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Spanning Trees on the Sierpinski Gasket
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We present the numbers of spanning trees on the Sierpinski gasket SGd (n) at stage n
with dimension d equal to two, three and four. The general expression for the number
of spanning trees on SGd (n) with arbitrary d is conjectured. The numbers of spanning
trees on the generalized Sierpinski gasket SGd,b(n) with d = 2 and b = 3, 4 are also
obtained.
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1. INTRODUCTION

The enumeration of the number of spanning trees NST (G) on a graph G was first
considered by Kirchhoff in the analysis of electric circuits. (1) It is a problem of
fundamental interest in mathematics(2−5) and physics. (6,7) The number of span-
ning trees corresponds to a special q → 0 limit of the partition function of the
q-state Potts model in statistical mechanics, (8,9) which in turn is related to the
sandpile model. (10) Just like other limits of the q-state Potts model, the spanning
trees problem has been investigated intensely for decades, and has various ap-
plications in many areas. See, for example, (11) and references therein. It is also
well known that there is a bijection between close-packed dimer coverings with
spanning tree configurations on two related lattices. (12) Some recent studies on
the enumeration of spanning trees and the calculation of their asymptotic growth
constants on regular lattices were carried out in Refs. 13–16. It is of interest to con-
sider spanning trees on self-similar fractal lattices which have scaling invariance
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rather than translational invariance. Fractals are geometric structures of noninteger
Hausdorff dimension realized by repeated construction of an elementary shape on
progressively smaller length scales. (17,18) A well-known example of fractal is the
Sierpinski gasket which has been extensively studied in several contexts.(19−29)

We shall derive rigorously the numbers of spanning trees on the Sierpinski gasket
with dimension equal to two, three and four. The corresponding asymptotic growth
constants have simple expressions. We shall also conjecture the general expression
of the number of spanning trees on the Sierpinski gasket with arbitrary dimension.

2. PRELIMINARIES

We first recall some relevant definitions for spanning trees and the Sierpinski
gasket in this section. A connected graph (without loops) G = (V, E) is defined by
its vertex (site) and edge (bond) sets V and E . (2,30) Let v(G) = |V | be the number
of vertices and e(G) = |E | the number of edges in G. A spanning subgraph G ′ is
a subgraph of G with the same vertex set V and an edge set E ′ ⊆ E . As a tree is a
connected graph with no circuits, a spanning tree on G is a spanning subgraph of
G that is a tree and hence e(G ′) = v(G) − 1. The degree or coordination number
ki of a vertex vi ∈ V is the number of edges attached to it. A k-regular graph is a
graph with the property that each of its vertices has the same degree k. In general,
one can associate an edge weight xi j to each edge connecting adjacent vertices
vi and v j (see, for example Ref. 13). For simplicity, all edge weights are set to
one throughout this paper. A well-known method to enumerate spanning trees is
to construct the Laplacian matrix Q(G), which is the v(G) × v(G) matrix with
element Q(G)i j = kiδi j − A(G)i j where A(G) is the adjacency matrix. One of the
eigenvalues of Q(G) is always zero. Denote the rest as λ(G)i , 1 ≤ i ≤ v(G) − 1,
then the number of spanning trees NST (G) = (1/v(G))

∏v(G)−1
i=1 λ(G)i

(2).
When the number of spanning trees NST (G) grows exponentially with v(G)

as v(G) → ∞, there exists a constant zG describing this exponential growth: (4,5)

zG = lim
v(G)→∞

ln NST (G)

v(G)
(2.1)

where G, when used as a subscript in this manner, implicitly refers to the thermo-
dynamic limit.

For a k-regular graph Gk with k ≥ 3, there is a upper bound for the number
of spanning trees (31,32)

NST (Gk) ≤
(

2 ln v(Gk)

v(Gk)k ln k

)

(bk)v(Gk ) , (2.2)
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Fig. 1. The first four stages n = 0, 1, 2, 3 of the two-dimensional Sierpinski gasket SG2(n).

where

bk = (k − 1)k−1

[k(k − 2)]
k
2 −1

. (2.3)

With Eq. (2.1), this then yields (14)

zGk ≤ ln(bk) . (2.4)

The construction of the two-dimensional Sierpinski gasket SG2(n) at stage n
is shown in Fig. 1. At stage n = 0, it is an equilateral triangle; while stage n + 1 is
obtained by the juxtaposition of three n-stage structures. In general, the Sierpinski
gaskets SGd can be built in any Euclidean dimension d with fractal dimensionality
D = ln(d + 1)/ ln 2. (20) For the Sierpinski gasket SGd (n), the numbers of edges
and vertices are given by

e(SGd (n)) =
(

d + 1

2

)

(d + 1)n = d

2
(d + 1)n+1, (2.5)

v(SGd (n)) = d + 1

2
[(d + 1)n + 1] . (2.6)

Except the (d + 1) outmost vertices which have degree d, all other vertices
of SGd (n) have degree 2d. In the large n limit, SGd is 2d-regular.

The Sierpinski gasket can be generalized, denoted as SGd,b(n), by introduc-
ing the side length b which is an integer larger or equal to two. (33) The generalized
Sierpinski gasket at stage n + 1 is constructed with b layers of stage n hypertetra-
hedrons. The two-dimensional SG2,b(n) with b = 3 at stage n = 1, 2 and b = 4
at stage n = 1 are illustrated in Fig. 2. The ordinary Sierpinski gasket SGd (n)
corresponds to the b = 2 case, where the index b is neglected for simplicity. The

Hausdorff dimension for SGd,b is given by D = ln(
b+d−1

d
)/ ln b. (33) Notice that

SGd,b is not k-regular even in the thermodynamic limit.
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3. THE NUMBER OF SPANNING TREES ON SG2(n)

In this section we derive the number of spanning trees on the two-dimensional
Sierpinski gasket SG2(n) in detail. Let us start with the definitions of the quantities
to be used.

Definition 3.1. Consider the two-dimensional Sierpinski gasket SG2(n) at stage
n. (a) Define f2(n) ≡ NST (SG2(n)) as the number of spanning trees. (b) Define
ga2(n), gb2(n), gc2(n) as the number of spanning subgraphs with two trees such
that one of the outmost vertices belongs to one tree and the other two outmost
vertices belong to the other tree as illustrated in Fig. 3. (c) Define h2(n) as the
number of spanning subgraphs with three trees such that each of the outmost
vertices belongs to a different tree.

The quantities f2(n), ga2(n), gb2(n), gc2(n) and h2(n) are illustrated in Fig. 3,
where only the outmost vertices are shown. It is clear that the values ga2(n), gb2(n),
gc2(n) are the same because of rotation symmetry, and we define g2(n) ≡ ga2(n) =
gb2(n) = gc2(n). The initial values at stage 0 are f2(0) = 3, g2(0) = 1, h2(0) = 1.
Notice that h2(n) is the number of spanning trees on SG2(n) with the three outmost
vertices identified. The purpose of this section is to obtain the expression of f2(n) as
follows.

Theorem 3.1. The number of spanning trees on the two-dimensional Sierpinski
gasket SG2(n) at stage n is given by

f2(n) = 2α2(n)3β2(n)5γ2(n), (3.1)

Fig. 2. The generalized two-dimensional Sierpinski gasket SG2,b(n) with b = 3 at stage n = 1, 2 and
b = 4 at stage n = 1.
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Fig. 3. Illustration for the spanning subgraphs f2(n), ga2(n), gb2(n), gc2(n) and h2(n). The two
outmost vertices at the ends of a solid line belong to one tree, while the two outmost vertices at the
ends of a dot line belong to separated trees.

where the exponents are

α2(n) = 1

2
(3n − 1), (3.2)

β2(n) = 1

4
(3n+1 + 2n + 1), (3.3)

γ2(n) = 1

4
(3n − 2n − 1). (3.4)

This theorem can be proved by the following two lemmas. The three quantities
f2(n), g2(n) and h2(n) satisfy recursion relations which were first obtained in
Ref. 27.

Lemma 1. For any non-negative integer n,

f2(n + 1) = 6 f 2
2 (n)g2(n), (3.5)

g2(n + 1) = f 2
2 (n)h2(n) + 7 f2(n)g2

2(n), (3.6)

h2(n + 1) = 12 f2(n)g2(n)h2(n) + 14g3
2(n). (3.7)

Proof: The Sierpinski gaskets SG2(n + 1) is composed of three SG2(n) with
three pairs of vertices identified. To obtain the number of spanning trees f2(n + 1),
one of the SG2(n) should be spanned by two trees. There are six possibilities as
illustrated in Fig. 4. Therefore, we have

f2(n + 1) = 2 f 2
2 (n)[ga2(n) + gb2(n) + gc2(n)] = 6 f 2

2 (n)g2(n) . (3.8)

Similarly, ga2(n + 1) for SG2(n + 1) can be obtained with appropriated con-
figurations of its three constituting SG2(n) as illustrated in Fig. 5. Thus,

ga2(n + 1) = f 2
2 (n)h2(n) + 3 f2(n)ga2

2(n) + 2 f2(n)ga2(n)gc2(n)

+2 f2(n)ga2(n)gb2(n) . (3.9)

With the identity ga2(n) = gb2(n) = gc2(n) = g2(n), Eq. (3.6) is verified.
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Fig. 4. Illustration for the expression of f2(n + 1).

Finally, h2(n + 1) is the summation of appropriated configurations as illus-
trated in Fig. 6, so that

h2(n + 1) = 4 f2(n)h2(n)[ga2(n) + gb2(n) + gc2(n)]

+ 2gc2(n)ga2(n)[gc2(n) + ga2(n)]

+ 2ga2(n)gb2(n)[ga2(n) + gb2(n)]

+ 2gb2(n)gc2(n)[gb2(n) + gc2(n)]

+ 2ga2(n)gb2(n)gc2(n). (3.10)

With the identity ga2(n) = gb2(n) = gc2(n) = g2(n), Eq. (3.7) is verified.
�

By the three Eqs. (3.5)–(3.7), f2(n), g2(n) and h2(n) can be solved.

Lemma 2. For any non-negative integer n,

f2(n) = 2α2(n)3β2(n)5γ2(n), (3.11)

g2(n) = 2α2(n)3β2(n)−n−15γ2(n)+n, (3.12)

h2(n) = 2α2(n)3β2(n)−2n−15γ2(n)+2n (3.13)

where α2(n), β2(n) and γ2(n) are given in Eqs. (3.2)–(3.4)

Proof: As α2(0) = 0, β2(0) = 1 and γ2(0) = 0, Eqs. (3.11)–(3.13) are correct
for n = 0. By the recursion relation (3.5), it is easy to obtain

f2(n + 1) = 23α2(n)+133β2(n)−n53γ2(n)+n (3.14)

Fig. 5. Illustration for the expression of ga2(n + 1).
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Fig. 6. Illustration for the expression of h2(n + 1). The multiplication for the eight configurations on
the right-hand-side corresponds to three possible orientations.

where

3α2(n) + 1 = 1

2
(3n+1 − 1) = α2(n + 1), (3.15)

3β2(n) − n = 1

4
(3n+2 + 2n + 3) = β2(n + 1), (3.16)

3γ2(n) + n = 1

4
(3n+1 − 2n − 3) = γ2(n + 1) . (3.17)

The proof for Eq. (3.11) is completed by induction. Similarly, we have

g2(n + 1) = 23α2(n)+133β2(n)−2n−253γ2(n)+2n+1, (3.18)

h2(n + 1) = 23α2(n)+133β2(n)−3n−353γ2(n)+3n+2, (3.19)

which verify Eqs. (3.12) and (3.13). �

We note that although the Laplacian matrix Q(G) for G = SG2(n) can be
constructed, it does not look simple to diagonalize. For example, with appropriate
order of the vertices,

Q(SG2(1)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1 0 −1 −1

−1 4 −1 −1 0 −1

−1 −1 4 −1 −1 0

0 −1 −1 2 0 0

−1 0 −1 0 2 0

−1 −1 0 0 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.20)
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and

Q(SG2(2))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1 0 0 0 0 0 0 0 −1 −1 0 0 0

−1 4 −1 0 0 0 0 0 0 0 −1 0 −1 0 0

−1 −1 4 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 4 −1 −1 0 0 0 −1 0 −1 0 0 0

0 0 0 −1 4 −1 0 0 0 0 0 −1 0 0 −1

0 0 0 −1 −1 4 0 0 0 −1 0 0 0 0 −1

0 0 0 0 0 0 4 −1 −1 −1 −1 0 0 0 0

0 0 0 0 0 0 −1 4 −1 −1 0 0 0 −1 0

0 0 0 0 0 0 −1 −1 4 0 −1 0 0 −1 0

0 0 0 −1 0 −1 −1 −1 0 4 0 0 0 0 0

−1 −1 0 0 0 0 −1 0 −1 0 4 0 0 0 0

−1 0 −1 −1 −1 0 0 0 0 0 0 4 0 0 0

0 −1 −1 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 −1 −1 0 0 0 0 2 0

0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.21)

Denote the non-zero eigenvalues of Q(SG2(n)) as λ(SG2(n))i for 1 ≤ i ≤
v(SG2(n)) − 1.

Corollary 3.1. The product of non-zero eigenvalues of Q(SG2(n)) is given by

v(SG2(n))−1∏

i=1

λ(SG2(n))i = v(SG2(n)) f2(n), (3.22)

where f2(n) is given in Theorem 3.1 and the number of vertices v(SG2(n)) =
3/2(3n + 1) for SG2(n) is given by Eq. (2.6) with d = 2. Similar expressions
apply to all other cases discussed below.

By the definition in Eq. (2.1), we have the following corollary.

Corollary 3.2. The asymptotic growth constant for SG2 is given by

zSG2 = 1

3
ln 2 + 1

2
ln 3 + 1

6
ln 5


 1.048594856 . . . (3.23)
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This is equivalent to Eq. (20) of Ref. 28. In passing, we notice that the number
of spanning trees is the same for a planar graph and its dual, so that Theorem 3.1
also applies to the dual of SG2(n), denoted as SG∗

2(n). As SG2 is 4-regular in the
large n limit, we have zSG∗

2
= zSG2 . (16)

4. THE NUMBER OF SPANNING TREES ON SG2,b(n) WITH b = 3, 4

The method given in the previous section can be applied to the number
of spanning trees on SGd,b(n) with larger values of d and b. The number of
configurations to be considered increases as d and b increase, and the recursion
relations must be derived individually for each d and b. In this section, we consider
the generalized two-dimensional Sierpinski gasket SG2,b(n) with the number of
layers b equal to three and four. For SG2,3(n), the numbers of edges and vertices
are given by

e(SG2,3(n)) = 3 × 6n, (4.1)

v(SG2,3(n)) = 7 × 6n + 8

5
, (4.2)

where the three outmost vertices have degree two. There are (6n − 1)/5 vertices of
SG2,3(n) with degree six and 6(6n − 1)/5 vertices with degree four. Define f2,3(n),
g2,3(n), h2,3(n) as in Definition 3.1 such that the initial values are f2,3(0) = 3,
g2,3(0) = 1, h2,3(0) = 1. By the method illustrated in the above section, we obtain
following recursion relations for any non-negative integer n.

f2,3(n + 1) = 18 f 4
2,3(n)g2,3(n)h2,3(n) + 142 f 3

2,3(n)g3
2,3(n), (4.3)

g2,3(n + 1) = 2 f 4
2,3(n)h2

2,3(n) + 77 f 3
2,3(n)g2

2,3(n)h2,3(n)

+ 171 f 2
2,3(n)g4

2,3(n), (4.4)

h2,3(n + 1) = 60 f 3
2,3(n)g2,3(n)h2

2,3(n) + 564 f 2
2,3(n)g3

2,3(n)h2,3(n)

+ 468 f2,3(n)g5
2,3(n). (4.5)

The figures for these configurations are too many to be shown here. By induction
as in Lemma 3.3, these equations can be solved.

Theorem 4.1. The number of spanning trees on the two-dimensional Sierpinski
gasket SG2,3(n) at stage n is given by

f2,3(n) = 2α2,3(n)3β2,3(n)5γ2,3(n)7δ2,3(n), (4.6)

where the exponents are

α2,3(n) = 2

5
(6n − 1), (4.7)
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β2,3(n) = 1

25
(13 × 6n − 15n + 12), (4.8)

γ2,3(n) = 1

25
(3 × 6n − 15n − 3), (4.9)

δ2,3(n) = 1

25
(7 × 6n + 15n − 7) . (4.10)

g2,3(n) and h2,3(n) can also be expressed by these exponents:

g2,3(n) = 2α2,3(n)3β2,3(n)+n−15γ2,3(n)+n7δ2,3(n)−n,

h2,3(n) = 2α2,3(n)3β2,3(n)+2n−15γ2,3(n)+2n7δ2,3(n)−2n . (4.11)

By the definition in Eq. (2.1), we have the following corollary.

Corollary 4.1. The asymptotic growth constant for SG2,3 is given by

zSG2,3 = 2

7
ln 2 + 13

35
ln 3 + 3

35
ln 5 + 1

5
ln 7


 1.133231895 . . . (4.12)

For SG2,4(n), the numbers of edges and vertices are given by

e(SG2,4(n)) = 3 × 10n, (4.13)

v(SG2,4(n)) = 4 × 10n + 5

3
, (4.14)

where again the three outmost vertices have degree two. There are (10n − 1)/3
vertices of SG2,4(n) with degree six, and (10n − 1) vertices with degree four.
Define f2,4(n), g2,4(n), h2,4(n) as in Definition 3.1 such that the initial values
are f2,4(0) = 3, g2,4(0) = 1, h2,4(0) = 1. We write a computer program to obtain
following recursion relations for any non-negative integer n.

f2,4(n + 1) = 2 f 7
2,4(n)h3

2,4(n) + 516 f 6
2,4(n)g2

2,4(n)h2
2,4(n)

+ 5856 f 5
2,4(n)g4

2,4(n)h2,4(n) + 11354 f 4
2,4(n)g6

2,4(n), (4.15)

g2,4(n + 1) = 82 f 6
2,4(n)g2,4(n)h3

2,4(n) + 2786 f 5
2,4(n)g3

2,4(n)h2
2,4(n)

+ 14480 f 4
2,4(n)g5

2,4(n)h2,4(n) + 13732 f 3
2,4(n)g7

2,4(n), (4.16)
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h2,4(n + 1) = 20 f 6
2,4(n)h4

2,4(n) + 2388 f 5
2,4(n)g2

2,4(n)h3
2,4(n)

+ 30948 f 4
2,4(n)g4

2,4(n)h2
2,4(n) + 83234 f 3

2,4(n)g6
2,4(n)h2,4(n)

+ 42210 f 2
2,4(n)g8

2,4(n). (4.17)

By induction as in Lemma 3.3, these equations can be solved.

Theorem 4.2. The number of spanning trees on the two-dimensional Sierpinski
gasket SG2,4(n) at stage n is given by

f2,4(n) = 2α2,4(n)3β2,4(n)5γ2,4(n)41δ2,4(n)103ε2,4(n), (4.18)

where the exponents are

α2,4(n) = 2

9
(10n − 1), (4.19)

β2,4(n) = 1

3
(10n + 2), (4.20)

γ2,4(n) = 1

9
(10n − 1), (4.21)

δ2,4(n) = 2

27
(2 × 10n + 9n − 2), (4.22)

ε2,4(n) = 2

27
(10n − 9n − 1) . (4.23)

g2,4(n) and h2,4(n) can also be expressed by these exponents:

g2,4(n) = 2α2,4(n)3β2,4(n)−15γ2,4(n)41δ2,4(n)−n103ε2,4(n)+n,

h2,4(n) = 2α2,4(n)3β2,4(n)−15γ2,4(n)41δ2,4(n)−2n103ε2,4(n)+2n . (4.24)

By the definition in Eq. (2.1), we have the following corollary.

Corollary 4.2. The asymptotic growth constant for SG2,4 is given by

zSG2,4 = 1

6
ln 2 + 1

4
ln 3 + 1

12
ln 5 + 1

9
ln(41) + 1

18
ln(103)


 1.194401490 . . . (4.25)

5. THE NUMBER OF SPANNING TREES ON SGd(n) WITH d = 3, 4

In this section, we derive the number of spanning trees on SGd (n) with
d = 3, 4. For the three-dimensional Sierpinski gasket SG3(n), we use the following
definitions.
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Definition 5.1. Consider the three-dimensional Sierpinski gasket SG3(n) at
stage n. (a) Define f3(n) ≡ NST (SG3(n)) as the number of spanning trees. (b)
Define g3(n) as the number of spanning subgraphs with two trees such that one
of the outmost vertices belongs to one tree and the other three outmost vertices
belong to the other tree. (c) Define h3(n) as the number of spanning subgraphs
with two trees such that two of the outmost vertices belong to one tree and the other
two outmost vertices belong to the other tree. (d) Define p3(n) as the number of
spanning subgraphs with three trees such that two of the outmost vertices belong
to one tree and the other two outmost vertices separately belong to the other trees.
(e) Define q3(n) as the number of spanning subgraphs with four trees such that
each of the outmost vertices belongs to a different tree.

The quantities f3(n), g3(n), h3(n), p3(n) and q3(n) are illustrated in
Fig. 7, where only the outmost vertices are shown. There are four equivalent
g3(n), three equivalent h3(n), and six equivalent p3(n). The initial values at stage
0 are f3(0) = 16, g3(0) = 3, h3(0) = 1, p3(0) = 1, q3(0) = 1. Notice that q3(n) is
the number of spanning trees on SG3(n) with the four outmost vertices identified.

In the process of calculation, we find that it is convenient to combine g3(n) and
h3(n) and define gh3(n) ≡ g3(n) + h3(n). We obtain following recursion relations
for any non-negative integer n.

f3(n + 1) = 72 f 2
3 (n)gh3(n)p3(n) + 56 f3(n)gh3

3(n), (5.1)

gh3(n + 1) = 6 f 2
3 (n)gh3(n)q3(n) + 26 f 2

3 (n)p2
3(n)

+ 120 f3(n)gh2
3(n)p3(n) + 22gh4

3(n), (5.2)

p3(n + 1) = 6 f 2
3 (n)p3(n)q3(n) + 14 f3(n)gh2

3(n)q3(n)

+ 120 f3(n)gh3(n)p2
3(n) + 88gh3

3(n)p3(n), (5.3)

q3(n + 1) = 144 f3(n)gh3(n)p3(n)q3(n) + 208 f3(n)p3
3(n)

+ 56gh3
3(n)q3(n) + 720gh2

3(n)p2
3(n) . (5.4)

The figures for these configurations are too many to be shown here. With the initial
values given above, these equations can be solved by induction as in Lemma 3.3.

Fig. 7. Illustration for the spanning subgraphs f3(n), g3(n), h3(n), p3(n) and q3(n). The two outmost
vertices at the ends of a solid line belong to one tree, while the two outmost vertices at the ends of a
dot line belong to separated trees.
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Theorem 5.1. The number of spanning trees on the three-dimensional Sierpinski
gasket SG3(n) at stage n is given by

f3(n) = 2α3(n)3β3(n), (5.5)

where the exponents are

α3(n) = 4n+1 + n, (5.6)

β3(n) = 1

3
(4n − 3n − 1). (5.7)

gh3(n), p3(n) and q3(n) can also be expressed by these exponents:

gh3(n) = 2α3(n)−n−23β3(n)+n,

p3(n) = 2α3(n)−2n−43β3(n)+2n,

q3(n) = 2α3(n)−3n−43β3(n)+3n . (5.8)

By the definition in Eq. (2.1), we have the following corollary.

Corollary 5.1. The asymptotic growth constant for SG3 is given by

zSG3 = 2 ln 2 + 1

6
ln 3


 1.569396409 . . . (5.9)

For the four-dimensional Sierpinski gasket SG4(n), we use the following
definitions.

Definition 5.2. Consider the four-dimensional Sierpinski gasket SG4(n) at stage
n. (a) Define f4(n) ≡ NST (SG4(n)) as the number of spanning trees. (b) Define
g4(n) as the number of spanning subgraphs with two trees such that two of the
outmost vertices belong to one tree and the other three outmost vertices belong
to the other tree. (c) Define h4(n) as the number of spanning subgraphs with
two trees such that one of the outmost vertices belong to one tree and the other
four outmost vertices belong to the other tree. (d) Define p4(n) as the number of
spanning subgraphs with three trees such that one of the outmost vertices belong
to one tree, two of the other outmost vertices belong to another tree and the rest
two outmost vertices belong to the other tree. (e) Define q4(n) as the number of
spanning subgraphs with three trees such that three of the outmost vertices belong
to one tree and the other two outmost vertices separately belong to the other
trees. (f) Define r4(n) as the number of spanning subgraphs with four trees such
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Fig. 8. Illustration for the spanning subgraphs f4(n), g4(n), h4(n), p4(n), q4(n), r4(n) and s4(n). The
two outmost vertices at the ends of a solid line belong to one tree, while the two outmost vertices at
the ends of a dot line belong to separated trees.

that two of the outmost vertices belong to one tree and the other three outmost
vertices separately belong to the other trees. (g) Define s4(n) as the number of
spanning subgraphs with five trees such that each of the outmost vertices belongs
to a different tree.

The quantities f4(n), g4(n), h4(n), p4(n), q4(n), r4(n) and s4(n) are illustrated
in Fig. 8, where only the outmost vertices are shown. There are ten equivalent
g4(n), five equivalent h4(n), fifteen equivalent p4(n), ten equivalent q4(n) and
ten equivalent r4(n). The initial values at stage 0 are f4(0) = 125, g4(0) = 3,
h4(0) = 16, p4(0) = 1, q4(0) = 3, r4(0) = 1, s4(0) = 1. Notice that s4(n) is the
number of spanning trees on SG4(n) with the five outmost vertices identified.

We find that it is convenient to reduce the number of variables by defin-
ing gh4(n) ≡ 3g4(n) + h4(n) and pq4(n) ≡ 2p4(n) + q4(n). We write a computer
program to obtain following recursion relations for any non-negative integer n.

f4(n + 1) = 1440 f 2
4 (n)gh4(n)pq4(n)r4(n) + 520 f 2

4 (n)pq3
4 (n)

+ 1120 f4(n)gh3
4(n)r4(n) + 3600 f4(n)gh2

4(n)pq2
4 (n)

+ 1320gh4
4(n)pq4(n), (5.10)

gh4(n + 1) = 72 f 2
4 (n)gh4(n)pq4(n)s4(n) + 378 f 2

4 (n)gh4(n)r2
4 (n)

+ 816 f 2
4 (n)pq2

4 (n)r4(n) + 56 f4(n)gh3
4(n)s4(n)

+ 3756 f4(n)gh2
4(n)pq4(n)r4(n) + 2360 f4(n)gh4(n)pq3

4 (n)

+ 688gh4
4(n)r4(n) + 2562gh3

4(n)pq2
4 (n), (5.11)
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pq4(n + 1) = 48 f 2
4 (n)gh4(n)r4(n)s4(n) + 52 f 2

4 (n)pq2
4 (n)s4(n)

+ 544 f 2
4 (n)pq4(n)r2

4 (n) + 240 f4(n)gh2
4(n)pq4(n)s4(n)

+ 1252 f4(n)gh2
4(n)r2

4 (n) + 4720 f4(n)gh4(n)pq2
4 (n)r4(n)

+ 724 f4(n)pq4
4 (n) + 44gh4

4(n)s4(n)

+ 3416gh3
4(n)pq4(n)r4(n) + 3104gh2

4(n)pq3
4 (n), (5.12)

r4(n + 1) = 72 f 2
4 (n)pq4(n)r4(n)s4(n) + 126 f 2

4 (n)r3
4 (n)

+ 168 f4(n)gh2
4(n)r4(n)s4(n) + 360 f4(n)gh4(n)pq2

4 (n)s4(n)

+ 3756 f4(n)gh4(n)pq4(n)r2
4 (n) + 2360 f4(n)pq3

4 (n)r4(n)

+ 264gh3
4(n)pq4(n)s4(n) + 1376gh3

4(n)r2
4 (n)

+ 7686gh2
4(n)pq2

4 (n)r4(n) + 2328gh4(n)pq4
4 (n), (5.13)

s4(n + 1) = 2880 f4(n)gh4(n)pq4(n)r4(n)s4(n) + 5040 f4(n)gh4(n)r3
4 (n)

+ 1040 f4(n)pq3
4 (n)s4(n) + 16320 f4(n)pq2

4 (n)r2
4 (n)

+ 1120gh3
4(n)r4(n)s4(n) + 3600gh2

4(n)pq2
4 (n)s4(n)

+ 37560gh2
4(n)pq4(n)r2

4 (n) + 47200gh4(n)pq3
4 (n)r4(n)

+ 4344pq5
4 (n) . (5.14)

With the initial values given above, these equations can be solved by induction
as in Lemma 3.3.

Theorem 5.2. The number of spanning trees on the four-dimensional Sierpinski
gasket SG4(n) at stage n is given by

f4(n) = 2α4(n)5β4(n)7γ4(n), (5.15)

where the exponents are

α4(n) = 3

2
(5n − 1), (5.16)

β4(n) = 3

8
(5n+1 + 4n + 3), (5.17)
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γ4(n) = 3

8
(5n − 4n − 1) . (5.18)

gh4(n), pq4(n), r4(n) and s4(n) can also be expressed by these exponents:

gh4(n) = 2α4(n)5β4(n)−n−17γ4(n)+n,

pq4(n) = 2α4(n)5β4(n)−2n−27γ4(n)+2n,

r4(n) = 2α4(n)5β4(n)−3n−37γ4(n)+3n,

s4(n) = 2α4(n)5β4(n)−4n−37γ4(n)+4n . (5.19)

By the definition in Eq. (2.1), we have the following corollary.

Corollary 5.2. The asymptotic growth constant for SG4 is given by

zSG4 = 3

5
ln 2 + 3

4
ln 5 + 3

20
ln 7


 1.914853265 . . . (5.20)

6. THE NUMBER OF SPANNING TREES ON SGd(n) FOR GENERAL d

With the above theorems that the numbers of spanning trees on SG2(n),
SG3(n) and SG4(n) have only simple factors, we observe the following conjecture
for the number of spanning trees fd (n) ≡ NST (SGd (n)) on SGd (n) for general d.

Conjecture 6.1. The number of spanning trees on the d-dimensional Sierpinski
gasket SGd (n) at stage n is given by

fd (n) = 2αd (n)(d + 1)βd (n)(d + 3)γd (n), (6.1)

where the exponents are

αd (n) = d − 1

2
[(d + 1)n − 1], (6.2)

βd (n) = d − 1

2d
[(d + 1)n+1 + dn + d − 1], (6.3)

γd (n) = d − 1

2d
[(d + 1)n − dn − 1]. (6.4)
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Notice that these exponents are positive integers when d is a positive inte-
ger and n is a non-negative integer. It is intriguing that the recursion relations
(4.3)–(4.5), (4.15)–(4.17), (5.1)–(5.4) and (5.10)–(5.14) become more and more
complicated as b and d increase, but the solutions remain simple. We do not know
a good reason to explain it by the present method.

SGd (0) at state n = 0 is a complete graph with (d + 1) vertices, each of which
is adjacent to all of the other vertices. Setting n = 0 into Conjecture 2 is consistent
with the expectation that the number of spanning trees on the d-dimensional
Sierpinski gasket SGd (0) at stage zero is given by fd (0) = (d + 1)d−1.

With the number of vertices for SGd (n) given in Eq. (2.6), Conjecture 6.1
leads to following result.

Conjecture 6.2. The asymptotic growth constant for SGd (n) is given by

zSGd = d − 1

d(d + 1)
[d ln 2 + (d + 1) ln(d + 1) + ln(d + 3)] . (6.5)

Conjectures 6.1 and 6.2 reduce to Theorems 3.1, 5.1, 5.2 and Corollaries 3.2,
5.1, 5.2 respectively when d is set to two, three and four.

By Eq. (2.4), zSGd has the upper bound ln(b2d ). It is of interest to see how
close the value zSGd is to this bound. For this purpose, we define the ratio

rSGd = zSGd

ln(b2d )
(6.6)

and list the first few values of zSGd and rSGd in Table I. Our results agree with the
observation made in Ref. 14 that zSGd increases as the degree k = 2d increases.
Compared with the values zLd for d-dimensional hypercubic lattice Ld which
also has k = 2d in Refs. 14, 34, zSGd < zLd for all d ≥ 2 indicates that SGd

Table I. Numerical values of zSGd and rSGd . The last digits

given are rounded off.

d D k zSGd rSGd

2 1.585 4 1.048594857 0.862051042

3 2 6 1.569396409 0.928042816

4 2.322 8 1.914853265 0.953722370

5 2.585 10 2.172764568 0.966999152

6 2.807 12 2.378271274 0.974945363

7 3 14 2.548944395 0.980152960

8 3.170 16 2.694814686 0.983785240

9 3.322 18 2.822140640 0.986437211

10 3.459 20 2.935085659 0.988442577
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is less densely connected than Ld . The ratio rSGd increases with dimension and
approaches one, but the convergence is not as fast as those for the regular lattices
given in Refs. 14, 16.
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