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Abstract Rett Syndrome (RTT) is a neurodevelopmental

disorder caused by mutations in the methyl-CpG-binding

protein 2 (MECP2) gene. Affected individuals develop

motor deficits including stereotypic hand movements,

impaired motor learning and difficulties with movement.

To understand the neural mechanisms of motor deficits in

RTT, we characterized the molecular and cellular pheno-

types in the striatum, the major input nucleus of the basal

ganglia that controls psychomotor function, in mice car-

rying a null allele of Mecp2. These mice showed significant

hypoactivity associated with impaired motor coordination

and motor skill learning. We found that dopamine content

was significantly reduced in the striatum of Mecp2 null

mice. Reduced dopamine was accompanied by down-reg-

ulation of tyrosine hydroxylase and up-regulation of

dopamine D2 receptors, particularly in the rostral striatum.

We also observed that loss of MeCP2 induced compart-

ment-specific alterations in the striatum, including reduced

expression of l-opioid receptors in the striosomes and

increased number of calbindin-positive neurons in the

striatal matrix. The total number of parvalbumin-positive

interneurons and their dendritic arborization were also

significantly increased in the striatum of Mecp2 null mice.

Together, our findings support that MeCP2 regulates a

unique set of genes critical for modulating motor output of

the striatum, and that aberrant structure and function of the

striatum due to MeCP2 deficiency may underlie the motor

deficits in RTT.

Keywords Autism spectrum disorders � Striatum �
Dopamine � l-Opioid receptor � Calbindin �
Parvalbumin

Introduction

Movement control is the basis of behaviors. Studies on the

pathogenesis of movement disorders provide insights into

neural control of behaviors and aid in the development of

therapeutic interventions. In children with autism spectrum

disorders (ASDs), enhanced stereotypy and dyspraxia are

closely associated with inappropriate control of voluntary

movement (Sterling et al. 2011; Mosconi et al. 2011). Rett

Syndrome (RTT, OMIM #312750) is an ASD that primarily

affects females with an estimated prevalence of one in

*10,000 births. Girls with RTT develop normally for the first

6–18 months after birth, followed by behavioral regression

such as loss of learned motor and language skills, onset of

autistic behaviors, breathing abnormalities, and occasional

seizures (Hagberg et al. 1983). Most RTT patients also show

stereotypic hand movements, impaired motor learning and

difficulties with movement. These motor symptoms usually

exacerbate with age and resemble Parkinson’s disease later in

life (Chahrour and Zoghbi 2007; Temudo et al. 2008).

Mutations of the X-linked gene encoding methyl-CpG-

binding protein 2 (MeCP2), which is a transcriptional
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regulator (Nan et al. 1998; Chahrour et al. 2008), have been

identified as the major cause of RTT (Amir et al. 1999).

The MeCP2 protein is ubiquitously expressed throughout

the body, but is highly enriched in mature neurons (Shah-

bazian et al. 2002a). Mecp2 null mice and mice carrying

truncated or deficient MeCP2 protein recapitulate many

RTT-like symptoms including late onset of hypoactivity,

irregular breathing, and deficits in motor coordination (Guy

et al. 2001; Chen et al. 2001; Shahbazian et al. 2002b;

Goffin et al. 2012). Notably, forebrain-specific deletion of

Mecp2 leads to similar deficits in motor coordination as

those observed in Mecp2 null mice (Gemelli et al. 2006),

suggesting that the pathological origin for motor symptoms

of RTT may be located in the forebrain. In the frontal

motor cortex, loss of MeCP2 has been shown to reduce

synaptic strength of excitatory intracortical connections in

both Mecp2 knockdown model and Mecp2 null mice

(Wood et al. 2009; Wood and Shepherd 2010), however,

the subcortical areas in the forebrain controlling voluntary

movement have yet been characterized in Mecp2 null mice.

The striatum is the major input nucleus of the basal

ganglia and the most prominent subcortical area known to

control voluntary movement in the forebrain. Medium

spiny neurons (MSNs) are the projection neurons that

constitute about 98 % of neurons in the striatum. They

integrate glutamatergic excitatory inputs from the frontal

motor cortex and dopaminergic afferents from the sub-

stantia nigra pars compacta (SNpc). MSNs also project

inhibitory GABAergic efferents back to the substantia

nigra pars reticularta (SNpr) and motor thalamic areas

through the ‘‘direct’’ or ‘‘indirect’’ pathway to modulate

execution of cortical motor command (Kreitzer and Ma-

lenka 2008). Anatomically, the striatal MSNs are organized

by two distinct compartments, the striosomes (also called

patches) and the surrounding matrix, where neurons are

born at different embryonic stages, express alternative

marker genes, and connect to different cortical and mid-

brain areas (Fujiyama et al. 2006; Watabe-Uchida et al.

2012). In comparison to the matrix neurons, the striosomal

neurons are highly enriched within the rostral striatum and

receive compartment-specific innervations from the dopa-

minergic midbrain area during development, suggesting

that structural and functional differences exist along the

rostral–caudal axis of the striatum (Graybiel 1984; Liao

et al. 2008). Physiologically, MSN activity is modulated by

numerous classes of striatal interneurons. The fast-spiking

parvalbumin (PV)-expressing interneurons make inhibitory

synapses onto the MSNs and evoke large inhibitory post-

synaptic potentials, and hence effectively delay or suppress

the firing of MSNs and lead to feed-forward modulation of

striatal output (Koos and Tepper 1999). Notably, a number

of neurodevelopmental and psychiatric disorders with

psychomotor deficits, such as autism, schizophrenia,

attention deficits hyperactivity disorders, obsessive com-

pulsive disorders, and drug addiction, have all been linked

to malfunction of the striatum (Kreitzer and Malenka 2008;

Crittenden and Graybiel 2011). However, the roles of the

striatum in the etiology of motor deficits in RTT remain to

be determined.

Given the functional relevance of the striatum to motor

control, we hypothesized that the motor dysfunction caused

by MeCP2 deficiency is associated with aberrant striatal

features. In the present study, we thus characterized the

molecular and cellular phenotypes of the striatum in Mecp2

null mice. We found that motor deficits in Mecp2 null mice

are accompanied by decreased dopamine levels, increased

number of PV-positive interneurons, and altered expression

of multiple genes involved in dopamine signaling and

compartmentalization of the striatum. Importantly, we

observed that the effects of Mecp2 deletion differ along the

rostral–caudal axis of the striatum with multiple molecular

markers more strikingly affected in the rostral striatum

compared with the caudal striatum. Our data suggest that

alterations in the structure and function of the striatum

caused by loss of MeCP2 may underlie the psychomotor

deficits in RTT.

Methods

Animals

Male hemizygous Mecp2 null mice (Mecp2-/y, KO), female

heterozygotes (Mecp2?/-), and their wild-type (WT) lit-

termate controls (Mecp2?/y, Mecp2?/?) were generated by

crossing heterozygous Mecp2?/- females (Mecp2tm1.1 Bird,

the Jackson Laboratory, USA) (Guy et al. 2001) with WT

male mice (C57BL/6J, National Laboratory Animal Center,

Taiwan). For behavioral testing, 4- to 5-week-old male and

female mice and 10- to 12-week-old female mice were used.

For neurochemical examination, only 4- to 5-week-old male

mice were analyzed. All mice used in this study were

maintained in a C57BL/6J background and housed in indi-

vidual ventilation cages (Alternative Design, USA) at

22 ± 2 �C and 60 ± 10 % humidity under a 12-h light/

dark cycle (light on 08:00–20:00). Food and water were

available ad libitum. All experiments were approved by the

Institutional Animal Care and Use Committee at National

Cheng-Chi University.

Genotyping

Mice were weaned and ear-tagged at postnatal days 21–23,

and genotyped by polymerase chain reaction (PCR) with

the REDExtract-N-AmpTM Tissue PCR Kit (Sigma) as

described (Miralves et al. 2007). Briefly, mouse tail tissues
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were incubated in 100 ll mixtures of extraction solution

and tissue preparation solution (4:1) at 55 �C for 20 min.

Lysates were denatured at 95 �C for 3 min, followed by

4 �C for 5 min. Neutralization solution (80 ll) was added

and mixed well. One microliter of lysate was used for PCR

reaction. The primers for genotyping of Mecp2-null mice

were WT-FW, KO-FW, and RV (Table 1). PCR amplifi-

cation was performed at 94 �C for 5 min, followed by 35

cycles at 94 �C for 30 s, 64 �C for 40 s, and 72 �C for 40 s.

PCR products of 411 and 458 bp were corresponded to WT

and mutant alleles, respectively.

Behavioral assays

All the behavioral assays were performed in a sound-

reduced room at the same time of a day (1:00–6:00 pm) by

unbiased operators who were blinded to mouse genotypes.

Open-field activity

Mecp2 null mice and their WT littermate controls at

4–5 weeks of age were tested and videotaped within a clear

Plexiglas open-field arena (40 9 40 9 25 cm) for 16 min

under dim light. Parameters of locomotor activity, includ-

ing total distance traveled, percentage of resting time,

average and maximal locomotion velocity, and percentage

of time spent in the center arena were analyzed for the last

12 min (from 3.5 to 15.5 min, excluding the first 3.5 min

of habituation period) with the Smart� tracking system

(Harvard, USA). Body movements at speeds under the

detection threshold for locomotion (2 cm/s) were counted

as resting. The performance of mutant mice was normal-

ized by the average performance of WT mice (shown as %

of WT). Differences between genotypes were analyzed by

Student t test.

Accelerating rotarod task

Male and female mice at 4–5 weeks and females at

10–12 weeks of age were briefly trained at a constant speed

of 4 rpm on the rotarod apparatus (LE8200, PanLab, Spain)

for 30 s before the first test. Thirty minutes later, testing

was performed at an accelerating speed (4–40 rpm within

5 min). Three testing trials were performed on each day for

five consecutive days, with an intertrial interval of 30 min.

The latency of a mouse falling off the rotating rod was

recorded automatically by the stop-plate. The median of

three trials on each test day was adopted for statistical

analysis by two-way analysis of variance (ANOVA) fol-

lowed by Bonferroni’s test. To quantify the daily progress

of motor learning performance, the motor learning index

(MLI) was defined as the percentage of normalized pro-

gress (learned skills) in two consecutive days: MLIn

(%) = (Tn - Tn - 1)/Tn - 1 9 100 %, where Tn is the

falling latency on the nth testing day.

Preparation of the brain tissue

After behavioral testing, a group of the mice (n = 4–8 for

each genotype) were sacrificed by cervical dislocation.

Tissues from the rostral, middle, and caudal levels of the

striatum (ST-r, ST-m, ST-c) and the cerebral cortex at the

corresponding positions (CTX-r, CTX-m, CTX-c) were

microdissected on ice upon the aid of stainless steel brain

matrix (Ted Pella, USA) and punches (diameter: 1.5 mm

for ST-r, CTX-r, CTX-m, and CTX-c; 1.75 mm for ST-m;

2.0 mm for ST-c; Ted Pella, USA) at Bregma coordinates

?1.54, ?0.86, and ?0.14 mm, respectively. The nucleus

accumbens (NAc, Bregma ?1.54 mm) and ventral mid-

brain (VMB, Bregma -3.28 mm) were collected manually

from the same animals according to the atlas (Paxinos and

Franklin 2004; Fig. 2a). Tissues were quickly frozen in

liquid nitrogen and then kept at -80 �C until further ana-

lysis by high-performance liquid chromatography (HPLC),

quantitative reverse transcription polymerase chain reac-

tion (qRT-PCR) or western blotting. The remaining four to

six animals per group were perfused with the fixatives of

4 % paraformaldehyde (Sigma) in phosphate-buffered

saline (PBS). The brains were postfixed for more than 16 h

in the same fixatives, cryoprotected in 30 % sucrose solu-

tion for 36–48 h and then stored at -80 �C. Frozen brains

were sectioned into 20 lm by cryostat (3050S, Leica,

Table 1 Primer sequences used in this study

Gene Primer Sequence

Mecp2 WT-FW 50-GACCCCTTGGGACTGAAGTT-30

KO-FW 50-CCATGCGATAAGCTTGATGA-30

RV 50-CCACCCTCCAGTTTGGTTTA-30

Th Forward 50-CCGGTGTACTTCGTGTCAGAG-30

Reverse 50-AGGGTGTACGGGTCAAACTTC-30

Drd1 Forward 50-CTAATGAGCTGTGCCTCATCG-30

Reverse 50-AGTGATGCTGATGGCTTTGTG-30

Drd2 Forward 50-AGATGCTTGCCATTGTTCTTG-30

Reverse 50-TAGAGGACTGGTGGGATGTTG-30

Mor1 Forward 50-ATCCTTCTCCGACTCATGTTG-30

Reverse 50-ACCAGCTCATCCCTGTGTTC-30

CB Forward 50-GCCAGGTTACTACCAGTGCAG-30

Reverse 50-TCTATGTATCCGTTGCCATCC-30

Hprt Forward 50-CAAACTTTGCTTTC CCTGGTT-30

Reverse 50-CAAAGTCTGGCCTGTATCCAA-30

Irak1 Forward 50-GTCTTGGATAGCCTGCAACTG-30

Reverse 50-TGAGGGATTTGTCAGAGTGAA-30
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Germany) for immunohistochemical analysis with the

indicated antibodies.

Dopamine measurement by HPLC

The dopamine content of various brain regions of mice was

measured by HPLC with an electrochemical detection

system. Briefly, the HPLC system consists of a solvent

delivery system with an auto-sampler and electrochemical

flow cell (VT-03, Antec, Leyden, The Netherlands). The

mobile phase (100 mM NaH2PO4�H2O, 0.74 mM heptane-

1-sulfonic acid sodium salt, 0.027 mM EDTA, 2 mM KCl,

and 10 % methanol; adjusted pH to 3 with phosphoric acid)

was filtered through a 0.22 lm membranes filter (Critical,

Inc.), degased for 30 min, and then pumped into the sep-

aration system of a C18 column (250 9 4.6 mm, Grace

Alltima) at a flow rate of 0.8 ml/min. Brain tissues were

extracted on ice with perchloric acid containing 0.45 mM

sodium hydrosulfite. After sonication, lysates were centri-

fuged at 15,0009g for 10 min at 4 �C, and filtered through

syringe with 0.22 lm nylon filters (Millipore). For ST-r,

ST-m, ST-c, and NAc, 20 ll of lysate was injected for

twice by auto-sampler. For CTX-m and VMB, single

injection of 40 ll lysates was measured. Tissues were

homogenized and lysates were collected immediately

before measurement. To create the standard curve, the pure

compounds of dopamine, 3,4-dihydroxyphenylacetic acid

(DOPAC) and homovanillic acid (HVA) (Sigma, USA)

were dissolved in lysis buffer at 20, 100, and 500 ng/ml

(Fig. 2b). Integrated areas of the peaks were analyzed by

software-based calculation (Clarity, DataApex) and nor-

malized with the results of WT control mice.

Real-time qRT-PCR

Tissues were lysed in Trizol� (Invitrogen) followed by

RNA extraction with the RNA-eazy purification kit (Qia-

gen). One microgram RNA was used for cDNA synthesis

with SuperScript II reverse transcriptase (Invitrogen).

Primers for tyrosine hydroxylase (Th), dopamine D1

receptor (Drd1), dopamine D2 receptor (Drd2), l-opioid

receptor (Mor1), calbindin-D28K (CB), hypoxanthine-

guanine phosphoribosyl-transferase (Hprt), and interleu-

kin-1 receptor-associated kinase 1 (Irak1) were designed

by Primer 3 software (Table 1) and their specificity was

confirmed by Primer-BLAST alignment. Real-time qPCR

was performed in triplicate with the SYBR� Green PCR

master mix (Applied Biosystems) in the Mx3000P real-

time PCR system (Strategene). The mRNA levels of Hprt

and Irak1 gene were measured as the internal control and

positive control, respectively. The expression levels of Th,

Drd1, Drd2, Mor1, and CB were normalized with Hprt

expression, and the normalized mRNA levels in Mecp2

null mice were presented as the percentage of WT controls

(% of WT).

Western blotting

Brain tissues were homogenized by sonication in lysis

buffer containing protease inhibitors (Amresco). Twenty

micrograms of protein lysate was separated by polyacryl-

amide gel electrophoresis (10 %, Bio-Rad) with 150 V for

1.5 h and transferred to a PVDF membrane (Millipore) by

liquid electroblotting (Mini Trans-Blot Cell, Bio-Rad) with

350 mA for 1 h. The membrane was blocked by skim milk

and incubated with primary (1:1,000, Millipore) or mouse

anti-ß actin (1:100,000, Novus) at 4 �C for 16 h. Following

incubation with peroxidase-conjugated goat-anti-rabbit or

goat-anti-mouse secondary antibodies at room temperature

for 2 h, the expression of DRD2 or ß-actin was detected by

an enhanced chemoluminescence reagent kit (ECL, Milli-

pore) under a bioimage acquisition system (Xlite 200R,

Avegene Life Science). After densitometry-based quanti-

fication by Image J (NIH software), the intensity of DRD2

expression was normalized with that of ß-actin and then

was presented as ‘‘% of WT’’.

Immunohistochemistry

Immunohistochemistry was performed as previously descri-

bed (Liao et al. 2008). Briefly, brain sections were pretreated

with 0.1 M PBS containing 0.2 % Triton X-100, 3 % H2O2,

and 10 % methanol for 10 min, and then blocked with 3 %

normal goat serum in 0.1 M PBS. Sections were incubated

with the primary antibodies against MOR1 (1:10,000, Mil-

lipore, AB5511), CB (1:500, Cell Signaling, Cat. #2173), TH

(1:2,000, Millipore, AB152), and PV (1:2,000; Sigma,

P3088). All the antibodies are rabbit polyclonal except PV,

which is a mouse monoclonal antibody. After incubation

with primary antibody at room temperature for 16 h, sections

were washed and then incubated with secondary antibody of

biotinylated goat-anti-rabbit or horse-anti-mouse IgG (1:500)

in 0.1 M PBS containing 1 % normal goat serum or normal

horse serum for 2 h at room temperature. Sections were

incubated for 1.5 h with avidin–biotin-complex (Elite ABC

kit, Vector) and immunoreactivities were detected with

0.02 % diaminobenzidine (DAB, Sigma) in the presence of

0.0002 % H2O2 and 0.08 % nickel ammoniosulfate. Brain

sections from Mecp2-/y mice and their WT littermate mice

were processed in parallel and color developed in DAB

solution for exactly the same duration to compare their

immunoreactivity. Photomicrographs were taken by an

upright microscopic system (Imager D2, Zeiss, Germany)

equipped with a CCD camera (ORCA-R2 C10600-10B,

Hamamatsu, Japan).
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Results

Impaired locomotion, motor coordination, and motor

learning in Mecp2 null mice

Motor dysfunction is a hallmark feature of RTT. A previous

report described motor deficits in Mecp2 null (Mecp2-/y)

mice through manual analysis of grip strength, wire

hanging, and open field activity (Guy et al. 2001). To

evaluate the motor function in a quantitative manner, we

subjected Mecp2 null mice to a software-based open field

test and a modified accelerating rotarod task. We first

measured Mecp2-/y male mice and their WT littermates

with an open field test, at 4–5 weeks of age, which is prior

to the onset of severe RTT-like symptoms. We found that

Mecp2-/y mice traveled significantly shorter distances

(83.9 ± 2.2 % of WT, p \ 0.001) with longer immobility

time (112.6 ± 3.3 % of WT, p \ 0.01), lower average

velocity (89.2 ± 1.7 % of WT, p \ 0.001) and maximal

velocity (69.7 ± 3.7 % of WT, p \ 0.001) compared with

their WT controls (Fig. 1a, b). These results indicate that

lack of MeCP2 significantly impairs ambulatory ability in

mice. Mecp2-/y mice also showed a significant thigmo-

taxis, a tendency to avoid the center arena (71.1 ± 12.3 %

of WT, p \ 0.05), indicating an elevated state of anxiety in

Mecp2 null mice (Fig. 1a, b) that is consistent with pre-

vious study in mice with forebrain-specific deletion of

Mecp2 (Gemelli et al. 2006).

To measure motor coordination and motor learning, we

assessed the aforementioned cohorts of mice using an

accelerated rotarod test over five consecutive days. Male

Mecp2-/y mice showed significantly reduced latency to fall

on the first day of testing compared with the WT mice

[Falling latency (s): 17.9 ± 4.1 in KO vs. 69.0 ± 9.6 in

WT, p \ 0.001; Fig. 1c], indicating that motor coordina-

tion was impaired in the null mice. From testing day 2 to

day 5, the Mecp2-/y mice demonstrated a flat learning

curve compared with WT mice for acquisition of the motor

skills: From day 1–3, the MLI [MLIn = (Tn - Tn - 1)/

Tn - 1 9 100 %] was higher in Mecp2-/y mice than that of

WT mice (p \ 0.05; Fig. 1d). From day 3 to day 4, how-

ever, the MLI of Mecp2-/y mice was significantly lower

compared with WT mice (MLI4 = 3.3 ± 10.4 % in KO vs.

44.9 ± 11.5 % in WT, p \ 0.05; Fig. 1d), suggesting that

motor skill learning is impaired following loss of MeCP2.

Given that RTT primarily affects females, the female

heterozygous (Mecp2?/-) littermates of male Mecp2 null

mice were tested in parallel. We did not find any significant

locomotion deficits in females until 10–12 weeks of age

(data not shown), indicating the delayed onset of motor

symptoms in female Mecp2 mutants. Moreover, the deficit

in motor skill learning was also not found in female

Mecp2?/- mice up until 10–12 weeks of age (Fig. 1e, f).

The female Mecp2?/- mice showed a comparable falling

latency to the WT control on the first testing day

(20.4 ± 3.9 in Mecp2?/- vs. 32.5 ± 9.7 in WT, p [ 0.05;

Fig. 1e), but failed to learn the motor skills from day 3 to 4

(MLI4 = -15.3 ± 7.7 % in Mecp2?/- vs. 25.6 ± 13.1 %

in WT, p \ 0.05; Fig. 1f). These results were consistent

with previous findings suggesting that female heterozygous

mutants also develop RTT-like phenotypes but at a later

developmental age compared with male Mecp2 null mice.

Given that Mecp2 is an X-linked gene, which can be ran-

domly inactivated in female individuals (Amir et al. 2000),

we thus analyzed the striatal phenotypes in male Mecp2 null

mice in the rest of this study to avoid the mosaic expression

of MeCP2 that may complicate the data interpretation.

Reduced dopamine content in the striatum

of Mecp2-/y mice

Previous studies reported that the brains of both RTT

patients and Mecp2 mutant mice contain reduced level of

dopamine (Dunn et al. 2002; Samaco et al. 2009; Panayotis

et al. 2011; Gantz et al. 2011). Given that the dopaminergic

projections from the substantia nigra (SN) topographically

innervate the striatum along the rostral–caudal axis (Hon-

tanilla et al. 1996), we systemically analyzed the dopamine

content in the rostral, middle and caudal striatum as well as

other related brain areas from Mecp2-/y or WT control

mice (Fig. 2a). We found that the dopamine levels in

Mecp2-/y mice was significantly reduced in the dorsal

striatum (caudate putamen) across the rostral–caudal axis,

with a 62 % reduction in the rostral striatum (ST-r,

38.0 ± 11.2 % of WT, p \ 0.001, n = 6) and a modest

reduction (*20 %) in the middle and caudal striatum (ST-

m and ST-c, n = 6) (Fig. 2c, d). The dopamine content

was also significantly reduced in the NAc (34.2 ± 2.3 % of

WT, p \ 0.001, n = 5; Fig. 2d), which is the ventral stri-

atum at the rostral forebrain receiving dopaminergic inputs

from the mesolimbic pathway. The VMB, where the

majority of dopaminergic neurons are located, also con-

tained lower dopamine levels in Mecp2-/y mice

(42.9 ± 8.1 % of WT, p \ 0.001, n = 4) (Fig. 2d). In

contrast, the dopamine level was not affected in the cere-

bral cortex at middle level (CTX-m, which is a non-

dopaminergic projection area) in Mecp2-/y mice

(92.2 ± 16.1 % of WT, p [ 0.05, n = 4; Fig. 2d). These

results demonstrate that loss of MeCP2 significantly altered

the dopamine content in the striatum, particularly in the

rostral striatum.

Given that dopamine levels were measured from tissue

homogenates containing both presynaptic and postsynaptic

compartments, the reduction of dopamine in the striatum

could be due to a reduction in dopaminergic innervations,

reduced biosynthesis of dopamine or reduced release at the
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dopaminergic terminals. Panayotis et al. (2011) demon-

strated that the number of neurons expressing TH (the rate-

limiting enzyme responsible for the biosynthesis of

dopamine) is decreased in the SN. To examine whether loss

of MeCP2 affects expression of TH and dopamine signal-

ing molecules, we examined the mRNA levels of Th and

Fig. 1 Locomotor activity and motor skill learning in Mecp2-/y and

wild-type mice. Mecp2-/y mice show hypoactivity in an open-field

test. The male mice at 4–5 weeks of age were tested for 16 min and

the video footage of the last 12 min was analyzed. The exploration

trajectories (a) and software-based locomotion analysis (b) show that

Mecp2-/y mice travel shorter distance with lower velocity and take

more rest compared with wild-type (WT) mice. These Mecp2-/y mice

also spend less time crossing the center arena [the area inside the

yellow square (a)]. The mutant mice and their WT controls were then

tested on an accelerating rotarod for three trials a day over five

consecutive days. The median scores of daily trials were used for

statistical analysis. The male mutants showed a significant

impairment of motor coordination in the first test day (c). Both male

(c, d) and older female mutants (e, f) showed deficits in the late phase

(day 3–4) of motor skill learning. d, f The ‘‘motor learning index’’

represents the percentage of learned skills between 2 days. Data are

expressed as mean ± SEM. *p \ 0.05, **p \ 0.01, ***p \ 0.001,

compared with WT littermate controls; paired Student t test for a, b,

d, f and two-way ANOVA followed by post hoc Bonferroni test for

c and e. Total Dist, total traveled distance; Resting T %, percent of

time at resting; V-avg, average velocity of locomotion (excluding the

resting time); V-max, maximal velocity of locomotion; Center T %,

percent of time crossing the center arena
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Fig. 2 Dopaminergic transmission in selective brain regions of

Mecp2-/y and WT mice. a Maps of mouse brain show that tissues

from different brain regions were harvested manually (blue shadows)

or by tissue punch (pink circles) from male mice at 4–5 weeks of age.

b Dopamine and its metabolites were measured by HPLC. The

superimposed measurements of standards (DOPAC, dopamine and

HVA) and tissue homogenates from the middle striatum (ST-m)

indicate the absence of dopamine metabolites in our tissues.

c Representative traces of dopamine measurements in different sub-

regions of the striatum in Mecp2-/y and WT mice. d An approxi-

mately 60 % reduction of dopamine in the rostral striatum (ST-r),

nucleus accumbens (NAc) and ventral midbrain (VMB) is shown in

Mecp2-/y mice compared with WT mice (n = 6). There was no

significant change found in the middle level of cerebral cortex (CTX-

m). Mecp2-/y mice exhibit reduced expression of tyrosine hydrox-

ylase (Th, in e) and increased dopamine D2 receptor (Drd2, in f) in

the ST-r as examined by qRT-PCR (n = 4). g Immunoblotting shows

increased DRD2 protein in the ST-r but not in the CTX-m of Mecp2-/y

mice (n = 6). Data are expressed as mean ± SEM. *p \ 0.05,

**p \ 0.01, ***p \ 0.001, compared with WT by Student t test. DA,

dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; Drd1, dopamine

D1 receptors; HVA, homovanillic acid; ST-c, caudal striatum
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dopamine receptors including dopamine D1 receptor

(Drd1) and dopamine D2 receptor (Drd2) in the striatum of

Mecp2-/y mice and their WT controls. We found that

Mecp2-/y mice showed a reduction in Th (61.7 ± 5.8 % of

WT, p \ 0.01, n = 4; Fig. 2e) and an increase in Drd2

(119.9 ± 8.7 % of WT, p \ 0.05, n = 4; Fig. 2f) expres-

sion in the rostral striatum, without significant alteration in

Drd1 expression compared with the WT controls

(106.4 ± 16.2 % of WT, p [ 0.05, n = 4; Fig. 2f). The

protein expression of DRD2 was significantly increased in

the rostral striatum (129.6 ± 2.0 % of WT, p \ 0.001,

n = 6; Fig. 2g), but not in the cortex of Mecp2-/y mice

compared with the WT controls (90.1 ± 9.9 % of WT,

p [ 0.05, n = 6; Fig. 2g). The protein level of TH was also

not altered in cortical tissues of Mecp2-/y mice compared

to WT controls (96.5 ± 36.1 % of WT, p [ 0.05, n = 6),

suggesting that the down-regulation of Th gene expression

is specific to the striatum. Notably, a comparable reduction

of Th mRNA was observed in the striatum of female

Mecp2?/- mice at 10–15 weeks of age (73.0 ± 2.4 % of

WT, p \ 0.05, n = 4) and we also found a significant

decrease of dopamine content in the striatum of Mecp2?/-

females (ST-r: 80.3 ± 4.0 % of WT, p \ 0.01; n = 5).

These results suggest that the striatal MeCP2 is required to

maintain appropriate striatal levels of dopamine and serve

as a critical regulator of the striatal genes involved in

dopamine signaling.

Location-dependent reduction of MOR1 expression

in the striatum of Mecp2-/y mice

The differential reduction of dopamine in the rostral–caudal

striatum in Mecp2-/y mice indicates that MeCP2 modulates

striatal dopamine content in a subregion-specific manner.

However, there is not a corresponding rostral–caudal gra-

dient in TH protein expression (unpublished observation),

suggesting other region-specific molecules in the striatum

may render this rostral–caudal modulation of dopamine.

Previous studies have demonstrated that the striatum is

anatomically different along the rostral–caudal axis with the

‘‘striosomes’’ being enriched within the rostral striatum.

The striosomes are also named ‘‘patches’’ or ‘‘dopamine

islands’’ (Graybiel 1984) containing abundant nerve ter-

minals expressing the l-opioid receptor 1 (MOR1) (Her-

kenham and Pert 1981). Given that activation of MOR1 is

known to regulate dopamine release (Di and Imperato 1988;

Piepponen et al. 1999) and MOR1 is one of the target genes

for MeCP2-mediated transcriptional regulation (Hwang

et al. 2009), we tested whether loss of MeCP2 could alter

MOR1 expression in striosomes in a differential pattern

along the rostral–caudal axis of the striatum.

We found that Mor1 mRNA expression was signifi-

cantly down-regulated in the rostral striatum of Mecp2-/y

mice compared with WT controls (55.3 ± 6.6 % of WT,

p \ 0.05, n = 4), while the expression of matrix-associ-

ated CB mRNA was not significantly affected

(93.5 ± 8.1 % of WT, p [ 0.05, n = 4; Fig. 3a). The

down-regulation of Mor1 in the rostral striatum of

Mecp2-/y mice was also observed at the protein level as

the area of MOR1-immunoreactive (MOR1?) patches was

significantly reduced in the mutants compared with WT

mice (Fig. 3b, b’, d, d’). Quantification of MOR1? areas

with a constant threshold of mean density showed that the

reduction of MOR1? area was primarily located within the

rostral striatum (59.2 ± 7.4 % of WT, p \ 0.05, n = 3),

but there was no difference in the middle and caudal

striatum (p [ 0.05; Fig. 3c). Notably, the reduction of

MOR1? areas was not caused by loss of striosomal neu-

rons since the zones lacking CB expression (arrowheads in

Fig. 4a–b’) were preserved in the rostral striatum of

Mecp2-/y mice. MOR1 protein expression also remained

unchanged in other brain areas such as the thalamus and

hypothalamus in Mecp2-/y mice (Fig. 3e, e’; unpublished

observations). These results demonstrated that MeCP2

could positively regulate MOR1 expression in a striosome-

specific manner.

Increased number of calbindin-positive neurons

in the striatum of Mecp2-/y mice

To further examine whether loss of MeCP2 affects the

striatal matrix compartment that is enriched with projection

neurons expressing CB (Liu and Graybiel 1992), we

examined the expression of CB in the striatum along the

rostral–caudal axis. In WT mice, we found that the CB?

neurons were heterogeneously distributed in the matrix

compartment with a decreasing gradient from ventromedial

to dorsolateral striatum (dlST) (Fig. 4a, b). By counting the

number of CB? neurons in a square of 250 lm2 throughout

different locations of the striatum (inset in Fig. 4e) from

rostral to caudal levels, we found that only a limited

number of CB? neurons were located in the dorsomedial

striatum (dmST) and dlST of WT mice (Fig. 4a, c, e, f). A

significant increase in the number of CB? neurons was

observed in the dlST from rostral to caudal levels of

Mecp2-/y mice (p \ 0.05; Fig. 4a’, c’, f); however, there

was no difference in the dmST (p [ 0.05; Fig. 4e). We also

observed a significant increase in the number of CB?

neurons in the ventromedial striatum (vmST) (p \ 0.05;

Fig. 4b’, d’ compared with b, d; Fig. 4g, i) and in the

ventrolateral striatum (vlST) throughout the rostral–caudal

axis in Mecp2-/y mice (p \ 0.05; Fig. 4h, i). These data

indicate that the number of CB? matrix neurons is

increased in the absence of MeCP2, which is opposite to

the reduction of MOR1 expression observed in the strios-

omal compartment.

Brain Struct Funct

123



Increased number of parvalbumin-positive interneurons

in the striatum of Mecp2-/y mice

Given that striatal motor output is modulated by the activity

of GABAergic interneurons such as the fast-spiking PV?

interneurons (Kreitzer and Malenka 2008), and depletion of

dopamine alters PV? inhibitory microcircuits in the stria-

tum (Gittis et al. 2011), it is possible that loss of MeCP2

reduces dopamine content leading to alterations of PV?

interneurons in the striatum. To test this possibility, we

examined the expression of PV in the striatum of Mecp2-/y

mice using immunostaining.

We found that PV? interneurons are distributed in a

decreasing gradient of dorsal-to-ventral and lateral-to-

medial part in the striatum of WT mice (Fig. 5a, b), con-

sistent with previous findings (Wu and Parent 2000). Upon

quantification of the number of PV? interneurons, we

found that the total number of PV? cells was significantly

increased throughout the striatum of Mecp2-/y mice with

the strongest augmentation in the rostral striatum

(186.9 ± 18.7 % of WT, p \ 0.01, n = 5; Fig. 5a, a’, e).

Notably, the number of PV? interneurons was increased

more than twofold in the dmST throughout the rostral–

caudal axis (dmST-r: 262.3 ± 35.1 % of WT, p \ 0.01;

dmST-m: 207.7 ± 26.2 % of WT, p \ 0.01; dmST-c:

251.8 ± 23.0 % of WT, p \ 0.001; n = 5; Fig. 5f) and

over threefold in the NAc (342.9 ± 5.5 % of WT,

p \ 0.001; n = 3; Fig. 5h) in Mecp2-/y mice. A mild but

significant increase of PV? neurons was also found in the

dlST only at the rostral level (dlST-r: 139.1 ± 15.0 % of

WT, p \ 0.05; dlST-m: 127.8 ± 10.4 % of WT, p [ 0.05;

dlST-c: 144.7 ± 20.5 % of WT, p [ 0.05; n = 5; Fig. 5g)

and in the cerebral cortex (CTX, specifically in the area of

cingulate cortex) at the rostral and middle level (CTX-r:

116.9 ± 2.6 % of WT, p \ 0.05; CTX-m: 120.2 ± 6.3 %

of WT, p \ 0.05; CTX-c: 131.3 ± 20.9 % of WT,

Fig. 3 MOR1 expression in the striosomes of the striatum. a Tran-

scripts of l-opioid receptors (Mor1) and calbindin (CB) were

measured in the rostral striatum (ST-r) from Mecp2-/y mice or WT

littermate controls by qRT-PCR (n = 4 pairs). Mecp2-/y mice show a

significant reduction in Mor1 expression. b–d’ Protein expression of

MOR1 in striosomes (arrowheads) is reduced by 40 % in the ST-r of

Mecp2-/y mice (n = 4 pairs). High power images of the striosomes in

b and b’ (arrowheads) are shown in d and d’, respectively. e, e’

MOR1 protein expression is unaltered in the thalamic area of

Mecp2-/y mice. Scale bar in b’ (for b, b’), 500 lm; in d’ (for d, d’),
50 lm; in e’ (for e, e’), 200 lm. Data are expressed as mean ± SEM.

*p \ 0.05, compared with WT by student t test. cmTh, centromedial

thalamic nucleus; dmTh, dorsomedial thalamic nucleus; mHb, medial

habenular nucleus; pvTh, paraventricular thalamic nucleus; ST-m,

middle striatum; ST-c, caudal striatum; 3V, third ventricle
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p [ 0.05; n = 5; Fig. 5i) in Mecp2-/y mice. We also

observed that the dendritic arborization of the PV? inter-

neurons was significantly extended in the dmST and dlST

of Mecp2-/y mice compared with WT controls (Fig. 5d,

d’). These findings suggest that MeCP2 may control the

number of PV? interneurons and their dendritic arboriza-

tion within the striatum in vivo.

Discussion

In the present study, we characterized the molecular and

cellular phenotypes in the striatum of Mecp2 null mice.

We found that Mecp2 null mice showed impaired loco-

motion and motor skill learning, which was accompanied

by a dramatic reduction of dopamine content in the

Fig. 4 Calbindin-expressing

neurons in the matrix

compartment of the striatum.

Increased calbindin-positive

(CB?) neurons are shown in the

dorsolateral striatum (dlST;

a, a’) and ventromedial striatum

(vmST; b, b’) at the rostral (a,

a’) and caudal (b, b’) levels of

the striatum in male mice at 4-

to 5-week of age. Arrowheads in

a–b’ indicate the CB-poor zones

(the striosomes). High-power

images of the boxed areas in

a–b’ are shown in c–d’,
respectively. Quantification of

CB? neurons in different

subregions of the striatum (inset

in e). Mecp2-/y mice exhibit an

increase in the number of CB?

neurons in the dlST (f), vmST

(g) and ventrolateral striatum

(vlST, h), but not in the

dorsomedial striatum (dmST, e)

(n = 5 pairs). i Summary of

increased CB? neurons in the

striatum of Mecp2-/y mice. Blue

arrows, moderate increase; ND,

no difference. Scale bar in b’
(for a–b’), 500 lm; in d’ (for c–

d’), 50 lm. Data are expressed

as mean ± SEM. *p \ 0.05,

compared with WT by Student

t test. ST-r, rostral striatum; ST-

m, middle striatum; ST-c, caudal

striatum; R, rostral level; C,

caudal level
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rostral striatum. Moreover, loss of MeCP2 disrupts the

expression of multiple genes involved in dopamine sig-

naling (i.e., Th and Drd2) and striatal compartmentali-

zation (i.e., Mor1 and CB), and significantly increases the

number of PV?-inhibitory neurons and their dendritic

arborization in the striatum. These alterations were found

predominantly in the rostral striatum, suggesting a

regional selectivity of MeCP2-mediated modulation of

striatal gene expression. Together, our findings suggest

that MeCP2 plays a critical role in psychomotor control

by maintaining normal striatal dopamine signaling, a

balanced neurochemistry in the striosome/matrix, and an

appropriate number and dendritic complexity of inhibi-

tory interneurons in the striatum. Loss of MeCP2 disrupts

the striatal structure and function, those may underlie the

motor deficits in RTT.

Fig. 5 Parvalbumin-positive interneurons in the striatum of Mecp2-/y

and WT mice. Parvalbumin (PV) was examined in brain sections from

Mecp2-/y and WT mice at 4–5 weeks of age by immunohistochem-

istry. PV-positive (PV?) neurons in the striatum along the rostral (a, a’)
to caudal (b, b’) axis. High power images of the boxed areas in a–b’
are shown in c–d’. The PV? neurons of Mecp2-/y mice develop more

extensive dendritic arborization compared with WT mice. e Total

number of PV? neurons in the striatum of Mecp2-/y mice was

quantified at different rostral–caudal positions and normalized with

PV? cell number in WT littermate controls (n = 5 pairs). Robust

enhancement of the number of PV? neurons is distributed in the

dorsomedial striatum (dmST, f) and nucleus accumbens (NAc, h),

whereas moderate increase of PV? neurons occurs in the rostral part of

dorsolateral striatum (dlST, g) and the rostral/middle levels of the

cerebral cortex (CTX, i) (n = 5 pairs). j Summary of increased PV?

neurons in the striatal and cortical areas of Mecp2-/y mice. Red arrows,

robust increase; blue arrows, moderate increase; ND, no difference.

Scale bar in a’ (for a, a’) and b’ (for b, b’), 500 lm; in d’ (for c–d’),
50 lm. Data are expressed as mean ± SEM. *p \ 0.05, **p \ 0.01,

***p \ 0.001, compared with WT by Student t test. ac, anterior

commissure; ST-r, rostral striatum; ST-m, middle striatum; ST-c, caudal

striatum; R, rostral levels; C, caudal level
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MeCP2-mediated regulation of dopamine

in the striatum

In the present study, we found that dopamine content was

reduced in both the striatum (ST-r, ST-m, ST-c, and NAc)

and VMB (SN and ventral tegmental area) in Mecp2-/y

mice (Fig. 2d). The reduction of dopamine is accompanied

by decreased Th expression in the striatum and VMB (this

study and Panayotis et al. 2011), suggesting that loss of

MeCP2 may diminish dopamine synthesis both in the soma

and terminals of the dopaminergic neurons. Notably, we

found that expression of Drd2 is increased in the striatum

of Mecp2-/y mice (Fig. 2f, g), which is consistent with

previous studies showing that dopamine binding to DRD2

is increased in the striatum of RTT patients (Chiron et al.

1993; Dunn et al. 2002). Despite of the fact that DRD2 is a

presynaptic autoreceptor that inhibits release of dopamine

(Ungerstedt et al. 1985), recent evidence suggests that

postsynaptic DRD2 on the striatal neurons can also affect

dopamine release by modulating the activity of local stri-

atal circuits via the indirect pathway (Anzalone et al.

2012). Therefore, up-regulation of DRD2 may lead to

reduction in dopamine release following neuronal activa-

tion in the striatum of Mecp2 null mice.

On the other hand, activation of DRD2 can selectively

inhibit the phosphorylation of TH at Ser40, leading to

reduced synthesis of dopamine in the striatum (Lindgren

et al. 2001). Consistently, Ser40 phosphorylation of the TH

protein is significantly reduced in the SN and the striatum

of Mecp2 null mice (Panayotis et al. 2011). Here, we

reasoned that MeCP2 may maintain striatal dopamine

content by repressing DRD2 expression in the striatum

(Fig. 6a). De-repression of DRD2 in Mecp2-/y mice may

reduce striatal dopamine content by inactivation of TH in

the striatum (Fig. 6b). Notably, a recent finding shows that

re-expressing Mecp2 specifically into TH? neurons can

only partly rescue the motor deficits in MeCP2-deficient

mice (Lang et al. 2013), supporting the notion that MeCP2

in neurons other than catecholaminergic neurons, such as

the GABAergic neurons, may also play an essential role in

motor control.

MeCP2-mediated gene regulation in the striatum

l-Opioid receptor 1 (MOR1)

In the absence of MeCP2, we observed a reduction in the

area of MOR1? striosomes and an increase in the number

of CB? matrix neurons. The reduction of MOR1? areas in

the striatum of Mecp2-/y mice (Fig. 3) is unlikely to be due

to cell loss of striosomal neurons because the CB-negative

zones in the striatum of adjacent sections were preserved.

Fig. 6 Putative model for MeCP2-dependent regulation of striatal

genes associated with psychomotor deficits in RTT. a MeCP2

regulates a set of genes in the striatum in a direct or indirect manner.

b In the absence of MeCP2, reduced dopamine levels and enhanced

DRD2 and PV/CB in the striatum may activate the indirect pathway

and diminish the motor outputs from MSNs, leading to psychomotor

deficits in RTT. Arrows or flat-arrows indicate positive or negative

regulation, respectively, with their relative effectiveness indicated by

thickness. Letter size corresponds to expression level. Letters and

arrows/flat arrows in gray indicate the molecular links reported in the

literatures. CB, calbindin; DRD2, dopamine D2 receptor; DA,

dopamine; Dlx5/6, distal-less homeobox 5/6; GABA, c-amino butyric

acid; MeCP2, methyl CpG binding protein 2; MOR1, l-opioid

receptor 1; MSN, median spiny neuron; PV, parvalbumin; TH,

tyrosine hydroxylase. See text for details

Brain Struct Funct

123



Given that MeCP2 is a transcriptional regulator, it is pos-

sible that MeCP2 directly regulates MOR1 expression.

Previous reports have demonstrated that MeCP2 negatively

regulates MOR1 expression at the transcriptional level

(Hwang et al. 2009; Samaco et al. 2012). Our findings that

MOR1 protein is selectively reduced in the striosomes

compared with other brain areas (e.g., the medial habenula)

in Mecp2 null mice suggest that MeCP2 may positively

regulate MOR1 expression in a region- and cell type-spe-

cific manner. In addition to the MeCP2-mediated direct

transcriptional regulation of MOR1, the innervation of

dopamine-containing fibers is required for the expression

of striosomal markers, including MOR1 (van der Kooy and

Fishell 1992). Thus, the reduction of MOR1 expression in

the striosomes of mice lacking MeCP2 may also be a result

of reduced dopamine innervation to the striosomes during

early postnatal development.

The down-regulation of MOR1 in the striosomes may

affect psychomotor control of the striatum. Previously, the

activation of MOR1 was shown to enhance dopamine

transmission through inhibition of GABAergic activities

(Johnson and North 1992), and the MOR1-mediated

GABAergic inhibition selectively occurs in the striosomal

compartment (Miura et al. 2007). Here, we have observed a

reduction of MOR1 expression in the striosomes, which

may result in a decrease of dopamine signaling in the

striatum of Mecp2 null mice (Fig. 6b), indicating that

pharmacological enhancement of MOR1 activity in the

striatum may restore striatal dopamine transmission and

improve motor function in the MeCP2-deficient mice. The

MOR1-positive striosomal cells have been implicated in

maternal/social attachment behavior, motor stereotypy, and

motor skill learning (Canales and Graybiel 2000; Moles

et al. 2004; Lawhorn et al. 2009; Burkett et al. 2011). Our

findings therefore suggest that MOR1 is likely to be a key

molecule associated with stereotypic hand wringing and

motor learning deficits observed in RTT.

Calbindin-D28K (CB)

In the present study, we observed an increase in CB?

neurons in the DL-ST of Mecp2-/y mice (Fig. 4). The

increase in CB? neurons is not likely to be due to the

increased number of matrix neurons because the striatal

volume is smaller in RTT patients or Mecp2-null mice

compared with normal persons or WT mice (Reiss et al.

1993; Dunn et al. 2002; Stearns et al. 2007), and we did not

observe a change in cell density in the striatum as counted

by Nissl staining in Mecp2 null mice (unpublished obser-

vation). Because the mRNA level of CB was not changed

(Fig. 3a), the increase of CB? neurons in the striatum of

Mecp2 null mice (Fig. 4) may result from up-regulation of

protein synthesis of CB in the matrix neurons. Previous

studies have reported that the CB mRNA can be post-

transcriptionally regulated at the 30-untranslated region

(UTR), which is frequently targeted by miRNAs for

translational suppression (Enomoto et al. 1992; Barmack

et al. 2010). In light of a recent finding that loss of MeCP2

dysregulates the transcription of multiple miRNAs

(Szulwach et al. 2010), the up-regulation of CB protein

expression in matrix neurons could be a result of transla-

tional de-repression by MeCP2-regulated miRNAs. In

addition to direct regulation by MeCP2, expression of CB

can also be positively regulated by DRD2 in the matrix

neurons (Jung et al. 2000), suggesting that the increase in

CB in the striatum of Mecp2 null mice may indirectly

consequence of up-regulated DRD2.

Calbindin-D28K is a calcium-binding protein involved

in neuronal protection by buffering intracellular calcium

(Figueredo-Cardenas et al. 1998; Yenari et al. 2001). An

increase in cytosolic CB in neurons was reported to lower

the probability of exocytosis and reduce neurotransmitter

release (Pan and Ryan 2012), suggesting that a reduced

output from the neurons in the striatal matrix may lead to

motor deficits in Mecp2-/y mice. Moreover, CB also

functions as a sensor and transporter of synaptic calcium,

playing a non-canonical role in fine-tuning synaptic plas-

ticity and calcium dynamics (Schmidt 2012). Manipulating

the level of CB in hippocampal neurons by a gain or loss of

function impairs the induction of LTP and long-term spa-

tial memory (Jouvenceau et al. 2002; Dumas et al. 2004),

suggesting the importance of CB in cognitive function. In

the present study, we found a MeCP2-mediated suppres-

sion of CB in the dlST but not the dmST in the dorsal

striatum (Fig. 4). The dlST is the primary sub-region of the

striatum that receives dopaminergic innervation from the

SNpc (Moore et al. 2001) and has been implicated in

sensorimotor loop of learning and the late phase of habit

formation (Yin et al. 2009; Thorn et al. 2010; Hilario et al.

2012). Enhanced CB expression in the matrix neurons of

dlST in Mecp2-/y mice suggests that loss of MeCP2 may

impede synaptic transmission and plasticity of the matrix

neurons in the dlST and cause deficits in the late phase of

motor skill learning and habit formation (Fig. 6b), which is

consistent with our observation of a reduction in MLI in

Mecp2-/y mice (Fig. 1d, f).

Parvalbumin (PV)

In the present study, we found an increase in the number

and enhanced dendritic arborization of PV? interneurons in

the striatum of Mecp2 null mice (Fig. 5). The enhanced

number of PV? neurons in Mecp2-/y mice might be due to

de-repression of PV gene by loss of MeCP2 (Fig. 6b). In

support of this, previous microarray study suggest that loss

of MeCP2 up-regulates PV mRNA, while mice over-
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expressing MeCP2 show reduced PV expression (Chahrour

et al. 2008). Alternatively, MeCP2 may control PV

expression indirectly by regulating the Dlx5/6 transcription

factor, which specifies the cell fate of PV? GABAergic

interneurons in the developing forebrain (Horike et al.

2005; Wang et al. 2010). Loss of MeCP2 may de-repress

the transcription of Dlx5/6 gene, leading to increased PV

expression in forebrain interneurons of Mecp2 null mice

(Fig. 6b).

Several lines of evidence suggest that the striatal neu-

rochemical environment may influence the morphology of

PV? neurons. First, blockade of c-aminobutyric acid

(GABA) release increases the axonal arbors and bouton

density of fast-spiking interneurons (Wu et al. 2012). Loss

of MeCP2 down-regulates the expression of GABA syn-

thetic enzymes and reduces GABA content in the striatum

(Chao et al. 2010), which may in turn disrupts synaptic

pruning and leads to overgrowth of PV? neuronal branches

(Fig. 5c–d’). Alternatively, depletion of dopamine may

remodel the formation of interneuronal microcircuits in the

striatum. Using paired recordings and morphological ana-

lysis, PV? neurons were found to exhibit more dense and

complex axonal arbors, which form new synaptic connec-

tions with DRD2-expressing MSNs after dopamine deple-

tion (Gittis et al. 2011). In Mecp2 null mice, dopamine is

significantly reduced in the rostral striatum (Fig. 2), sug-

gesting that reorganization of inhibitory microcircuits may

enhance connections between PV? interneurons and

DRD2-expressing MSNs of the indirect pathway. In view

of the cellular function of PV which binds with calcium

resulting in fast decay of intracellular Ca?? and delayed

neurotransmitter release (Collin et al. 2005), elevated

intracellular PV expression in PV? interneurons may che-

late more calcium and diminish GABA release to DRD2-

expressing MSNs, which results in dis-inhibition of the

indirect pathway and impede motor activity in Mecp2 null

mice (Fig. 6b).

Notably, a larger increase in the number of PV? inter-

neurons was found in the dmST than dlST in Mecp2 null

mice compared with the WT controls (Fig. 5f, g). Given

that the neurons in the dmST are functionally linked to the

associative corticostriatal loop involved in flexible goal-

directed movement control and early phase of motor

learning (Yin et al. 2009; Kimchi and Laubach 2009), the

striking increase of PV? interneurons in the dmST may be

responsible for the deficits of goal-directed behaviors and

motor learning initiation in RTT. We also observed a

robust increase of PV? neurons in the NAc of Mecp2 null

mice (Fig. 5h). In view of the fact that mice with deficient

MeCP2 show reduced psychostimulant-induced behaviors

and elevated threshold of sucrose preference (Deng et al.

2010), the increased number of PV? interneurons in the

NAc may interfere the reward-related neural circuits in

Mecp2-/y mice. The MeCP2-mediated suppression of PV?

inhibitory interneurons in the NAc may thus play a role in

modulating reward-related behaviors in vivo.

Conclusion

A striking symptom of RTT is the loss of psychomotor

control. Using Mecp2 null mice that recapitulate the

psychomotor deficits of RTT, we found that a set of

striatal features including the expression of striosome-

specific protein MOR1, matrix neuron-enriched calcium

binding protein CB, and the total number of PV? inter-

neurons, are altered in the absence of MeCP2. In addi-

tion, we found that MeCP2 is required to maintain the

proper level of dopamine content and the expression of

genes involved in dopamine signaling such as Th and

Drd2, particularly in the rostral striatum. Our study

supports that MeCP2-mediated modulation of motor

output through multiple pathways, either simultaneously

or sequentially, in the striatum underlies the neural

mechanisms by which loss of MeCP2 disrupts psycho-

motor function (Fig. 6). Our study provides a neural

basis for the development of striatum-directed preventive

and therapeutic strategies to target motor deficits in RTT,

and offers insights into the structure and function of the

striatum modulated by MeCP2. Further studies with a

conditional genetic approach are needed to evaluate the

necessary or sufficient role of striatal MeCP2 in pre-

serving striatal structure and modulating psychomotor

function.
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