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1. Introduction

Market liquidity, or the ability of an asset to be sold without causing a
significant amount of price movement and with minimum loss of value,
plays an important role in financial investment and in securities trading.
One recent event thathighlighted the impact of asset liquidityonfinancial
institutionswas the collapse of Bear Stearns. Bear Stearnswas involved in
securitization and issued a huge amount of asset-backed securities,
mostly mortgage-backed assets. Due to the subprime crisis in 2007, the
company issued subprimehedge funds thathadvery lowmarket liquidity
and subsequently lost most of their value. In March 2008, the Federal
Reserve Bank of New York provided an emergency loan to try to avert a
sudden collapse of the company. However, the company could not be
saved and was subsequently sold to JP Morgan Chase in 2008.

In large investment institutions, the liquidation of a large block of
assets within a given time constraint to obtain cash flow arises
frequently. For example, a financial institution may need to liquidate
part of its portfolio to pay for its immediate cash obligations. One
possible liquidation strategy is to sell the entire block of assets at once.
However, this high-volume trading can cause the price of the share to
drop between the time the trade is decided and the time the trade is
completed. This implicit cost (due to the price decline) is known as the
market impact cost (MIC) or liquidity cost (the numerical definition is
given in Section 3). To minimize such cost, a better strategy is to divide
the block of assets into chunks and sell them one chunk at a time.
However, in what way should those chunks be sold so that the liquidity
cost is minimized?

In Algorithmic Trading, where computer programs are used to
perform asset trading including deciding the timing, price, or the
volumeof a tradingorder, this liquidationproblem is characterized as an
optimization problem.With a smooth anddifferentiable utility function,
the problem can be solved mathematically (Almgren & Chriss, 2000)
(Kalin & Zagst, 2004).

However, this mathematical approach to find an optimal liquidation
strategy has some shortcomings, such as the imposed assumption that
risk has a linear impact on prices. In this paper, we adopt a different
approach by devising an agent-based artificial stock market, which has
more relaxed assumptions (explained in Section 3). By performing
simulations and analyzing liquidity costs induced under different
market scenarios, we hope to understand the dynamics of liquidity
costs, and hence to devise a more realistic optimal liquidation strategy.

The rest of this paper is organized as follows. In Section 2,weprovide
the background and summarize related works. Section 3 explains the
agent-based artificial stock market we developed based on the DFGIS
model and the data from the Taiwan StockMarket (TWSE). In Section 4,
the 10 securities and stocks that we selected to conduct our study are
presented. Section 5 provides the model parameters used to perform
our simulation. We analyze the simulation results in Section 6 and
present our discussions in Section 7. Finally, Section 8 concludes the
paper with an outline of our future work.
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Table 2
Summary of DFGIS parameters.

Parameter Description Dimension

α Avg. limit order rate Share/price ⋅ time
μ Avg. market order rate Share/time
δ Avg. limit order decay rate 1/time
σ Order size A constant share
dp Tick size Price

Table 3
An example of an order book before (left) and after (right) handling a limit sell order
with price equal to the best bid.

Limit buy
orders

Limit sell
orders

Limit buy
orders

Limit sell
orders

Size Price Size Price Size Price Size Price

20 $1.10 35 $1.17 25 $1.09 10 $1.10
25 $1.09 10 $1.19 35 $1.05 35 $1.17
35 $1.05 20 $1.21 10 $1.01 10 $1.19
10 $1.01 20 $1.21

73Y.-P. Huang et al. / International Review of Financial Analysis 23 (2012) 72–80
2. Background and related work

This study implements an agent-based model for an order-driven
double auction market, which is the most common financial market in
the world. We shall first provide a brief introduction of the basic
microstructure and trading mechanism of a standard order-driven
double-auction market. Next, the DFGIS model (Daniels, Farmer,
Gillemot, Iori, & Smith, 2003), on which our agent-based artificial
stock market is based, will be presented. After that, we will summarize
the work of (Guo, 2005) on agent-based models used to study
liquidation strategies at the end of the section.

2.1. Order-driven double-auction markets

In an order-driven double-auctionmarket, prices are determined by
the publication of orders to buy or sell shares. This is different from a
quote-driven market where prices are determined from quotations
made by market makers or dealers.

There are two basic kinds of orders in an order-driven market.
Impatient traders submitmarket orders, which are requests to buy or sell
a given number of shares immediately at the best available price. More
patient traders submit limit orders, which specify the limit (best
acceptable) price for a transaction. Since limit orders often fail to result
in immediate transactions, they are stored in a limit order book. As
shown on the left of Table 1, limit buy orders are stored in decreasing
order of limit priceswhile limit sell orders are stored in increasing order
of limit prices. The buy limited orders are called bids and the sell limited
orders are called asks. For a normal double-auction market, the best
(highest) bid price is lower than the best (lowest) ask price. The
difference between the two is called the spread of the market. In the
example in Table 1 (left), the spread is $0.07.

When amarket order arrives, it ismatched against limit orders on the
opposite side of the book. For example, when a market sell order for 30
shares arrives at the market whose order book is as that on the left of
Table 1, it will first bematched against the current best bid (20 shares at
$1.10 per share). Since the size of the sell order (30 shares) is larger than
that of the best bid (20 shares), the remainder of the market sell order
(10 shares)will bematched against the next best bid (25 shares at $1.09
per share). After the transaction is completed, the limit order book will
change to the right of Table 1 and themarket spreadwillwiden to $0.08.

2.2. The DFGIS model

In the original DFGISmodel (Daniels et al., 2003), all the order flows
(including limit orders and market orders) are modeled as a Poisson
process.Market orders arrive at themarket in chunksofσ shares (where
σ is a fixed integer) at an average rate of μ per unit of time. A market
ordermay either be a buymarket order or a sellmarket orderwith equal
probability.

Limit orders arrive at themarket in chunks of σ shares, at an average
of α shares per unit price per unit of time. A limit order may either be a
limit buy order or a limit sell order with equal probability. The limit
prices in limit orders are generated randomly from a uniform
distribution. In particular, the limit buy prices have a range between
Table 1
An example of an order book before (left) and after (right) a transaction.

Limit buy
orders

Limit sell
orders

Limit buy
orders

Limit sell
orders

Size Price Size Price Size Price Size Price

20 $1.10 35 $1.17 15 $1.09 35 $1.17
25 $1.09 10 $1.19 35 $1.05 10 $1.19
35 $1.05 20 $1.21 10 $1.01 20 $1.21
10 $1.01 15 $1.25 15 $1.25
(−∞, a(t)), where a(t) is the best (lowest) ask price in the market at
time t. Similarly, the limit sell prices have a range between (b(t), ∞),
where b(t) is the best (highest) bid in the market at time t. In addition,
the price changes are not continuous, but have discrete quanta called
ticks (represented as dp). Tick size is the price increment/decrement
amount allowed in a limit order.1

DFGIS also allows the limit order to expire or to be canceled after
being placed in the market. Limit orders are expired and canceled
according to a Poisson process, analogous to radioactive decay, with a
fixed-rate δ per unit of time. Table 2 lists the parameters of the DFGIS
model.

To keep the model simple, the DFGIS does not explicitly allow limit
orderswhoseprices cross thebest bid priceor thebest ask price. Inother
words, the price of a limit buy order must be below the best ask price
and the price of a limit sell order must be above the best bid price.

Farmer, Patelli and Zovko (2005) implemented the model to
explicitly handle this type of order. They defined effective market
orders as shares that result in transactions immediately and effective
limit orders as shares that remain on the order book. A limit order with
a price that crosses the opposite best price is split into effectivemarket
orders and effective limit orders according to the above definition. For
example, when a limit sell order of 30 shares at price of $1.10 arrives
at the market (with the order book as that listed in Table 3 (left)), the
order will be split into an effective market order of 20 shares and an
effective limit sell order of 10 shares. After the execution of the 20
shares of the effective market order (at price $1.10), the order book is
changed to that on the right of Table 3.
2.3. The Guo agent-based stock market model

Guo (2005) implemented an agent-based artificial stock market
based on the DFGIS model (he called it the SFGK model) to study time-
constrained asset liquidation strategies throughmarket sell orders only.
In particular, he compared the performance of two strategies. The first
one uniformly divides the liquidation shares X and the time constraint T
into N chunks. This “uniform rhythm” strategy instructs a trader to sell
X/N shares every T/N seconds, regardless of the market condition.
1 The range of price has−∞ as the lower limit because in the DFGIS model prices are
first converted to logarithms. As we shall see later in Section 3, we do not use the
logarithm transformation of price. Prices and ticks are all in their original form.



2 However, on the TWSE, in the last 5 min, i.e., after 1:25 pm and before 1:30 pm,
there is no further matching. Then the last matching happens at 1:30 pm when the
market closes. In our simulation, we do not isolate these last 5 min and continue
matching in this time interval as we do for the others.

3 See http://www.twse.com.tw/ch/trading/introduce/introduce.php#1.
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The second strategy is the “non-uniform rhythm” strategy which
also divides the liquidation shares and time uniformly. However, within
each time segment, this strategy requires a trader to continuously
observe the market spread and initiates the selling of the X/N shares as
soon as the current market spread, for the first time within the time
segment, falls below the pre-determined spread threshold. If themarket
spread never falls below the spread threshold for a time segment, the
strategy will involve selling the X/N shares at the end of the time
segment.

Guo devised one agent (A) with the “uniform rhythm” strategy and
another agent (B) with the “non-uniform rhythm” strategy. He tested
each agent individually by running 200 simulations independently. For
each simulation run, the number of liquidation shares (X) is 20 and the
time constraint (T) is 5 min. The total assets are divided into 10 chunks,
eachofwhich contains 2 shares thatwill be soldwithin a time segment of
30 s.

The performance of the two agents is evaluated by the average
selling price per share relative to the volume weighted average price in
the market. In other words, it is the measure of how much better or
worse an agent performs, when tested compared to the market. His
simulation results indicated that agent B (based on the “non-uniform
rhythm” strategy) outperformed the market while agent A (based on
the “uniform rhythm” strategy) underperformed the market.

Guo did not explicitly study liquidity costs when devising his
liquidation strategy. By contrast, we are interested in quantifying the
cost in a real-world stock market. We therefore used TWSE stock order
and transaction data (see Section 4) to construct the agent-based
artificial stock market using the DFGIS model. We describe this agent-
based system in the following section.

3. An agent-based Taiwan Stock Market model

The agent-based artificial stock market consists of zero-intelligent
agentswhoplace buy, sell or cancelation orders at random, subject to the
constraints imposed by the current prices. The distribution of the order
prices and quantities and the distribution of the time intervals of the
order submissions in the market follow that of the DFGIS model. Unlike
the Algorithmic Tradingmodel, which imposes unrealistic assumptions,
the agent-based model is governed by the 5 DFGIS model parameters.
The market properties emerge from the stochastic simulation. We
describe our implementation of the abstract DFGIS model for the TWSE
in the following subsections.

3.1. Buy and sell orders

On the TWSE, a submitted order (either buy or sell) needs to specify
the price, in addition to the quantity, that the trader is willing to accept.
However, the price can cross the disclosed best prices (explained in
Section 3). When the price of a buy order is greater than or equal to the
disclosed best ask price or the price of a sell order is less than or equal to
the disclosed best bid price, there is a match for the transaction. We
follow that defined by Farmer et al. (2005) (see Section 2) and call the
portion of an order that might result in a transaction in the current
matching period an effective market order. The possibly no-transacted
portion of anordermight be recordedon theorder bookand is called the
effective limit order.

3.2. Event-time model

We implemented the artificial stock market as an event-time
model, where the events in the model are not connected to the real
time. We first partitioned a trading day into a fixed number of time
intervals. The events taking place at each time interval become the
event-time series describing the market activities of that day.

The TWSE opens at 9:00 am and closes at 1:30 pm. With a time
interval of 0.01 s, the event-time series of a trading day is 1,620,000 time
intervals long. The TWSE is a call auction market where the submitted
orders are matched once every 25 s. Hence, there are 648 order-
matching events in a daily event-time series and the number of events
between two order-matching events is 2499.2

There are five possible events in an event-time series:

• Effective limit order submission: this has an average rate α and is
denoted by L.

• Effective market order submission: this has an average rate μ and is
denoted by M.

• Order cancelation submission: this has an average rate δ and is
denoted by C.

• Order matching: the buy and sell orders are matched for trans-
actions and are denoted by T.

• No activity: where none of the above events occurred in the market
is denoted by N.

From a simulation point of view, the simulation result based on an
event-timeseries and that basedona real-time series are equivalent. For
example, the event-time series LNNNM is equivalent to the real-time
series L… (real time elapse)… M. However, the event-time model is
easier to implement and has a shorter simulation running time because
there is no need to handle the time elapse between two events. We
therefore adopted the event-time model to implement our artificial
stock market.

3.3. Order pricing rules

As mentioned previously, the TWSE matches submitted orders
once every 25 s. The five best prices are then disclosed to the public.
During the following 25 s of the waiting-for-matching period, the
TWSE does not disclose any information about the newly-submitted
orders. Consequently, investors do not have the updated best prices,
but rather the best prices from the previous matching period to make
trading decisions. These disclosed best prices are then used to decide
order pricing ranges and to calculate the liquidity costs (explained in
the next subsection).

The TWSE has a pricing rule whereby the price range of an order
has to be between the closing price on the previous trading day (cp)
(1±7%). Thus, the submitted orders in our simulation system have
the following price ranges:

• effective limit buy orders: uniform probability in the range (cp (1–7%),
da(t)), where da(t) is the disclosed best (lowest) ask price in the
market at time t,

• effective limit sell orders: uniform probability in the range (db(t), cp
(1+7%)), where db(t) is the disclosed best (highest) bid in the
market at time t.

• effective market buy orders: cp(1+7%). This guarantees an
immediate transaction.

• effective market sell orders: cp(1–7%). This guarantees an immedi-
ate transaction.

The tick sizes (the price increment/decrement amount) are as
defined by the TWSE.3

3.4. Liquidity costs

We define the liquidity cost of an effective market order as the
difference between the expected transaction payment and the actual
transaction payment of an effective market order. The expected

http://www.twse.com.tw/ch/trading/introduce/introduce.php#1


Table 5
Average order sizes of effective limit orders and effective market orders — rage over all
77 days of data, without weights.

Ticker Eff. limit (shares) Eff. market (shares) Test for equality p-value

0050 55,671.55 12,510.12 0
0056 17,039.35 6007.985 0
01007T 24,555.19 21,210.09 0.0399
01008T 24,424.41 14,593.78 0
2002 11,247.64 8624.148 0
2330 16,858.99 11,314.48 0
2454 3234.415 2602.357 0.0001
2498 2876.868 2257.998 0
2912 5750.73 4012.044 0.0071
3474 14,294.47 6369.418 0
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transaction payment is calculated by multiplying the disclosed best
price by the number of shares of an effective market order. Since the
disclosed best price is from the previous transaction period, this is the
expected amount of payment to be made during the current matching
period. The actual transaction payment, however, can be different
from what was expected. It is calculated as the executed transaction
price (explained in the next paragraph) multiplied by the number of
shares in a transaction. We can interpret liquidity cost as the
difference between an investor's expected transaction payment and
the actual transaction payment he/she made.

The TWSE uses a special rule to decide the execution transaction
price to match the submitted orders. Instead of the best ask and the
best bid in the current matching period, the rule selects the price that
gives the maximum transaction volume as the execution transaction
price. Table 4 gives an example of how the transaction price is
decided.

In column 2, the buy order quantities under the prices in column 3
are given. Column 4 gives the sell order quantities under the prices in
column 3. As an example, the first row shows that there is a buy order
bidding $102.5 for 99 shares and there is a sell order asking for the same
price for 1 share. Column6 gives the number of transaction shares under
the price in column 3. In this case, $101.5 gives the largest transaction
volume (100 shares) and is selected as the execution transition price for
this matching period.

With the selected execution transaction price (TP) and the disclosed
best ask (DBA), the liquidity cost of an effective market buy order with
volume V is defined as:

LCbuy =
TP × V−DBA × V

DBA × V
=

TP−DBA
DBA

: ð1Þ

Similarly, with the disclosed best bid (DBB), the liquidity cost of an
effective market sell order is defined as:

LCsell =
DBB × V−TP × V

DBB × V
=

DBB−TP
DBB

ð2Þ

We have normalized the liquidity cost such that the value is the
ratio of the original cost to the expected transaction payment. Both
LCbuy and LCsell can be positive or negative. This is because under the
TWSE pricing regulation, the execution transaction price may be
higher or lower than what a trader has expected. Liquidity cost with a
negative valuemeans that the execution transition price is better than
what the trader has expected, while liquidity cost with a positive
value means that the opposite situation applies.

When an order is only partially or not executed in the current
matching period, the non-executed portion remains in the order book.
These effective limit orders may later be executed and become
effective market orders. However, effective limit orders may lead to a
loss of opportunities related to the changing market prices or a
decaying value of the information responsible for the original trading
decision. This so-called opportunity cost is difficult to estimate, and
hence is not considered in our liquidity costs calculation.
Table 4
An example of the determination of the execution transaction price.

Accumulated
buy shares

Buy
shares

Price Sell
shares

Accumulated sell
shares

Transaction volume
(shares)

99 99 102.5 1 103 99
99 102 2 102 99
121 22 101.5 99 100 100
126 5 100 1 1 1
3.5. Measurement of model parameters

The model parameters are estimated using real data from the
TWSE (see Section 4). These parameters include an effective market
order rate (μ), effective limit order rate (α) cancelation order rate (δ)
and order size (σ). Note that tick size (dp) has been discussed
previously in Section 3. For each parameter, we calculated themean of
the daily value weighted by the number of daily events. For example,
the parameter pt(μ) is the ratio of the number of effective market
order events (including buy and sell orders) to the total number of
buy, sell, and cancelation orders and no-active events (1,619,352) on
day t. The weight factor wt is the ratio of the number of order events
(including effective market, effective limit and cancelation orders) on
day t to the total number of order events for the entire period:

wt =
nμt + nαt + nδt

∑n
i = 1 nμi + nαi + nδi

� � ð3Þ

where nμt is the number of effective market orders on day t; nαt is the
number of effective limit orders on day t; nδt is the number of cancelation
orders on day t; and n is the number of days in the entire period. We
measuredwt×pt(μ) across thewholeperiod (77 tradingdays in this case)
and then added them together, which becomes the average daily
effective market order event rate p(μ). Note that its dimension is order-
event/time, which is slightly different from μ of (Daniels et al., 2003)
whose dimension is share/time (see Table 2). We applied the same
method to calculate p(α) and p(δ). With that, we can calculate the
average daily no-activity event rate (p(n)) as 1−p(μ)−p(α)−p(δ).

To calculate the average order size, we first computed the average
number of shares in the effective market and effective limit orders
submitted on day t (σt) (excluding those submitted before the first best
prices were disclosed and after themarket was closed). The summation
of σt×wt for the entire period becomes the average order size σ. In the
simulation, unlike theDFGISmodel,we used a variable order size,which
is generated randomly from a half-normal distribution with standard

deviation

ffiffiffiffiffiffiffiffiffiffi
π−2
2

r
× σ (σ is the average order size, not standard

deviation) (Weisstein, 2005).4

From real data and our simulation experience, we find that the
average order sizes of effective limit orders and effective market orders
are not the same. The average effective limit order size, average market
order size and the p-value of the test for equality are shown in Table 5.
Therefore, we use different average order sizes for effective limit orders
and effective market orders in the second model (i.e., DFGIS-II).
According to the TWSE regulation, the maximum order size is 499,000
shares. Table 6 summarizes the model parameters implemented in our
4 According to Daniels et al. (2003), the variable order size gives the same result as
that produced from the constant order size σ. However, we are not sure whether this
equality also applies to TWSE, so we still consider the variable order size.



Table 6
Model parameters estimation.

Parameter Description Value Dimension

p(μ) Avg. daily effective market
order event rate

∑ t=1
n pt(μ)×wt Order–event/time

p(α) Avg. daily effective limit
order event rate

∑ t=1
n pt(α)×wt Order–event/time

p(δ) Avg. daily cancelation
order event rate

∑ t=1
n pt(δ)×wt Order–event/time

σ Avg. Order size ∑ t=1
n σt×wt Share/order

σlimit Avg. effective limit
order size

∑ t=1
n σlimit, t×wt Share/order

σmarket Avg. effective market
order size

∑ t=1
n σmarket, t×wt Share/order

Table 7
The 10 selected securities and their characteristics.

Security Ticker Characteristics

Taiwan Top 50 0050 ETF with the highest trading volume
Tracker Fund
Polaris/P-shares 0056 ETF with a low trading volume
Taiwan Dividend+ETF
Cathay No. 2 Real 01007T REIT with a high trading volume
Estate Investment Trust
Gallop No. 1 Real Estate 01008T REIT with a low trading volume
Investment Trust Fund
China Steel 2002 Blue chip stock in TWSE
TSMC 2330 Stock with a high trading volume and the

largest market capitalization
MediaTek 2454 Stock with a high unit price
HTC 2498 Stock with a high unit price
President Chain Store 2912 Stock with a large market capitalization

but a low trading volume
Inotera 3474 Non-blue chip stock on the TWSE

(there is a net loss during the fiscal year)
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system, where n stands for the number of trading days (77) in the data
set.

Note that this approach to the estimation of themodel parameters is
similar to that of Farmer et al. (2005). It assumes that the daily
probability distributions of these parameters are identical hence it is an
important assumption in this study.
3.6. Program implementation and system flow

The simulation program was implemented in the Python program-
ming language. Fig. 1 depicts the overall system workflow. Each
simulation is for one trading day for the TWSE. Initially a series of
events on a trading day is generated, based on p(μ), p(α), p(δ) and p(n).
The number of events is 1,620,000. These events are then executed
sequentially, according towhat types of events they are. If theevent is an
order matching event (T), the program matches orders and carries out
transactions. If it is an effective market order submission (M) or an
effective limit order submission event (L), the program decides the
order size based on the half-normal distribution of σ. Next, the program
decides if it is a buy or a sell order with an equal probability (50%).
After that, the order price is determined (see Section 3) and the order
is submitted. If it is an order cancelation submission event (C), the
program decides whether to cancel a buy or a sell order with equal
probability (50%). Next, an order on the order book is canceled
randomly. If it is a non-activity event (N), the program continues to
process the next event.
Gener
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theory, than real estate. We therefore selected a variety of stocks, ETFs
and REITs traded on the TWSE to study liquidity costs. They are
selected to cover a wide variety of characteristics (see Table 7).
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opposing best prices of these orders are not available. The same applies
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submitted, as they were a strong indication of the market liquidity of a
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Table 8
Descriptive statistics of the liquidity costs of effective market orders with immediate
transactions, based on TWSE data.

Ticker Max Min Mean Std. dev. Kurtosis Sum sq.
dev

No. of
transactions

0050 0.69% −0.92% −0.02% 0.000639 23.17 0.04 101,419
0056 2.22% −1.4% −0.01% 0.000743 122.77 0.01 16,040
01007T 2.55% −1.58% 0% 0.00091 252.81 0 4912
01008T 1.12% −1.68% 0.01% 0.001133 90.85 0 872
2002 1.7% −1.89% −0.05% 0.001119 52.72 0.59 472,354
2330 1.73% −1.88% −0.06% 0.001372 48.72 0.91 483,565
2454 1.33% −1.47% −0.04% 0.001525 20.11 0.95 409,985
2498 1.5% −1.63% −0.04% 0.001297 26.46 0.4 237,582
2912 2.21% −2.67% −0.07% 0.00239 24.12 0.31 54,480
3474 2.13% −2.97% −0.05% 0.002128 50.34 0.37 81,450
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after the orders have been entered (and waited for) in the order book,
might be influenced by other factors, such as opportunity cost, and
hence are less informative about the liquidity of a security.

Table 8 gives the liquidity cost statistics of the effective market
orders with immediate transactions that were executed during the 77
trading days. It shows that most securities have negative average
liquidity costs, except for the two securities that have the lowest
transaction frequency (01007T.TW and 01008T.TW). The maximum
amount of liquidity cost for a transaction is less than 3%. This indicates
that these securities have high market liquidity.

We noted that China Steel (2002.TW) and TSMC (2330.TW) have
the highest trading frequency (472,354 and 483,565). This might be
due to the fact that 2002.TW is a blue chip stock while 2330.TW has a
highmarket capitalization. They are attractive to domestic and foreign
investors who seek secure and stable returns.

To further analyze the market liquidity of these 10 securities, we
partitioned the liquidity costs into 6 different value ranges. After that,
we computed the ratio of the transaction volume of the effective
market orders with immediate transactions to the total transaction
volume of all orders (which include limit orders, not immediately
executed market orders and so on). As shown in Table 9, the trading
Table 9
Ratio of the transaction volume of the effective market orders with immediate transactions

LC range (−3%, −2%] (−2%, −1%] (−1%, 0%]

Ticker Avg Max Avg Max Avg Max

0050 – – – – 45.52% 65
0056 – – 0.01% 0.71% 40.88% 79
01007T – – 0% 0.12% 44.7% 98
01008T – – 0.05% 7.35% 45.39% 100%
2002 – – 0.14% 12.74% 50.54% 71
2330 – – 0.46% 17.1% 47.38% 69
2454 – – 0.09% 4.56% 51.34% 68
2498 – – 0.02% 1.51% 48.62% 67
2912 0.09% 8.9% 0.14% 6.54% 44.18% 77
3474 0.12% 13.68% 0.17% 8.91% 45.54% 67

Table 10
Computed p(α), p(μ), p(δ), p(n), σ, σlimit and σmarket for the 10 studied securities.

Ticker p(α) ×10−3 p(μ) ×10−3 p(δ) ×10−3

0050 2.498 1.029 1.586
0056 0.404 0.147 0.232
01007T 0.109 0.059 0.042
01008T 0.026 0.01 0.003
2002 6.292 5.007 1.923
2330 6.676 5.059 2.218
2454 4.401 4.404 2.086
2498 2.57 2.404 1.182
2912 0.9 0.644 0.414
3474 1.195 0.96 0.459
volume of this type of effective market order is more than 50% of the
total transaction volume for all 10 securities. Meanwhile, the majority
(40–50%) of the transaction volumes for these securities have their
liquidity costs between −1% and 0% (see the 6th column of Table 9).
These statistics further support them as high market liquidity
securities.

5. Experimental setup

Based on the definition in Table 6,we calculated p(μ), p(α), p(δ), p(n),
σ, σlimit and σmarket for the 10 securities in Table 10.

Although TSMC (2330.TW) is the largest market capitalization
stock and is traded frequently, the average daily order size is 14,000
shares, which is much lower than that of the Taiwan Top 50 Tracker
Fund (0050.TW) (45,000 shares). This might be because the Taiwan
Top 50 Tracker Fund (0050.TW) is mostly traded by market makers,
who normally trade orders with a large volume, while TSMC
(2330.TW) is traded by many different kinds of investors.

For each of the securities, we made 10 simulation runs, each of
which simulates one trading day for the TWSE. The simulation results
are presented and analyzed in the following section.

6. Simulation results and analysis

Using the 10 days of simulation data, we calculated the daily
average trading volume and the daily average number of transactions.
We then compared them with that calculated from the 77 days of
TWSE data.

As shown in Table 11, the results calculated from the simulation data
are higher than those calculated from theTWSEdata for almost all of the
securities. This might be because, in TWSE, a crossing order could be
split into effective market orders and effective limit orders (see
Section 3). In most cases, the effective market order volume (shares)
is smaller than thevolume(shares)of theeffective limit order.However,
the DFGIS model assumes that the effective market order size is the
same as the effective limit order size σ, which is calculated as the
to the total transaction volume of all orders, based on TWSE data.

(0%, 1%] (1%, 2%] (2%, 3%]

Avg Max Avg Max Avg Max

.88% 6.15% 24.51% – – – –

.82% 9.22% 52.45% 0.01% 1% 0.05% 0.05%

.79% 4.17% 50.83% 0.01% 2.22% 0.04% 0.04%
2.59% 71.43% 0.02% 3.45% – –

.49% 4.45% 26.33% 0.21% 18.4% – –

.5% 4.07% 33.37% 0.43% 24.09% – –

.51% 7.75% 21.25% 0.14% 8.45% – –

.43% 5.59% 18.9% 0.05% 5.81% – –

.66% 2.7% 21.82% 0.18% 11.41% 0.01% 0.01%

.54% 7.03% 50.54% 0.51% 17.13% 0.35% 0.35%

p(n) ×10−3 σ ×103 σlimit ×103 σmarket ×103

994.887 45 56.848 12.875
999.217 19 22.064 6.558
999.79 21 22.269 19.355
999.961 22 24.055 16.563
986.778 10 10.823 8.542
986.047 14 16.288 11.246
989.109 3 3.145 2.555
993.844 3 2.86 2.275
998.042 5 5.682 4.143
997.386 11 14.462 7.215



Table 11
A comparison of daily trading volumes and the number of transactions.

Ticker TWSE data Simulation data — DFGIS Simulation data — DFGIS-II

Daily trading volume
(share)

Daily no. of
transactions

Daily trading volume
(share)

Daily no. of
transactions

Daily trading volume
(share)

Daily no. of
transactions

0050 15,411,781 2554 73,289,200 2997 21,773,600 2469
0056 1,438,702 352 5,334,100 506 2,048,200 373
01007T 1,731,457 144 2,136,900 190 1,995,700 179
01008T 332,438 24 447,200 34 391,200 39
2002 50,360,139 12,062 64,442,500 11,826 55,480,600 11,107
2330 69,341,433 12,582 95,335,300 12,765 72,635,300 11,942
2454 12,749,066 8010 17,604,900 7809 15,401,100 7746
2498 6,475,480 4332 10,357,200 4788 8,248,600 4601
2912 3,228,883 1369 5,120,400 1819 4,305,800 1758
3474 11,124,524 2183 15,510,000 2794 10,545,000 2504
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average size of both types of orders. In other words, the average order
rate for effective market orders is overestimated. Consequently, the
effective market order volume simulated based on σ is higher than that
for the real TWSEdata. By using twodifferent order sizeparameters, one
for effectivemarket orders and one for effective limit orders, the DFGIS-
II model effectively reduces the trading volume.

We also evaluated the liquidity cost statistics of effective market
orders with immediate transactions, based on the simulation data
(see Table 12). Compared to Table 8, the liquidity costs generated by
the simulation data are higher than those for the TWSE data. This
might also be partially due to the overestimated effective market
order size σ in our system. With a higher effective market order size,
the liquidity costs of effective market orders with immediate trans-
actions are likely to be higher. The liquidity costs generated from the
DFGIS-II model are simulation results after removal of the over-
estimation of market order size. They are closer to the TWSE data than
the results of the DFGIS model, although they are still higher than the
TWSE data. We will discuss this issue further in Section 7.

To rigorously evaluate the similarity between the simulated
liquidity costs and the TWSE data, we performed the Mann–
Whitney–Wilcoxon (MWW) test on all 10 securities. The resulting
p-values are 0 across all 10 securities, indicating they are indeed
different from one another.

Similar to Table 9, we computed the ratio of the transaction
volume of the effective market orders with immediate transactions to
the total transaction volume for all orders under liquidity cost for 6
different ranges. However, the value ranges are partitioned slightly
differently from those of Table 9. This is because the liquidity costs of
the simulation data have a wider spread (−11.11%∼9.65% in DFGIS,
−7.51%∼7.01% in DFGIS-II) than those of the TWSE data. Since we are
more interested in positive liquidity costs, which are indicators of
poor market liquidity, we grouped the negative liquidity costs into
one bin and added two bins for liquidity costs beyond 3%. The results
are given in Table 13.
Table 12
Descriptive statistics of the liquidity costs of effective market orders with immediate transa

Ticker Max Min Mean Std. d

DFGIS DFGIS-II DFGIS DFGIS-II DFGIS DFGIS-II DFGIS

0050 2.66% 0.65% −3.05% −0.82% −0.12% −0.06% 0.006
0056 4.48% 1.25% −4.41% −1.72% 0.18% 0.01% 0.008
01007T 9.65% 7.01% −6.42% −7.51% 0.5% 0.51% 0.012
01008T 6.39% 3.74% −1.94% −1.49% 0.74% 0.51% 0.012
2002 1.79% 1.47% −2.22% −1.68% −0.18% −0.16% 0.005
2330 2.03% 1.41% −2.35% −1.84% −0.21% −0.17% 0.006
2454 2.93% 2.39% −3.62% −2.8% −0.28% −0.24% 0.008
2498 3.76% 2.68% −4.65% −3.5% −0.3% −0.27% 0.011
2912 7.32% 5.45% −11.11% −6.28% −0.11% −0.12% 0.015
3474 5.35% 2.58% −6.43% −3.23% −0.28% −0.19% 0.015
As shown, the liquidity cost upper bound of China Steel (2002.TW)
and TSMC (2330.TW) is 2%, which is the same for both DFGIS-II and
TWSE data. Meanwhile, the two securities have higher liquidity cost
transactions ratios (1%–2%) for simulation and TWSE data that
are similar to each other (the difference is ∼1% in DFGIS, ∼0.2% in
DFGIS-II). Similarly, the negative liquidity cost transaction ratio
(−12%−0%) for the simulation and TWSE data of these two securities
are not too far from each other either. However, they havemanymore
transactions with liquidity costs between 0% and 1% for the simula-
tion data than for the TWSE data. For an investor, whosemain concern
is to avert high liquidity costs, the DFGIS-II model produces liquidity
costs that are considered to be similar to those for the TWSE data.
When devising liquidation strategies for these two securities, this
model can be used to simulate liquidity costs under different
strategies to identify the optimal ones.

What then, has distinguished these two securities from others?
We examined the data statistics in Table 8 and found that they have a
high number of transactions. This indicates that these two agent-
based systems simulate liquidity costs more accurately for securities
with a higher trading frequency.

7. Discussions

The simulated liquidity costs have a wider spread and higher values
than those for the TWSE data. This might be due to the following
reasons:

1. The average effective market order size (σ) used to run the
simulation was overestimated. This can be improved by using two
different average effective order size parameters, as shown in
DFGIS-II.

2. During the simulation, the time interval between two order events
is random and independent, which is different from that observed
in the real financial markets. Frequently, orders are clustered
ctions, based on simulation data.

ev. Kurtosis Sum sq. dev No. of transactions

DFGIS-II DFGIS DFGIS-II DFGIS DFGIS-II DFGIS DFGIS-II

948 0.001665 4.43 5.05 0.79 0.05 16,470 16,810
189 0.00226 9.38 14.09 0.16 0.01 2359 2429
79 0.012273 14.84 10.66 0.15 0.14 889 917
946 0.008634 8.15 6.65 0.02 0.01 129 168
62 0.00449 3.42 3.45 2.56 1.63 81,047 80,934
375 0.004541 3.37 3.19 3.31 1.69 81,490 81,785
793 0.007094 3.45 3.53 5.51 3.6 71,213 71,573
251 0.008695 3.78 3.74 4.9 2.94 38,727 38,881
314 0.009857 8.4 9.72 2.42 1.01 10,320 10,395
003 0.007145 4.38 4.82 3.5 0.8 15,556 15,594
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Fig. 2. The transaction volume (share) vs. the number of transactions in the TWSE (left) and simulation (right) data.

Table 13
Ratio of the transaction volume of effective market orders with immediate transactions to the total transaction volume of all orders, based on the simulation and TWSE data.

LC range (−12%, 0%] (0%, 1%] (1%, 2%]

Ticker DFGIS DFGIS-II TWSE DFGIS DFGIS-II TWSE DFGIS DFGIS-II TWSE

0050 26.99% 42.49% 45.52% 21.39% 9.04% 6.15% 2.69% – –

0056 13.53% 30.09% 40.89% 22.7% 12.97% 9.22% 5.09% 0.21% 0.01%
01007T 13.51% 14.78% 44.7% 17.21% 15.87% 4.17% 7.72% 7.82% 0.01%
01008T 9.25% 13.74% 45.44% 13.14% 10.54% 2.59% 4.42% 7.1% 0.02%
2002 44.06% 45.72% 50.68% 20.85% 19.93% 4.45% 1.21% 0.46% 0.21%
2330 44.68% 48.06% 47.84% 19.61% 18.19% 4.07% 1.96% 0.29% 0.43%
2454 45.68% 48.44% 51.43% 20.48% 20.05% 7.75% 4.54% 2.85% 0.14%
2498 40.08% 43.35% 48.64% 19.1% 19.14% 5.59% 4.99% 3.25% 0.05%
2912 29.49% 34.13% 44.41% 18.31% 18.26% 2.7% 4.31% 2.02% 0.18%
3474 31.29% 38.64% 45.84% 17.09% 16.13% 7.03% 5.41% 1.99% 0.51%

LC range (2%, 3%] (3%, 4%] (4%, 10%]

Ticker DFGIS DFGIS-II TWSE DFGIS DFGIS-II TWSE DFGIS DFGIS-II TWSE

0050 0.08% – – – – – – – –

0056 1.11% – 0.05% 0.28% – – 0.06% – –

01007T 3.28% 3.17% 0.04% 1.57% 1.93% – 1.26% 1.33% –

01008T 3.25% 3.73% – 2.09% 2.29% – 2.94% – –

2002 – – – – – – – – –

2330 0.01% – – – – – – – –

2454 0.4% 0.03% – – – – – – –

2498 1.33% 0.44% – 0.21% – – – – –

2912 2.16% 0.98% 0.01% 1.03% 0.53% – 0.74% 0.1% –

3474 2.51% 0.19% 0.35% 0.96% – – 0.28% – –
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together in a certain number of time periods, and not evenly
distributed throughout a day. This might have contributed to the
higher liquidity costs in the simulation data.

3. During simulation, the order events were generated randomly,
based on themodel parameters, without consulting the order book.
This is different from the reality, where an investor normally
checks the order book of the opposite side tomake sure a profitable
matching is possible before submitting an order. In other words,
although the order distribution in the simulation system is the
same as that for the TWSE (we used the TWSE data to estimate the
probability of order submissions), the sequence of the order
submissions in the simulation system is not optimized as is that
devised by human traders. Consequently, the simulated liquidity
costs are likely to be higher than those for the TWSE data.

4. In the simulation system, the price of an effective market order is
set to be the highest possible bid (buy order) or the lowest possible
ask (sell order) allowed by the TWSE to guarantee an immediate
transaction. This hardly happens in reality. Normally, a trader
would seek a price that generates a transaction, without going to
the extreme of the highest possible bid/lowest possible ask. As a
result, the simulated liquidity costs are likely to be higher than
those for the TWSE data.

The second issue has been investigated by Engle and Russell
(1998). In particular, they devised an Autoregressive Conditional
Duration (ACD) model to more realistically simulate the order arrival
time, price and volume in a stock market. Huang (2010)5 showed a
simple example of integrating ACD without diurnal adjustment in the
DFGIS model, but “diurnal adjustment” is actually needed to generate
an inverted “U” shaped daily duration pattern.

The analysis of items 3 and 4 suggests that traders who employ
intelligence (e.g., incorporating order book information) to make
trading decisions in a real stock market produced transactions with
lower amounts of liquidity costs than that produced by the zero-
intelligent agents in our artificial stock market. To simulate the real
market behavior, in terms of the liquidity costs, we need to install
intelligence (e.g., learning ability) in the artificial agents in our
system. We will explore this avenue of research in future work.
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One intelligent behavior demonstrated by the TWSE traders is a
more profitable liquidation strategy.

As shown in DFGIS-II in Table 13, of the daily total trading volume
of the Taiwan Top 50 Tracker Fund (0050.TW), 51.53% consists of
trading volume from the effective market orders with immediate
transactions with 42.49% paying negative liquidity cost, and 9.04%
paying liquidity cost of between 0 and 1%.

By contrast, the TWSE data show that 51.67% of the daily total
trading volume of this security is trading volume from the effective
market orders with immediate transactions with 45.52% paying
negative liquidity cost and 6.15% paying liquidity cost of between
0 and 1%. In other words, given the task of liquidating a large block of
securities (around 50% of the daily trading volume in this case), the
TWSE traders accomplished the task by paying a lower amount of
liquidity cost than the cost paid by the zero-intelligence artificial
traders. What strategy has delivered such saving?

We analyzed the Taiwan Top 50 Tracker Fund (0050.TW) trans-
actions data fromeffectivemarket orders onMarch20, 2008. Fig. 2 (left)
shows that there aremanymore small-volume transactions than larger-
volume ones. In particular, more than 500 transactions arewith 5000 or
10,000 trading shares. This is very different from the simulation data
(see the right of Fig. 2),where the number of small-volume transactions
is not dramatically different from that of the large-volume ones (the
scale is 20 to 1). This suggests that TWSE traders submitted many
smaller-size orders instead of a large-size order to conduct transactions.
This strategy has led to a lower amount of liquidity costs. We plan to
incorporate this intelligent behavior in the artificial agents in our
system.

8. Concluding remarks

The market liquidity of a security plays an important role in
financial investment decisions and in the liquidation strategies of the
security. As an alternative to Algorithmic Trading, this study has
developed an agent-based model to examine the liquidity costs of
stocks and securities traded in the Taiwan Stock Market.

For the 10 TWSE stocks and securities that we studied, the model-
simulated liquidity costs are higher than those for the TWSE data. We
identified four possible factors that contribute to this result:

• The overestimated effective market order size, which can be
improved by using two average order size parameters.

• The randommarket order arrival time designed in the DFGIS model,
which might be improved by incorporating the ACD model in our
system.
• The zero-intelligence of the artificial agents in our model.
• The price of the effective market order.

We can continue improving the model by addressing the above-
mentioned issues. A model that behaves in a similar way to the TWSE
in terms of the liquidity costs can be used to study liquidity costs and
to devise liquidation strategies for stocks and securities traded on the
TWSE.
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