

yt−1

Vn

)2

+ op(1) =
(

1

n

n−1∑
t=1

Sε,t

Vn

)2

+ op(1). (44)

Putting (43) and (44) together completes the proof of Lemma 3(b).
For part (c), recall that σ̂ 2

R = ∑n
t=1[R0t − (φ̂A,n − 1)R1t ]2/(n − 1). Then a straightfor-

ward calculation shows that

σ̂ 2
R = 1

n − 1

n∑
t=1

R2
0t − [

n(φ̂A,n − 1)
]2 ∑n

t=1 R2
1t

n2(n − 1)
. (45)

Since n(φ̂A,n − 1) = Op(1), as will be shown in Theorem 2(a) below, and since by Lemma 3(b)
and Lemma 1(a),

∑n
t=1 R2

1t = Op(n2), the last term in (45) is op(1) as n → ∞. This result,
together with the fact that n/(n − 1) → 1 as n → ∞, implies that σ̂ 2

R = n−1∑n
t=1 R2

0t + op(1).
Under the null hypothesis, it is sufficient to show by Lemma 1(a), (30) and (35) that

σ̂ 2
R = 1

n

n∑
t=1

R2
0t + op(1)

=
∑n

t=1 u2
t

n
−
∑n

t=1 ut Z�
t√

n
ϒ−1

m

(
ϒ−1

m

n∑
t=1

Zt Z�
t ϒ−1

m

)−1

ϒ−1
m

∑n
t=1 Zt ut√

n
+ op(1)

= V 2
n

n
+ op(1) as n → ∞. (46)
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This completes the proof of Lemma 3(c).

Proof of Theorem 2. It follows from (16)–(17) and Lemma 3 that

ADFρ =
∑n

t=1 R0t R1t/V 2
n∑n

t=1 R2
1t/(nV 2

n )

=
θ(1)

2 [(Sn/Vn)2 − 1] − (Sn/Vn)n−1∑n−1
t=1 Sε,t/Vn

n−1
∑n−1

t=1 (Sε,t/Vn)2 − (n−1
∑n−1

t=1 Sε,t/Vn)2
+ op(1),

ADFτ =
∑n

t=1 R0t R1t/V 2
n{

(
∑n

t=1 R2
1t/V 2

n )(σ̂ 2
R/V 2

n )
}1/2

=
θ(1)

2 [(Sn/Vn)2 − 1] − (Sn/Vn)n−1∑n−1
t=1 Sε,t/Vn{

n−1
∑n−1

t=1 (Sε,t/Vn)2 − (n−1
∑n−1

t=1 Sε,t/Vn)2
}1/2 + op(1).

Clearly, by the above two equations and by Lemma 2, the remainder of the proof is the same
as for the proofs of Theorem 1(c) and Theorem 1(d), and thus we omit it here. This completes
the proof.
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