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Abstract. In this paper, we survey and study definitions and properties of

tropical polynomials, tropical rational functions and in general, tropical mero-
morphic functions, emphasizing practical techniques that can really carry out

computations. For instance, we introduce maximally represented tropical poly-

nomials and tropical polynomials in compact forms to quickly find roots of
given tropical polynomials. We also prove the existence and uniqueness of

tropical theorems for meromorphic functions with prescribed roots and poles.

Moreover, we explain the relations between classical and tropical meromor-
phic functions. Different definitions and applications of tropical meromorphic

functions are discussed. Finally, we point out the properties of tropical mero-
morphic functions are very similar to complex ones and prove some tropical

analogues of theorems in complex analysis.

1. Introduction

Tropical geometry has been rapid developed in recent years. Roughly speaking,
tropical geometry study the image of classical geometric objects through a cer-
tain valuation map. Therefore, one can expect the properties we find in tropical
geometry somehow reflect the properties in classical geometry. Indeed, many im-
portant applications has been carry out. Among many others, Mikhalkin [9, 10]
calculated Gromov-Witten invariants in CP2; Itenberg, Kharlamov, and Shustin [6]
calculated Welschinger invariants. Besides, there are also many mathematicians try
to understand mirror symmetry through tropical geometry [4].

On the other hand, since tropical geometry is naturally related to combinatorics
analysis and convex optimization. It provides lots of possible applications to real
world also. For instance, Pacher and Sturmfels [12] applied it to statistics. As we
will see, the graph of a tropical meromorphic function is piecewise linear. This kind
of functions arise in real world and with tropical geometry, we could study these
functions directly with some standard analysis techniques. For example, we can
apply techniques of Nevanlinna theory to solve difference equations [5, 8].

Though with so many interesting applications, the foundation of tropical geom-
etry is far from complete, and some are known to experts but hardly find in single
monograph. In this paper, we survey and study very basic elements in tropical
geometry, namely tropical polynomials, rational functions, and meromorphic func-
tions. We focus on the concepts of the definitions, and the techniques that one can
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really compute. In short, we would like to provide necessary tools to work with
tropical meromorphic functions.

One important and interesting thing we want to point out is that the tropical
mathematics though work on real numbers, but indeed also reflect the world of
complex geometry. Many properties of tropical meromorphic functions act like
complex meromorphic functions. For instance, we have tropical version of the
Fundamental Theorem of Algebra, Liouville’s Theorem, and (modified) Maximum
Modulus Theorem.

One problem to deal with tropical meromorphic functions is that there are some
subtle different definitions in different contexts. The most natural choice of defini-
tion is that −∞ (the tropical zero) can be a root or pole of some tropical meromor-
phic functions, and those are the major definition of tropical meromorphic functions
for us. Howerver, sometimes it is convenient to work with tropical meromorphic
functions defining on R (no −∞) only, and we will call these R-tropical mero-
morphic functions. Moreover, tropical meromorphic functions are piecewise linear
functions of integer slopes. We can drop the integer slope assupmtion, allowing real
slopes, and we will call the new type of functions the extended tropical meromorphic
functions.

2. Tropical Polynomials

Definition 2.1 (Tropical Semiring). Let T = R ∪ {−∞}. The tropical semiring
(T,⊕,�) is an algebraic structure with two binary operators defined as followings.{

a⊕ b = max{a, b},
a� b = a+ b.

We can easily find out that the additional identity of the tropical semiring is
0T = −∞ and the multiplicity identity is 1T = 0. There is no subtraction in
tropical semiring. For example, the equation 2 ⊕ k = 3 yields no solution for k.
Strangely enough, since the tropical multiplication is just the original addition, so
we do have division in tropical semiring, namely x� y = x− y.

One can actually define the tropical semiring in different ways. For example, the
addition of the tropical semiring can be defined as a ⊕ b = min{a, b}. We call the
semiring the min-plus tropical semiring. We will focus on the semiring as in the
Definition 2.1, which we call the max-plus tropical semiring, and we usually just
call it the tropical semiring.

Naturally, we will define the tropical polynomial as a polynomial with coefficients
in T and computed by the tropical addition and the tropical multiplication.

Definition 2.2 (Tropical Polynomial). A tropical polynomial f(x) is of the form

an � x�n ⊕ an−1 � x�(n−1) ⊕ · · · ⊕ a0,

where n is a positive integer, and a0, a1, . . . , an ∈ T. Evaluate f(x), we obtain

f(x) = max{nx+ an, (n− 1)x+ an−1, . . . , a0}

We usually omit the terms with the coefficients −∞.

Remark 2.1. As in classical polynomials, a tropical monomial x means 1T · x, but
1T = 0, so x = 0� x. Moreover, a polynomial x� (x⊕ 2) = (x⊕−∞)� (x⊕ 2).
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We now give two examples to elaborate how do we define roots of a tropical
polynomial and the multiplicities of these roots.

Example 2.1. Let f(x) = x�2⊕2�x⊕3. Figure 1 shows the graph of the function.
Note that f(x) = (x⊕1)� (x⊕2) (as a function), so we can think the points x = 1
and x = 2 are the “roots” of f(x). These are exactly the points where the function
f is not differentiable. On the other hand, f(x) = max{2x, 2 + x, 3} by definition.
Note that x = 1 and x = 2 are the points where the maximum achieves at least
twice in these linear terms.

As in classical cases, we should call x = 1 and x = 2 the roots of polynomial
f(x), each with multiplicities 1. At the point x = 1, we calculate change of the
slopes at that point, we have limx→−1+ f

′(x) − limx→−1− f
′(x) = 1. Similarly,

calculate change of the slopes of the graph at x = 2, we get 1, which coincide with
the multiplicities we expect of these points.

Figure 1. The graph of f(x) = x�2 ⊕ 2� x⊕ 3.

Example 2.2. Let f(x) = (x⊕1)�2. Figure 2 shows the graph of the function. At
the point x = 1, the change of slopes is 2, which again coincide with the multiplicity
we expect.

The examples motivate the following definitions, we basically follow the defini-
tions in [5, 8].

Definition 2.3. A tropical meromorphic function f : R→ R is a continuous piece-
wise linear function on R if both one-sided derivatives are integers at each point
x ∈ R.

In this paper, if f(x) is a tropical meromorphic function defined on R, we call
f(x) an R-tropical meromorphic function. The multiplicity of a root is the change
of slopes.
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Figure 2. The graph of f(x) = (x⊕ 1)�2.

Definition 2.4. Let f(x) be an R-tropical meromorphic function. Let

ωf (x) = lim
ε→0+

[f ′(x+ ε)− f ′(x− ε)] .

(a) If ωf (x) > 0, we call x a root of f(x) with multiplicity ωf (x).
(b) If ωf (x) < 0, we call x a pole of f(x) with multiplicity −ωf (x).

We can also define a tropical meromorphic function on T.

Definition 2.5. We say that a function f is a tropical meromorphic function on
T if

(a) f is a tropical meromorphic function on R, and
(b) there exist x0 ∈ R such that f ′(x0) is constant for all x < x0.

Definition 2.6. Let f(x) be a tropical meromorphic function on T. There is a
number x0 ∈ R,m ∈ Z such that f ′(x) = m for all x < x0.

(a) We say that −∞ is a pole of f if m < 0.
(b) We say that −∞ is a root of f if m > 0.
(c) We say that −∞ is an ordinary point if m = 0.

We will mainly discuss the tropical meromorphic functions on T. Unless stated
otherwise, when we say f(x) is a tropical meromorphic (polynomial, rational) func-
tion, we mean that f(x) is a tropical meromorphic (polynomial, rational) function
on T.

Definition 2.7. Let f(x) be a tropical rational function if there are two tropical
polynomials g(x), h(x) such that

f(x) = h(x)� g(x).

We will see these definitions are reasonable. For instance, in Section 7, we will
show that a tropical meromorphic function f(x) is a tropical rational function if
and only if f(x) has finitely many roots and poles.
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3. Maximally Represented Tropical Polynomials

For complex or real cases, different polynomials define different functions. How-
ever, different tropical polynomials might define the same function as the following
example shows.

Example 3.1. As in Figure 3, the graphs of f(x) = (−1) � x�2 ⊕ x ⊕ 1 and
g(x) = (−1)�x�2⊕ (−1)�x⊕1 are the same, so polynomials f(x) and g(x) define
the same function.

Figure 3. The graphs of two different polynomials f(x) = (−1)�
x�2 ⊕ x⊕ 1 and g(x) = (−1)� x�2 ⊕ (−1)� x⊕ 1 are the same.

Definition 3.1. Let f(x) and g(x) be two tropical polynomials. We say that f(x)
and g(x) are equivalent if f(x) and g(x) define the same function.

Though different tropical polynomials might define the same function, we can
choose a “good” representation out of a collection of equivalent tropical polynomi-
als. As we will see, every tropical polynomial has a unique maximal representation.
Different maximally represented polynomials define different functions. We can use
the Legendre transformation to get the desire maximal representation of a tropical
polynomial in question.

First, we observe that any one-variable tropical polynomial defines a real convex
function.

Theorem 3.1. Let f(x) be a tropical polynomial. Let h : R → R be the function
defined by

h = f |R.
Then h(x) is a convex function.



6 YEN-LUNG TSAI

Proof. Obviously, h(x) is a continuous, piecewise linear function. Therefore, we
just need to show that for each point, the change of slopes is either zero or positive.
Now, if for any real number x0, if in a neighborhood of x0 that h(x) is linear, then
the change of slope is zero. If x0 is a point that h fails to be linear, then in a
small neighborhood of x0, h(x) can be represented by the maximum of two linear
functions, say, i1x + a1 and i2x + a2, where i2 > i1. Since i2x0 + a2 = i1x0 + a1.
i2(x0 + ε) + a2 > i1(x0 + ε) + a1 for all ε > 0. Hence,

lim
ε→0+

h(x0 + ε)− h(x0 − ε) = i2 − i1 > 0.

Thus we conclude that the change of slope at any real number for the function h(x)
is either zero or positive. �

Let h : Rn → R be a convex function. The Legendre transform Lh : Rn → R of
h(x) is defined by

Lh(α) = max
x∈Rn
{α · x− h(x)}

For the purpose of this paper, we consider that h : R → R is induced by a
one-variable tropical polynomial f(x) = an � xn ⊕ · · · ⊕ ar � xr. Then h(x) is
just the function defined by f(x) with restriction on R. Note that Lh is just
a partially defined function. For instance, let h be the function induced by the
tropical polynomial x+ 2, then the value of

Lh(2) = max{2x− h(x)}
= max{2x−max{x, 2}}

tends to infinity.
We modify the definition to suit our needs, when we say the Legendre transform,

we really mean the modified one for the rest of the paper.

Definition 3.2 (Modified Legendre Transform). Let f(x) = an�xn⊕· · ·⊕ar�xr,
be a one variable tropical polynomial, where n, n − 1, . . . , r are integers such that
n ≤ r. The modified Legendre transform Lf corresponding to f(x) is a real valued
function defined on {r, r + 1, . . . , n} such that

Lf (p) = max
x∈R
{p · x− f(x)}

It is easy to check that the modified Legendre transform we have is well-defined.
That is, for all p in the domain of the function, Lf (p) is a real number.

Definition 3.3. A tropical polynomial f(x) = an�xn⊕· · ·⊕ar�xr is maximally
represented if

ai = −L(i),

for all i ∈ {r, r + 1, . . . , n}.

It will be clear latter why we call these polynomials maximally represented.
Using the Legendre transform to find the we call maximally represented polynomials
is briefly discussed in [7, 11]. The detailed properties and proof of min-plus tropical
algebra version can be founded in [3], where the polynomials corresponding to
our maximally represented polynomials analogues in min-plus tropical algebra are
called the least-coefficient polynomials.

Note that for an arbitrary tropical polynomial f(x), we evaluate the function
f(x) with sufficiently large x, then the maximum of {ai + ix}r≤i≤n will be an +nx.
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Lemma 3.2. Let f(x) = an � xn ⊕ · · · ⊕ ar � xr be a tropical polynomial.

(a) There is a number M > 0 such that for any x > M , f(x) = an + nx.
(b) There is a number m < 0 such that for any x < m, f(x) = ar + rx.

Proof. We prove the part (a) and skip the proof for part (b), since the proofs are
very similar. Let Mk = (ak−an)/(n−k), for some integer k such that r ≤ k ≤ n−1.
If x > Mk = ak−an

n−k (n− k)x > ak − an. Hence, an + nx > ak + kx. Take

M = max
r≤k≤n−1

{Mk},

then for all x > M , we have an + nx > ak + kx for all r ≤ k ≤ n− 1. Hence,

max
r≤i≤n

{ai + ix} = an + nx,

for all x > M . �

Lemma 3.3. Let f(x) = an�xn⊕ · · ·⊕ ar �xr be a tropical polynomial. Let g(x)
be the polynomial obtained from f(x) by adding one term α � xk such that k > n.
Then f(x) and g(x) define different functions.

Proof. By the Lemma 3.2, there exists a positive real number M1 such that f(x) =
an + nx for x > M1, and a positive real number M2 such that g(x) = α + kx for
x > M2. Take a number x0 > max{M1,M2} and x0 6= (an − α)/(k − n). Then
f(x0) = an + nx0 6= α+ kx0 = g(x0). �

Lemma 3.4. Let f(x) = an � xn ⊕ · · · ⊕ ar � xr be a tropical polynomial.

(a) Let g(x) be a tropical polynomial obtained from f(x) by substituting an by a
number α, such that α > an. Then f(x), g(x) define different functions.

(b) Let g(x) be a tropical polynomial obtained from f(x) by substituting ar by a
number β, such that β > ar. Then f(x), g(x) define different functions.

Now, we want to point out an important fact. That is, any tropical polynomial
is equivalent to a tropical polynomial of the form:

g(x) = an � xn ⊕ · · · ⊕ ar � xr,
where ai ∈ R for all i = r, r+1, . . . , n. That is, there is no missing term between xn

and xr. The idea of the proof is as followings. The graph of a tropical polynomial
is convex piecewise linear. Suppose the polynomial f(x) misses the xk term, where
r < k < n. That is, the coefficient ak = −∞. Add the xk term to the polynomial
means add a line with slope k. If the line is below the original graph, it would not
change the function. As in the Figure 4 shows, we can move the new line up to
touch a corner of the graph of the tropical polynomial.

As a result, with some real coefficients we can always add a missing xk term
without change the original function. Therefore, the following theorem is obvious.

Lemma 3.5. Let f(x) = an � x�n ⊕ · · · ⊕ ar � x�r be a tropical polynomial.
Suppose that aj = −∞ for some n < j < r. Then there is α ∈ R such that

g(x) = an � x�n ⊕ · · · ⊕ aj−1 � x�(j−1) ⊕ α � xj ⊕ aj+1 � xj+1 · · · ⊕ xr and f(x)
define the same function..

We can actually do better: find the largest possible coefficient for a missing
xk-term without change the original function. It turns out that the coefficient is
exactly −L(k). Observe that the Legendre transform basically compare the line
y = kx and the graph of the tropical polynomial f(x). If y = kx goes to high, we
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(a) The added line is

lower then the graph,
which is okay.

(b) The added line up

to the highest posi-
tion.

(c) The added line is

too high.

Figure 4. Adding a “missing term” to the graph of a tropical polynomial.

need to take it down by L(k) to keep the graph the same as before. On the other
hand, if y = kx is too low, we need to move it up by −L(k). Therefore, the highest
possible line with the slope k without change the original function is kx − L(k),
and it is exactly −L(k)� x�k

Theorem 3.6. Let f(x) = an � xn ⊕ · · · ⊕ ar � xr be a maximally represented
polynomial if g(x) is obtained from f(x) by substitute any coefficient with a larger
real number, then the graph of g(x) and f(x) are different. Moreover, any tropical
polynomial has a unique maximally represented polynomial.

From the discussion above, we can easily find out that two tropical polynomials
have the same graph if and only if their maximally represented polynomials are the
same.

Corollary 3.7. Two tropical polynomial f(x) and g(x) define the same function if
and only if their maximally represented polynomials are the same.

The following Corollary is obvious, too.

Corollary 3.8. Let f(x) = an � xn ⊕ · · · ⊕ ar � xr be a tropical polynomial. Then
f(x) is maximally represented if and only if for each r ≤ i ≤ n, there exists some
x0 ∈ R such that f(x0) = aix

i
0.

Let f(x) = an � xn ⊕ an−1 � x�(n−1) ⊕ · · · ⊕ ar � xr be a tropical polynomial.
Suppose we want to find the maximally represented coefficient for ak, where r <
k < n. There are two cases to consider.

(i) A piece of the line ak + kx appears in the graph of f(x). In this case, ak is
maximally represented already.

(ii) The line ak + kx is under the graph of f(x). In this case, we can move the
line ak + kx up to intersect the graph of f(x) at exactly one point. This
point will be the intersection of two lines defined by two other terms ai� x�i
and aj � x�j appear in the polynomial. Observe that one of these two lines
must with slope less than k and the other with slope greater than k. Suppose
i < k < j, the intersection of ai + ix and aj + jx is (ai − aj)/(j − i). If the
line α+ kx just touch the intersection, then we should have

α− aj
j − k

=
ai − aj
j − i

.
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Solve for α, we get

α =
(ai − aj)(j − k)

j − i
+ aj .

The maximum possible α is the maximally represented coefficient for ak.

4. Tropical Fundamental Theorem of Algebra

In previous section, we prove that each tropical polynomial f(x) has a unique
maximally represented tropical polynomial g(x). Once we get the maximally rep-
resented polynomial of f(x), it is easy to find all roots of f(x). We elaborate the
idea here. Let

f(x) = an � x�n ⊕ an−1 � x�(n−1) ⊕ · · · ⊕ ar � xr

be a maximally represented tropical polynomial. As discussed in previous section,
each line ak + kx appears in certain corner of the graph of f(x). It turns out that
there is x0 in R such that

ak + kx0 = ak−1 + (k − 1)x0

for all k = r + 1, r + 2, . . . , n, and f(x0) = ak + kx0. Therefore, x0 = ak−1 − ak is
a zero of the polynomial f(x). Let

dk = ak−1 − ak

for k = r+1, r+2, . . . , n. Then dr+1, dr+2, . . . , dn (not necessary distinct) are n−rl
roots of f(x).

Note that

f(x) = an � x�r � [x�(n−r) ⊕ (an−1 − an)� x�(n−r−1) ⊕ · · · ⊕ (ar − an)],

so f(x) has a zero at −∞ with multiplicity r. Hence, we have exactly n roots
(counting multiplicities) for the polynomial f(x).

It is reasonable to have the following theorem, which we call the Tropical Fun-
damental Theorem of Algebra.

Theorem 4.1 (Tropical Fundamental Theorem of Algebra). Let

f(x) = an � x�n ⊕ an−1 � x�(n−1) ⊕ · · · ⊕ ar � xr

be a maximally represented polynomial. Then f(x) can be factored into

f(x) = an � x�r � (x⊕ dr+1)� (x⊕ dr+2)� · · · � (x⊕ dn),

where dk = ak−1 − ak for all k = r + 1, r + 2, . . . , n.

Proof. Just expand the polynomial and we can get the conclusion of the theorem.
�

The Tropical Fundamental Theorem of Algebra is stated in several places, for
example [14], and a proof (different from this paper) is given in [3].
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5. Tropical Polynomials in Compact Forms

We have seen that each tropical polynomial is equivalent to a unique maxi-
mally represented polynomial. In this section, we try to do something in opposite
direction. We would like to find the most “compact” form of a given tropical poly-
nomial. In Example 3.1, we have seen that the coefficient x term in the polynomial
(−1) � x�2 ⊕ x ⊕ 1 can be changed from 0 to −1. We calm that if we can use a
smaller coefficient for a specific term, we can actually drop that term (that is, set
the coefficient to −∞) without change the graph of the polynomial. For our case,
f(x) = (−1)� x�2 ⊕ x⊕ 1 is equivalent to (−1)� x�2 ⊕ 1.

Theorem 5.1. Let f(x) = an � x�n ⊕ an−1 � xn−1 ⊕ · · · ⊕ ar � xr be a tropical
polynomial. If there exist bk < ak such that g(x) = an� x�n + an−1� xn−1⊕ · · · ⊕
ak−1 � x�(k−1) ⊕ bk � x�k ⊕ ak+1 � x�k ⊕ · · · ⊕ ar � xr and f(x) define the same
function, then we can drop the x�k term completely. That is, set bk = −∞.

Proof. Since

f(x) ≥ ak + kx > bk + kx,

but f(x) and g(x) define the same function, so bk + kx is never been the maximum
of the linear terms ai + ix for all n ≥ i ≥ r. Hence, we can complete drop the xk

term without changing the graph of f(x). �

We call a tropical polynomial is in its compact form if we drop all “unnecessary
terms.”

Definition 5.1. Let f(x) = an�x�n⊕an−1�x�(n−1)⊕· · ·⊕ar�xr be a tropical
polynomial, where an, ar ∈ R and ai ∈ T for all r < i < n. We say that f(x) is in
the compact form if for all g(x) obtained from f(x) by substitute a coefficient ai
with α, r < i < n, such that α < ai, then g(x) and f(x) define different functions.

A tropical polynomial in its compact form is easy to calculate the roots, as the
following Corollary shows.

Corollary 5.2. Let

f(x) = an1 � x�n1 ⊕ an2 � x�n2 ⊕ · · · ⊕ anr � x�nr

be a tropical polynomial in its compact form, where n1 < n2 < · · · < nr are all
positive integers, and an1

, an2
, . . . , anr

in R. Then (ank
− ank−1

)/(nk−1 − nk) is a
root of f(x) with multiplicity nk−1 − nk, for all k = 2, 3, . . . , r.

Proof. For each k = 2, 3, . . . , r, ank−1
+ nk−1x = ak + nkx. Solve for x we get

x = (ank
− ank−1

)/(nk−1 − nk). The multiplicity is the change of the slope which
equals to nk − nk−1. �

6. Tropicalization of a Classical Polynomial

We will detour a bit to study two variable polynomials here for two reasons.
First, we will see which part of this paper can be easily extended to multivariable
cases. Second, the geometric pictures are more clear in two variable cases. Our
purpose is just to give some motivations of studying tropical polynomials and more
general, tropical meromorphic functions. Therefore, we will skip some details and
proofs, please refer to [1, 7, 13] for more details.
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Definition 6.1. For a tropical polynomial of two variables

f(x, y) =

⊕∑
(i,j)∈I

ai,j � x�i � y�j ,

where ai,j ∈ R and I is a finite subset of N2. Evaluate the tropical polynomial, we
get

f(x, y) = max{ai,j + i · x+ j · y}.
We define the zero locus to be the points in R2 such that the maximum of the
leaner forms is attained at least twice. The zero locus of the tropical polynomial
will be denoted by T (f), and we call it a tropical curve defined by f(x, y).

Similarly, we can define tropical hypersurfaces in higher dimensional cases. We
give an example of a tropical curve defined by a linear function which we call a
tropical line.

Example 6.1. Let f(x, y) = x ⊕ y ⊕ 0. The zero locus of f(x, y) is shown in
Figure 5, which we call a tropical line.

Figure 5. The tropical line defined by f(x, y) = x⊕ y ⊕ 0.

There are at least two ways to see how tropical curves (or hypersurfaces) comes
from the classical curves. To explain this, suppose V ⊂ C2 be an algebraic variety
defined by the locus of single complex polynomial g(x, y). Consider the map

φt : (C \ {0})2 → R2

defined by
φt(x, y) = (− logt(|x|),− logt(|y|)),

where t is a positive real number. Then we can “see” the complex curve C in R2,

namely, Ṽ = φ((C \ {0})2 ∩ C). When we take t approaches to zero, Ṽ will be a
tropical curve.

Example 6.2. Let C be a complex line defined by the polynomial f(x, y) = x +
y + 1. Figure 6 shows that as t approaches to zero, the image φt(C) tends to the
tropical line defined in Example 6.1.
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(a) φt(C), t = 0.4. (b) φt(C), t = 0.1. (c) limt→0 φt(C), the tropi-

cal line x+ y + 0.

Figure 6. Amoeba corresponding to f(x, y) = x+ y + 1.

We can do it without the ambiguous taking limit part. Let

K = ∪∞n=1((t1/n))

be the field of Puiseux series. It is well known that K is an algebraically closed
field, so we can do classical algebraic geometry with this field K. An element a ∈ K
is a power series of t, and the exponents can be rational, but bounded below, and
have the same denominator.

We define a valuation val onK by set val(a) to be the minimum exponent appears
in a ∈ K, and val(0) = −∞. Define a map

Val : K2 → T2

by

Val(x, y) = (− val(x),− val(y)).

Let

f(x, y) =
∑

(i,j)∈I

ai,jx
iyj

be a polynomial in K[x, y]. Let C be the curve define by f(x, y). We denote the
image of C under the map Val by A(C) and call it a non-archimedean amoeba
corresponding to the curve C.

The tropical polynomial corresponding to f(x, y) is defined by

⊕∑
(i,j)∈I

val(ai,j)� val(x)�i � val(y)�j ,

and we will abuse the notation a bit to write

g(x, y) =

⊕∑
(i,j)∈I

val(ai,j)� x�i � y�j .

We call g(x, y) the trpoicalization of the polynomial f(x, y) and denoted g(x, y) by
T(f). It is not completely clear that A(C) = T (T(f)), but a theorem of Kapra-
nov [2] assures it is the case.

Theorem 6.1 (Kapranov).

A(C) = T (T(f)).
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Example 6.3. Consider f(x, y) = x + y + 1 be a polynomial in K[x, y]. Then
T(f) = val(1)� x⊕ val(1)� y ⊕ val(1) = x+ y + 0. Hence, T (T(f)) is exactly the
tropical line in Example 6.1.

7. Tropical Meromorphic Functions with Prescribed Roots and Poles

Given a finite subset {d1, d2, . . . , dr} ⊂ T, {m1,m2, . . . ,mr} ⊂ Nr, can we find a
polynomial whose roots are the d1, d2, . . . , dr with given multiplicitiesm1,m2, . . . ,mr,
respectively? It is clear that

f(x) = K � (x⊕ d1)�m1 � (x⊕ d2)�m2 � · · · � (x⊕ dr)�mr ,

for some constant K, satisfies the conditions. We claim that these are the complete
solutions.

Theorem 7.1. Let f(x) be a tropical meromorphic function. Then f(x) has finitely
many roots with no poles if and only if f(x) is a tropical polynomial, and there exist
K ∈ R, d1 < d2 < . . . < dr ∈ T and m1,m2, . . . ,mr ∈ N, such that

f(x) = K � (x⊕ d1)�m1 � (x⊕ d2)�m2 � · · · � (x⊕ dr)�mr(1)

= K � [x�n ⊕
⊕∑

1≤i≤r

⊕∑
1≤j≤mi

(m1d1 +m2d2 + · · ·+mi−1di−1 + jdi)(2)

� x�(n−m1−m2−...−mi−1−j)]

where n = m1 +m2 + · · ·+mr.

Proof. If f(x) is a tropical polynomial, then clearly f(x) has finitely many roots
and no poles. Conversely, suppose that f(x) has finitely many roots with no poles.
Let d1 < d2 < . . . < dr ∈ T be the poles of f(x) and m1,m2, . . . ,mr ∈ N be
the corresponding multiplicities. We will prove the case d1 6= −∞, and the case
d1 = −∞ can be proved by the similar arguments. By assumption −∞ is not a
root, so there when x < d1, f(x) is a constant function. Pick any x0 < d1. Define
a tropical polynomial

g(x) = K � (x⊕ d1)�m1 � (x⊕ d2)�m2 � · · · � (x⊕ dr)�mr ,

where K = f(x0)−m1d1 −m2d2 − · · · −mrdr. We claim f ≡ g as a function. Let
x be an arbitrary real number. Let

k = max{s|x > ds}.
Evaluate f(x), we get

f(x) =f(x0) + (d2 − d1)m1 + (d3 − d2)(m1 +m2) + · · ·
+ (dk − dk−1)(m1 +m2 + · · ·+mk)

+ (x− dk)(m1 +m2 + · · ·+mk)

=f(x0)−m1d1 −m2d2 − · · · −mkdk + (m1 +m2 + · · ·+mk)x.

(3)

Evaluate g(x), we obtain

g(x) = K +m1x+m2x+ · · ·+mkx+mk+1dk+1 + · · ·+mrdr

= f(x0)−m1d1 −m2d2 − · · · −mkdk + (m1 +m2 + · · ·+mk)x.

Therefore, f(x) = g(x), and expanding g(x) we get the equation ??, so we prove
the theorem. �
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We apply Theorem 7.1 to give an algorithm to find a tropical polynomial with
prescribed roots. Let d1, d2, . . . , dr be roots of multiplicities m1,m2, . . . ,mr, re-
spectively. Repeat a root as many times as its multiplicity, we get a new sequence
of roots bn ≥ bn−1 ≥ · · · ≥ b1, where n = m1 + m2 + · · · + mr. Then one possible
polynomial f(x) with these roots is:

xn + an−1x
n−1 + · · ·+ a0,

where

an−1 = bn,

and

ai = bi+1 + ai+1, for all i = n− 2, n− 3, . . . , 0.

Example 7.1. Let f(x) be a polynomial with roots 1, 2, 3 of multiplicities 1. Ap-
plying the above algorithm, one solution is the following polynomial:

f(x) = x�3 ⊕ a2 � x�2 ⊕ a1 � x⊕ a0,

where a2 = 3, a1 = 2 + a2 = 5, a0 = 1 + a1 = 6. Hence,

f(x) = x�3 ⊕ 3� x�2 ⊕ 5� x⊕ 6.

The graph of f(x) is shown in Figure 7(a). When we tropically multiply f(x) by
any nonconstant number k, we will move the graph up or down by |k| and the roots
are the same. For instance, let g(x) = 2 � f(x) = 2 + f(x). The polynomial g(x)
has three roots 1, 2, and 3. The graph of g(x) is the graph of f(x) move up by 2,
as the dotted lines in Figure 7(b).

(a) The graph of f(x) = x�3⊕3�x�2⊕
5 � x⊕ 6.

(b) The dotted line is the graph of 2 �
f(x).

Figure 7. Compare the graph of the polynomial f(x) = x�3 ⊕
3� x�2 ⊕ 5� x⊕ 6 and 2� f(x).
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Corollary 7.2. Given d1 < d2 < · · · < dr ∈ T, and m1,m2, . . . ,mr. There
exists a tropical polynomial with roots d1, d2, . . . , dr of multiplicities m1,m2, . . . ,mr,
respectively. Moreover, the tropical polynomial is unique (as a function) up to
constant multiples.

We explain the key point of the proof of the Thereom 7.1 a bit more and try
to generalize the results to tropical rational and meromorphic functions. Suppose
d1 < d2 < · · · < dr are some real roots with certain multiplicities m1,m2, . . . ,mr.
The left most part of the graph of the function is either with slope zero (−∞ is
not a root) or some positive integer m (−∞ is a root). In either case, we know
there is a x0 < d1, and (x0, f(x0)) is on a line with slope either m ≥ 0. Therefore,
we can find the exact equation of the line. Then, x moves along to the point d1.
The “speed” increases by m1 and hence we can once again find the exact formula
for the line. It is easy to see, the whole graph of f(x) is determined once we get
(x0, f(x0)) and the slope at that beginning point.

Hence, very similar to the polynomial case, we have the following theorem for
tropical rational functions.

Theorem 7.3. Let f(x) be a tropical meromorphic function. Suppose that f(x) has
finitely many roots and poles if and only if f(x) is a tropical rational function. More-
over, if b1, b2, . . . , br are roots of multiplicities m1,m2, . . . ,mr and c1, c2, . . . , cs are
poles of multiplicities n1, n2, . . . , ns, respectively, then the tropical rational function
is

f(x) = g(x)� h(x),

where

g(x) = K � (x⊕ b1)�m1 � (x⊕ b2)�m2 � · · · � (x⊕ br)�mr ,

and

h(x) = (x⊕ c1)�n1 � (x⊕ c2)�n2 � · · · � (x⊕ cs)�ns ,

for some K ∈ R.

Finally, given a prescribed roots and poles, there is a unique tropical meromor-
phic function up to constant multiplicities.

Theorem 7.4. Let Z = {bi}i∈I ⊂ T and P = {cj}j∈J ⊂ T, where I and J
are at most countable index sets, such that Z ∩ P = ∅. Let {mi}i∈I and {nj}j∈J
are collections of positive integers. Then there exists a unique tropical meromorphic
function f(x) (up to constant multiplies) such that f(x) has roots Z of multiplicities
{mi}I and pols P of multiplicities {nj}J , respectively.

8. Extended Tropical Meromorphic Functions

In this section, we elaborate some subtle different definitions of tropical mero-
morphic functions on recently researches. In [8], a tropical meromorphic function
is allowed to have real slopes, we call this kind of tropical meromorphic function
an extended tropical meromorphic function.

Definition 8.1. An extended tropical polynomial is of the form:

f(x) = an � xrn ⊕ an−1 � xrn−1 ⊕ a1 � xr1 ,

where ri ∈ R+ for all i = 1, 2, . . . , n.
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Figure 8. Compare f(x) = x�3⊕3�x�2⊕5�x⊕6 with x ·f(x)
(dotted line).

The definition of roots, poles, and multiplicities of tropical meromorphic func-
tions can still apply to extended ones. Extended tropical meromorphic functions
are not directly from the classical geometry as we explained in Section 6. However,
these functions arise naturally in many real world problems, therefore have many
possible applications.

Recall that an R-tropical meromorphic function f(x) is a piecewise linear func-
tion with integer slopes, and it is different from a tropical meromorphic function
just because −∞ is not in the domain. Hence, we do not consider −∞ as either a
root or a pole for any R-tropical meromorphic function.

Example 8.1. As in Example 7.1, let f(x) = x�3 ⊕ 3 � x�2 ⊕ 5 � x ⊕ 6 be an
R-tropical polynomial with roots 1, 2, 3 of multiplicities 1. Let g(x) = x� f(x) be
another R-tropical polynomial, where f(x) and g(x) are not a tropical multiple of
each other, so Theorem
refthm:givenzeros fails. The theorem fails because g(x) actually has one more root
than f(x) has, namely −∞, which we do not count in R-tropical meromorphic
functions. The graphs are as in Figure 8.

Theorems 7.1, 7.3, 7.4 will hold for a slightly modification. With prescribed
roots and poles, f(x) and g(x) are unique up to a linear term. That is

f(x) = g(x) +mx+ b = b� x�m � g(x),

for some m ∈ Z and b ∈ R.
R-tropical meromorphic functions some times are more general as the following

example shows.

Example 8.2. The function in Figure 9 is a period piecewise linear function of all
integers slopes on R is R-tropical meromorphic, but not tropical meromorphic.

On the other hand, our definition of tropical meromorphic functions is more
naturally from classical geometry. Many properties are more reasonable in some
sense.
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Figure 9. A period piecewise linear function of all integer slopes
is R-tropical meromorphic.

Example 8.3. It is interesting that f(x) = |x| (Figure 10) can be treated as a
tropical rational function. It has a root of multiplicity 2 at x = 0. If we consider
f(x) a R-tropical meromorphic function, we would think it is a polynomial since
there is no pole. However, f(x) is not a tropical polynomial. It has −∞ as a pole
of multiplicity 1. Thereofre,

f(x) = (x⊕ 0)�2 � x.

Figure 10. f(x) = |x| is a tropical rational function (x⊕ 0)�2 � x.

9. More Theorems Related to Complex Analysis

In complex analysis, Liouville’s theorem says that if f(x) is a bounded entire
function then f(x) is constant. The tropical version of Liouville’s theorem is trivial.

Theorem 9.1 (Tropical Liouville’s Theorem). Let f(x) be a tropical entire function
(a tropical meromorphic function with no pole). If f(x) is bounded then f(x) is
constant.
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The maximum modulus theorem in complex analysis says that if G is a region of
C and f(x) is a complex analytic function such that there is a point z in G such that
|f(z)| > |f(x)| for all x ∈ G. Then f(x) is constant. We do not have exactly the
same maximum modulus theorem, but the fact that both maximum and minimum
of a tropical function with no poles (even locally) appear at end points is trivial.

Theorem 9.2 (Tropical Maximum Modulus Theorem). Let I = [a, b] be a closed
interval of R. Let f(x) be a tropical meromorphic function and there is a tropical
entire function F (x) such that F |I(x) = f |I(x). Then max{f(x)|a ≤ x ≤ b} = f(b)
and min{f(x)|a ≤ x ≤ b} = f(a).
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