
Genetic Programming and Agent-Based 
Computational Economics: From Autonomous 
Agents to Product Innovation 

Shu-Heng Chen 

Abstract Despite their great development over the last decade, most ACE (agent- 
based computational economics) models have been generally weak in demonstrating 
discovery or novelty-generation processes. In this sense, they are not very distinct 
from their counterparts in neo-classical economics. One way to make progress is to 
enable autonomous agents to discover the modular structure of their surroundings, 
and hence they can adapt by using modules. This is almost equivalent to causing 
their "brain" or "mind" to be designed in a modular way. By this standard, simple 
genetic programming is not an adequate design for autonomous agents; however, 
augmenting it with automatic defined terminals (ADTs) may do the job. This paper 
provides initial research with evidence showing the results of using ADTs to design 
autonomous agents. 

1 Introduction 

GP maintains a unique position when compared with other computational intelli- 
gence tools in modeling autonomous agents. Basically, there are two distinguishing 
features of using GP in modeling autonomous agents. First, in a sense, GP provides 
agents with a larger degree of autonomy. Second, it provides us with a concrete pic- 
ture to visualize the learning process or the discovery process as a growing process, 
i.e., that of growing the evolving hierarchies of building blocks (subroutines) from 
an immense space of subroutines. 
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1.1 Autonomy 

The first feature, a larger degree of autonomy, has two implications. First, it lessens 
the burden of model-builders in their intervention or supervisory efforts over these 
agents. Second, it implies a larger degree of freedom left for agents to explore the 
environment around them, and a better chance for us to watch how they adapt and 
what they learn. 

The first implication is important when model-builders themselves know very lit- 
tle about the structure of the environment in which their agents are placed, and hence 
they do not even know how to supervise these agents in a well-defined manner; in 
particular, they do not want to misinform these agents with biased information. The 
second implication is even more important because what they learn or discover may 
be non-trivial for us. In this case, we are taking lessons from them. Alternatively, it 
makes us able to have the novelties- or surprises-generating processes, an essential 
element of any complex adaptive system. By observing and making sense of what 
agents learned, we as outsiders are also able to learn. 

1.2 Learning 

The second feature is also appealing because it enables us to give an alternative in- 
terpretation of what we mean by learning. Learning is a highly interdisciplinary con- 
cept, which concerns many disciplines, ranging from psychology, education, neural 
sciences, cognitive sciences, mathematics and statistics, to information sciences. 

Its meaning in economics also varies. In some situations, it is very trivial and 
means nothing more than making a choice repeatedly under the same or a very sim- 
ilar environment with the same options. There are a number of learning algorithms 
corresponding to this simple case. The most famous one is reinforcement learning, 
and the other equally familiar and related one is the discrete choice model associ- 
ated with the Boltzmann-Gibbs distribution. These learning algorithms only involve 
a very simple stimulus-reaction mechanism, and the development of sophisticated 
reasoning is not required, at least, not explicitly. 

In some other situations, learning means the attempt to find out the law between 
the causes and the effects, the mapping between the inputs and outputs, and the 
underlying mechanism by which observations are generated. It is more like a sci- 
entific learning. The feedforward neural networks (FNNs) represent such a kind of 
learning. Numerous mathematical analyses of neural networks show that FNNs are 
universal function approximators, even though to build such an approximation pro- 
cess is another issue. 

However, these two kinds of learning, the stimulus-reaction learning and the sci- 
entific learning, may cover only a very limited part of what we generally experience 
about learning. What has been missing is the idea of the building block, which con- 
nects what we have learned before to what we are learning now or what we will 
learn in the near future. In considering the learning of mathematics as an example, 



we cannot study differential equations without having calculus as the prerequisite. 
If we perceive learning as a walk along a ladder which makes us move higher and 
become more experienced at each step, then the kind of learning which we are inter- 
ested in is developmental learning, and genetic programming is one of the learning 
algorithms which are able to demonstrate this feature. 

2 Genetic Programming and Economics 

Genetic programming is a methodological innovation in economic. It is so because 
it captures three essential elements in the making of economics. The three elements 
are constant changes from inner nature to outer forms, evolving populations of deci- 
sion rules, and modularity. These three elements have been initiated by three promi- 
nent economists at different times. Two of them, Herbert Simon and Robert Lucas, 
are Nobel Laureates, and the one, who is not, died in 1924 when the Nobel Prize 
had not yet existed, but who is generally regarded as the father of the neo-classical 
economics. In what follows, we shall go through them in chronological order. 

2.1 Alfred Marshall 

The first connection between GP and economics is the idea of constant change. Its 
origin can be traced back to the late 19th century. Alfred Marshall [20] wrote: 

Economics, like biology, deals with a matter, of which the inner nature and constitution, as 
well as outer form, are constantly changing. (Ibid, p. 772) 

He also wrote 

The Mecca of the economists lies in economic biology rather than in economic dynamics. 
(Ibid, p. xiv) 

Alfred Marshall is regarded as a pioneer in starting the dialogue between eco- 
nomics and biology, whose legacy has been further pursued in a branch of eco- 
nomics, referred to as Evolutionary Economics. To have an idea of the constant 
change of the inner nature, the constitution, and the outer form of a matter, one 
can think of the evolution of technology, from its primitive form to its state of 
the art. 1 Nevertheless, this picture of constant change has not been demonstrated 
in any model known to economists before the advent of GP. Even the leading 
economists in Evolutionary Economics did not provide us with a tool to simulate 
this developmental-biology-like process. 

1 For example, see [3], in particular, Figures 1.3 and 1.4. 



2.2 Robert Lucas 

The second connection between GP and economics is the idea of evolving popula- 
tions. [19] provided a notion of an economic agent. 

In general terms, we view or model an individual as a collection ofdecision rules (rules that 
dictate the action to be taken in given situations) and a set of preferences used to evaluate the 
outcomes arising from particular situation-action combinations. (Ibid, p.217, Italics Added.) 

Immediately after the static description of the economic agent, Lucas continued to 
add an adaptive (evolutionary) version of it. 

These decision rules are continuously under review and revision: new decision rules are 
tried and tested against experience, and rules that produce desirable outcomes supplant 
those that do not. (Ibid, p.217). 

So, according to Lucas, the essence of an economic agent is a collection of decision 
rules which are adapting (evolving) based on a set of preferences. In brief, it is an 
idea of an evolving population. 

If we suppose that an evolving population is the essence of the economic agent, 
then it seems important to know whether we economists know any operational pro- 
cedure to substantiate this essence. Back in 1986, the answer was absolutely no. 
That certainly does not mean that we did not know anything about evolving one 
decision rule. On the contrary, since the late 1970s, the literature related to bounded 
rationality in macroeconomics has introduced a number of techniques to evolve a 
single decision rule (a single equation or a single system of equations): recursive 
regression, Kalman filtering, and Bayesian updating, to name a few. [25] made an 
extensive survey of this subject. However, these techniques shed little light on how 
to build a Lucasian agent, especially since what we wanted to evolve was not a 
single decision rule but a population of decision rules. 

In fact, it may sound a little surprising that economists in those days rarely con- 
sidered an individual as a population of decision rules, not to mention attending to 
the details of its evolution. Therefore, all the basic issues pertaining to models of 
the evolving population received little, if any, attention. For example, how does the 
agent initialize a population of decision rules? Once the agent has a population of 
decision rules, which one should they follow? Furthermore, in what ways should this 
population of decision rules "be continuously under review and revision"? Should 
we review and revise them one by one because they are independent, or modify 
them together because they may be correlated with each other? Moreover, if there 
are some "new decision rules to be tried," how do we generate (or find) these new 
rules? What are the relationships between these new rules and the old ones? Finally, 
it is also not clear how "rules that produce desirable outcomes should supplant those 
that do not." 



2.2.1 John Holland 

There is one way to explain why economists are not interested in, and hence not 
good at, dealing with a population of decision rules: economists used to derive the 
decision rule for the agent deductively, and the deductive approach usually led to 
only one solution (decision rule), which is the optimal one. There was simply no 
need for a population of decision rules. 

We do not know exactly when or how the idea of the evolving population of de- 
cision rules began to attract economists, but John Holland's contribution to genetic 
algorithms definitely exerted a great influence. In 1991, John Holland and John 
Miller published a sketch of the artificial adaptive agent [16], where they stated 

...an agent may be represented by a single string, or it may consist of a set of strings cor- 
responding to a range of potential behaviors. For example, a string that determines an 
oligopolist's production decision could either represent a single firm operating in a pop- 
ulation of other firms, or it could represent one of many possible decision rules for a given 
firm. (Ibid, p. 367; Italics added.) 

Now, formally, each decision rule is represented by a string, and, at each point in 
time, agents may have a set of strings characterizing a range of potential behaviors. 
In this sense, the agents' behavior is no longer deterministic; instead there are many 
decision rules competing before the final one is chosen. 2 

2.2.2 John Koza 

It is interesting to note that the (binary) strings initiated by Holland were originally 
motivated by an analogy to machine codes. After decoding, they can be computer 
programs written in a specific language, say, LISP or FORTRAN. Therefore, when 
a GA is used to evolve a population of binary strings, it behaves as if it were used 
to evolve a population of computer programs. If a decision rule is explicit enough 
not to cause any confusion in implementation, then one should be able to write it 
in a computer program. It is the population of computer programs (or their ma- 
chine codes) which provides the most general representation of the population of 
decision rules. However, the equivalence between computer programs and machine 
codes breaks down when what is coded consists of the parameters of decision rules 
rather than the decision rules (programs) themselves, as we often see in economic 
applications with GAs. The original meaning of evolving binary strings as evolving 
computer programs is lost. 

The loss of the original function of GAs has finally been noticed by John Koza. 
He chose the language LISP as the medium for the programs created by genetic 
programming (GP) because the syntax of LISP allows computer programs to be 
manipulated easily like the bitstrings in GAs, so that the same genetic operations 

2 Whether or not the mind of an agent can simultaneously have many different competing ideas 
or solutions is certainly an issue not in the realm of conventional economics, but a subject long 
studied in psychology, neuroscience, and the philosophy of the mind. See also [21 ]. 



used on bitstrings in GAs can also be applied to GP. Genetic programming simulates 
the biological evolution of a society of computer programs. Each of these computer 
programs can be matched to a solution to a problem. This structure provides us 
with an operational procedure of the Lucasian agent. First, a collection of decision 
rules is now represented by a society of computer programs. Second, the review and 
revision process is implemented as a process of natural selection when the genetic 
operators are applied to evolve the society of computer programs. 

2.3 Herbert Simon 

The third connection of GP to economics is the idea of complexity, in particular, 
the Simonian notion of complexity [26], i.e., hierarchy. Herbert Simon viewed hi- 
erarchy as a general principle of complex structures. Hierarchy, he argued, emerges 
almost inevitably through a wide variety of evolutionary processes, for the sim- 
ple reason that hierarchical structures are stable. To demonstrate the importance 
of a hierarchical structure or modular structure in production, Simon offered his 
well-known story about a competition between Hora and Tempus, two imaginary 
watchmakers. In this story, Hora prospered because he used the modular structure 
in his design of watches, whereas Tempus failed to prosper because his design was 
not modular. Therefore, the story is mainly about a lesson: the advantage of using a 
modular design in production. 

Modularity is becoming more important today because of the increased complex- 
ity of modem technology. Using the computer industry as an example, [2] shows 
that the industry has experienced previously unimaginable levels of innovation and 
growth because it embraced the concept of modularity. [17] also asserts that em- 
bracing the principle of modular design can enable organizations to respond rapidly 
to market needs and allow the changes to take place in a cost-effective manner. 

3 What is Missing in ACE? 

The three ideas individually already had an impact on the later development of 
economics. For example, after Marshall, through the additional efforts made by 
Thorstein Veblen, Armen Alchian, Richard Nelson, Sidney Winter, and many oth- 
ers, the ideas of evolution have been brought into the modeling of economics. Re- 
cently, much of this progress has been further made in agent-based computational 
economics (ACE), where we can see how the Lucasian agent has been brought into 
evolutionary economics via genetic programming [9, 10, 11, 8, 7, 12]. 

However, the central element on constant change in the inner nature and outer 
form has largely been missing in this literature. As we have seen above, Simon's 
work on modularity also concerns evolution. How Simon's view of evolution in 
terms of modularity can be related to Marshall's view of evolution in terms of con- 



stant change is also missing in the literature, even though a reflection of human 
history does indicate that our economy evolves toward higher and higher degree 
of complexity and novelty. The idea of hierarchical modularity should then play 
a central role as the economy evolves with these features. Nevertheless, not many 
ACE models are able to deliver this feature, including those so-called agent-based 
economic models of innovation) To fill the void, there are a number of research 
questions that need to be addressed. One of these is an in-depth investigation of the 
relationship between complexity and diversity. The other issue, as a continuation 
of what has been said in Section 1.2, concerns a learning algorithm enabling our 
autonomous agents to learn in a developmental or accumulation process through 
which unsupervised discovering can be expected. 

3.1 Complexity and Diversity 

The diversity which we discuss in this section is restricted to the production side, in 
particular, the product diversity. It could more broadly include other related kinds 
of diversity, such as process diversity, organizational diversity, and job diversity, but 
it is still restricted to the production aspect. This restriction may drive our attention 
away from other important diversity issues which may appear in the context of, for 
example, biodiversity, cultural diversity, anthropological diversity, etc.[23, 27]. The 
reason for making such a restriction is to have a sharp focus on modularity. 

Like complexity, diversity is involved because it is an important feature observed 
in the evolutionary process. Studies have shown that the development of our econ- 
omy is accompanied by constant increases in product diversity. 4 However, in addi- 
tion to that, what concerns us more is that the two ideas, diversity and complexity, 
may not be disentangled. Intuitively speaking, the more diversified an economy is, 
the more complex it becomes. 5 Assume that without being able to manage the level 
of complexity required to match a certain level of diversity, the further pursuit of di- 
versity is technologically infeasible; in other words, the incompetence to cope with 
increasing complexity can be a potential barrier to the realization of a greater di- 
versity. Then the following issue becomes important: if complexity is an inevitable 
consequence of diversity, and diversity is welfare-enhancing, how can the economy 
manage its complexity while enjoying the fruits of diversity? Simon already gave 
us the key for the solution, i.e., using modular design. However, what is lacking is a 
demonstration of how this modular design can emerge from the economy. 

3 For a survey on this literature, see [ 14]. 
4 According to an EPA (Environmental Protection Agency) study conducted in con- 
junction with the U.N. Task Force On Global Developmental Impact, consumer- 
product diversity now exceeds biodiversity. See Onion, October 21, 1998, Issue 34-12. 
http://www.theonion.com/content/node/38901 
5 Of course, this statement can not be made seriously without a clear notion of complexity. What 
we, therefore, propose here is something similar to algorithmic complexity, while with a modifica- 
tion in order to take cognitive constraints of human agents into account. 
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3.2 Learning of Hierarchical Modularity 

One key element to see the emergence of modular design is to have autonomous 
agents so that they can constantly discover useful modules (building blocks). The 
next question is how such autonomous agents can be designed. This leads us to some 
further thinking on learning, given what we have already discussed in Section 1.2. 

What do we mean that we learned? How do we make sense of what we learn? 
How do we know or feel confident that we are learning? Must sensible learning be 
incremental (i.e., in a developmental process)? If sensible learning is incremental, 
then how do we compare learning at different stages? What is the role of building 
blocks or functional modularity in this learning process? How do building blocks or 
modules help agents to learn and hence to manage the complexity given their severe 
cognitive constraints? 

4 Toward a New Design of Autonomous Agents 

4.1 Gram-Schmidt Orthogonalization Process 

The Gram-Schmidt orthogonalization process, well taught in linear algebra or func- 
tional analysis, provides us with a kind of developmental learning. In fact, math- 
ematicians also use the term "innovation" for the orthogonal elements (residuals) 
extracted from projections. This is because, along this process, each innovation im- 
plies the discovery of a new basis, which is equivalent to the discovery of a new 
space. The basis may be taken as a kind of building block. The developmental learn- 
ing defined by the Gram-Schmidt orthogonalization process can, therefore, be used 
to think of how to construct a similar discovery or learning process driven by GP. 

4.2 Automatically Defined Terminals 

Although GP can have a hierarchical modular structure, the simple genetic pro- 
gramming is not good at using the modular structure. The standard crossover and 
mutation can easily destroy the already established structure, which may cause the 
whole discovery or learning process to be non-incremental and non-progressive. 
This problem is well-known in the GP literature, and has been extensively stud- 
ied with various treatments [1, 15, 18, 24]. Motivated by these earlier studies, [6] 
proposes automatically defined terminals (ADTs) as a way to enhance GP to find 
structured solutions. 

An ADT, as shown in Fig. 1, is very similar to the automatically defined function 
(ADF) [18]. It itself has a fixed structure, in this case, a tree with a depth of two. 
The root of an ADT can be any function from the primitives (function set), while its 



11 

Fig. 1 Automatically defined terminals. 

leaf can be either a terminal from the primitives (terminal set) or can be any existing 
ADTs. In this way, it shares the same spirit as an ADT, namely, simplification, reuse, 
and encapsulation. The last item is particularly important because it means that 
whatever is inside an ADT will not be further interrupted by crossover and mutation. 

In this way, ADTs can be considered to be the part of leaming in which we 
have great confidence, and which leaves no room for doubt. Through ADTs we 
distinguish what is considered to be knowledge from what is still in a trial-and-error 
process. Only the former can then be taken as the building blocks (modules), but not 
the latter. 6 Without ADTs or equivalents, simple genetic programming is essentially 
not designed to develop building blocks; therefore, it is not very good at finding the 
modular structure inherent in the problem. 

4.3 Modu lar  Economy 

[6] tested the idea of augmented GP (augmented with ADTs) in a modular econ- 
omy. The modular economy, which is first proposed in [5], is an economy whose 
demand side and supply side both have a decomposable structure. The decompos- 
ability of the supply side, i.e., production, has already received intensive treatments 
in the literature (See Section 2.3). On the demand side, the modular economy im- 
plies a market composed of a set of consumers with modular preference. Therefore, 
it is based on a crucial assumption that the preference of consumers can be decom- 
posable. This is, indeed, a big assumption, since its validity has received very little 
attention in the literature. The closest study which may shed light on this assumption 
is that the study of neurocognitive modularity. The recent progress in neuroscience 
has allowed us to identify a number of brain modules at various levels of granu- 
larity. In addition, various hypotheses regarding the modularity of mind also exist, 
such as the famous massive modularity hypothesis [28, 13]. Nevertheless, whether 
or not one can build preference modules upon the brain/mind modules is still an 
open issue. 

6 One criterion for modules is their persistence as identifiable units for long enough time spans or 
generations [22]. 
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Fig. 2 Modularity and competitiveness. 

In the modular economy, the assumption of modular preference is made as a 
dual relation to the assumption of modular production. Nevertheless, whether in 
reality the two can have a nice mapping, e.g., a one-to-one relation, is an issue 
related to the distinction between structural modularity and functional modularity. 
While in the literature, this distinction has been well noticed and discussed, "recent 
progress in developmental genetics has led to remarkable insights into the molecular 
mechanisms of morphogenesis, but has at the same time blurred the clear distinction 
between structure and function." ([4], p. 10) 

The modular economy initiated by [5] does not distinguish two kinds of mod- 
ularity, and they are assumed to be the same. One may argue that the notion of 
modularity suitable for preference is structural, i.e., what it is, whereas the one suit- 
able for production is process, i.e., what is does. However, this understanding may 
be partial. Using the LISP parse-tree representation, [5] actually integrated the two 
kinds of modularity. Therefore, consider drinking coffee with sugar as an example. 
Coffee and sugar are modules for both production and consumption. Nevertheless, 
for the former, producers add sugar to coffee to deliver the final product, whereas 
for the latter, the consumers drink the mixture by knowing the existence of both 
components or by "seeing" the development of the product. 

Within this modular economy, [6] considered an economy with two oligopolis- 
tic firms. While both of these firms are autonomous, they are designed differently. 
One firm is designed with simple GP (SGP), whereas the other firm is designed with 
augmented GP (AGP). These two different designs match the two watchmakers con- 
sidered by [26]. The modular preferences of consumers not only define the search 
space for firms, but a search space with different hierarchies. While it is easier to 
meet consumers' needs with very low-end products, the resultant profits are negligi- 
ble. To gain higher profits, firms have to satisfy consumers up to higher hierarchies. 
However, consumers become more and more heterogeneous when their preference 
are compared at higher and higher hierarchies, which calls for a greater diversity of 
products] 

7 If the consumers' preferences are randomly generated, then it is easy to see this property through 
the combinatoric mathematics. On the other hand, in the parlance of economics, moving along the 
hierarchical preferences means traveling through different regimes, from a primitive manufacturing 
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The figures show the simulation results of the competing firms in the modular 
economy based on 100 runs. The main statistics displayed are the mean and median 
market shares of two competing firms. It can be seen that the AGP firm (the firm 
using modular design, ADTs) performs better than the SGP firm (the firm not using 
modular design), as Simon predicted. 

5 Concluding Remarks 

The design of autonomous agents plays a pivotal role in the further development of 
agent-based models in economics. The essence of autonomous agents is to own the 
automatic-discovery capability. This leads us to have a more fundamental thinking 
of what to learn and how to learn in light of the evolution of the real economy, in 
particular, the constant change of the production economy, the product, the tech- 
nology and the organization. This paper has shown that Simon's notion of near 
decomposability provides an important direction for us to work with, i.e., a modu- 
lar economy. Needless to say, the empirical content and operational details of the 
proposed modular economy need to be further addressed. Nevertheless, the modu- 
lar economy guides us to grasping the key to the promising design of autonomous 
agents. In this paper, we suggest the use of automatic defined terminals in GP to de- 
sign autonomous agents. The agent-based economic models composed of these au- 
tonomous agents can, therefore, feature a process of constant change with incessant 
novelty-findings, which is what the history of our human economy has evidenced. 
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