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Elite Athletes Refine  
Their Internal Clocks

Yin-Hua Chen and Paola Cesari

Evaluating time properly is crucial for everyday activities from fundamental 
behaviors to refined coordinative movements such as in sport playing. Lately the 
concept of the existence of a unique internal clock for evaluating time in different 
scales has been challenged by recent neurophysiology studies. Here we provide 
evidence that individuals evaluate time durations below and above a second based 
on two different internal clocks for sub- and suprasecond time ranges: a faster 
clock for the subsecond range and a slower one for suprasecond time. Interestingly, 
the level of precision presented by these two clocks can be finely tuned through 
long-term sport training: Elite athletes, independently from their sport domains, 
generate better time estimates than nonathletes by showing higher accuracy and 
lower variability, particularly for subsecond time. We interpret this better time 
estimation in the short durations as being due to their extraordinary perceptual 
and motor ability in fast actions.
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It is well-known that elite athletes develop skills necessary to decode events 
in the space–time domain, such as catching a flying baseball (McBeath, Shaffer, 
& Kaiser, 1995), performing an attacking forehand drive in table tennis (Bootsma 
& Van Wieringen, 1990), or anticipating the behavior of others such as predicting 
the fate of a basketball shot (Aglioti, Cesari, Romani, & Urgesi, 2008). In other 
words, outstanding motor expertise is seamlessly linked to perception which 
draws on detection of spatial and temporal information. In general for movement 
evaluation, space and time are considered inseparable, so we set out to understand 
the nature of time evaluation when it is in isolation from spatial dimensions and 
when testing exceptional timekeepers such as sport players. We tackled this issue 
by investigating elite athletes’ ability to reproduce different times of exposure of 
a static visual display.

For time estimation, two scalar properties have been proposed. The first one 
is mean accuracy, suggesting that the estimated time changes linearly, and usually 
accurately, as the sample time varies. The second property indicates that the preci-

Official Journal of ISMC
www.MC-Journal.com
ORIGINAL RESEARCH

http://dx.doi.org/10.1123/mc.2013-0081
http://www.i-s-m-c.org
http://www.MC-Journal.com


Elite Internal Clocks  91

sion of time estimation, usually in the form of a Weber-fraction-like measure such 
as the coefficient of variation (CV), remains constant as sample time varies (see 
Allan, 1998, and Wearden & Lejeune, 2008, for reviews). These two properties 
were considered as evidence of the existence of one centralized internal clock for 
all timescales (e.g., see Gibbon, Church, & Meck, 1984). However, more recently, 
the “one-clock” notion has been challenged by numerous reports in neuroscience 
which, by providing the evidence of distributed brain circuits for time processing, 
suggest the existence of multiple clocks for multiple timescales (for a review, see 
Mauk & Buonomano, 2004). For instance, cerebellum impairment distorts the 
perception for subsecond durations but not for longer ones (Ivry & Spencer, 2004; 
Koch et al., 2007), and pharmacological manipulation affects time perception dif-
ferently in the sub- and suprasecond range of time (Matell, King, & Meck, 2004; 
Rammsayer, 1999). In general, subsecond durations are timed at a subcognitive 
level, particularly in the motor brain areas associated with the refined control 
of coordinative movements such as supplementary motor area (SMA), primary 
motor cortex, and cerebellum (Ivry & Spencer, 2004; Lewis & Miall, 2006), 
while durations above a second are timed by cognitive processes requiring work-
ing memory and attention and which are related to different cortical structures 
such as basal ganglia, prefrontal regions, and parietal regions (Buhusi & Meck, 
2005; Ivry, 1996; Lewis & Miall, 2003, Vicario et al., 2010; Vicario, Martino, 
& Koch, 2013; Wiener et at., 2010). In line with this notion, we expected that 
the impact of sport training would refine athletes’ internal clocks in both the 
sub- and suprasecond range of time since long-term practice of physical exercise 
has been shown to induce adaptive functional and structural changes in the brain 
involving both motor- and memory-related networks (e.g., Chaddock et al., 2010;  
Jacini et al., 2009; Jäncke et al., 2009; Lambourne, 2006; Wei, Zhang, Jiang, & Luo,  
2011).

A major limitation in the time perception literature is that for the most part 
only one temporal duration in each range of time (sub- and suprasecond time) has 
been considered when testing the existence of the two clocks’ mechanism. Here, to 
get a deeper insight into the workings of the two hypothetical clocks, we applied 
16 different time durations from 300 to 1,800 ms in 100-ms steps.

In sum, the purpose of this study is twofold: first, to corroborate the existence 
of the two hypothetical internal clocks, working above and below a second, by 
using a wide range of time durations; and second, to explore whether the accuracy 
and precision of these two clocks can be increased due to the long-term practice 
of physical exercise such as that followed by elite athletes. Thus, we recruited 
high-level fencers and pole-vaulters as groups of athletes and compared their 
performance with nonathletes. The selection of these two sports was aimed at 
investigating whether time estimation is influenced by the different training experi-
ences that are typically referred to as “open-skill” (for fencing) or as “closed-skill” 
(for pole-vaulting) (Schmidt & Wrisberg, 2008). Indeed, while fencing requires 
athletes to fight against an opponent and perform within a highly unpredictable 
environment (Szabo, 1977), by contrast pole-vaulting is an individual sport and 
athletes are trained to find their own action time in a relatively stable environ-
ment (Ganslen, 1961). A comparison of the two groups of the athletes would 
allow us to observe whether the ability to estimate time is affected by specific 
perceptual–motor expertise.
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Methods

Participants

Fifteen elite fencers (5 male and 10 female with a mean age of 27.5 ± 8.0 years), 
12 elite pole-vaulters (9 male and 3 female with a mean age of 26.8 ± 4.0 years), 
and 23 nonathletes (10 male and 13 female with a mean age of 28.0 ± 4.7 years) 
took part in this experiment. The three groups of participants did not significantly 
differ either by age, F(2, 49) = 0.18, p = .84, or gender distribution, χ2(2) = 4.89, 
p = .09. Elite fencers and pole-vaulters were recruited based on the criteria of 
having more than 7 years of training experience (for fencers 16.2 ± 8.8 and for 
pole-vaulters 11.2 ± 3.3 years of training) and active participation in competition at 
least at the national level. Nonathletes had no experience in sports at a competitive 
level. All participants had normal or corrected-to-normal vision and were naive 
about the purpose of the experiment. All of them gave written informed consent 
to the study in accordance with the procedure approved by the ethics committee 
of the Department of Neurological and Movement Sciences, University of Verona,  
Italy.

Task

Participants were instructed to look at a visual stimulus that flashed for a specific 
temporal duration and to reproduce the duration using their index finger of the 
dominant hand by pressing and releasing the space bar of a computer keyboard 
(cf. Brown, 1995). No feedback was given.

Materials and Procedure

The experiment was conducted in a small cubicle, insulated from external light 
and noise. Participants were seated opposite a 19-in. computer monitor (1,280 × 
1,024, 75 Hz) with a keyboard placed at a distance of 60 cm in front of them. The 
experimental program was written using MATLAB 7.1 and Cogent 2000, which 
assured millisecond accuracy for stimulus and reproduced time. The stimulus was 
an image of scrambled pixels (20 × 16 cm). It was displayed on a black background 
and located in the center of the screen for 16 different temporal durations from 300 
to 1,800 ms in 100-ms steps, divided into the subsecond range from 300 to 1,000 ms 
and suprasecond range from 1,100 to 1,800 ms. A fixation cross was displayed for 2 
s before the exposure of the stimulus. The task was explained to the participants by 
on-screen instructions, which were clarified when necessary by the experimenter. 
A few practice trials were given to ensure that the task was fully understood. The 
16 different sample temporal durations were tested in a randomized order, and each 
of them was tested for eight repetitions for a total of 128 trials. The experimental 
procedure took approximately 1 hr.

Data Analysis

Reproduced times were entered to fit two linear (bilinear) regressions as a function of 
test time durations in the subsecond range (8 levels, from 300 to 1,000 ms in 100-ms 
steps) and in the suprasecond range (8 levels, from 1,100–1,800 ms in 100-ms steps), 
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respectively, and to fit one single linear regression across all the sample times (16 
levels, from 300 to 1,800 ms in 100-ms steps) to model the relationship between the 
reproduced times and sample times. To compare the goodness of fit between the 
bilinear and the single linear approach, the sums of squared residuals (SSRs) from 
the data points to the regressions of sub- and suprasecond ranges were calculated 
individually and added together and then compared with the SSR for the single 
linear regression (cf. Kagerer et al., 2002). A two-way repeated measures analysis 
of variance (ANOVA) was used; the within-subjects factor was the two SSRs of 
bilinear and single linear regressions, and the between-subjects factor was the 
three groups of fencers, pole-vaulters, and nonathletes. Slope values of the bilinear 
regressions were compared in a two-way repeated-measures ANOVA, with range 
of time (sub- and suprasecond) as the within-subjects factor and group (fencers, 
pole-vaulters, and nonathletes) as the between-subjects factor.

In addition we calculated the following: (1) the ratio between the absolute 
errors of the reproduced time and the respective sample time (AE ratio) to study 
participants’ reproduction error and (2) the CV of the reproduced time as the 
percentage of standard deviation to the mean of the reproduced time to study 
participants’ reproduction variability. For each variable, we calculated the mean 
for sub- and suprasecond ranges of time, respectively, and compared them in a 
two-way repeated-measures ANOVA with range of time (sub- and suprasecond) 
as the within-subjects factor and group (fencers, pole-vaulters, and nonathletes) 
as the between-subjects factor. SPSS 16.0 was used for statistical analyses. The 
significance level for all tests was set at p < .05. A Bonferroni adjustment was used 
when making multiple comparisons.

Results
Before data fitting, for each participant, reproduced times were first trimmed to 
discard outliers outside the range of the mean plus or minus twice the standard 
deviation. This procedure resulted in the loss of 1.72% of all the data.

Goodness of Fit of Biregressions and Single Linear 
Regression

Figure 1 illustrates an example of the reproduced times plotted as a function of 8 
sample times in the subsecond range (regression line shown by a red solid line) 
and in the suprasecond range (shown by a green line) and a function of the total 
16 sample times (shown by a black line). The two-way (2 approaches of fitting × 
3 groups) repeated-measures ANOVA detected a significant main effect of fitting 
approach, showing that a bilinear approach resulted in a significantly lower SSR 
than the single linear one (4,247,234 vs. 4,426,359), F(1, 47) = 28.765, p < .001. 
The main effect of group was also found significant, F(2, 47) = 5.698, p < .01, 
with smaller SSR for both fencers and pole-vaulters than nonathletes (mean value 
of 3,559,856, 3,555,497, and 5,895,037 for fencers, pole-vaulters, and nonath-
letes, respectively). Comparisons between athletes (fencers and pole-vaulters) and 
nonathletes were significant, p values < .05, but the comparison between fencers 
and pole-vaulters was not, p = 1.00. The interaction effect was not found to be 
significant, F(2, 47) = 0.430, p = .653 (see Figure 2a).
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Figure 2 — (a) Average sum of squared residuals (SSR) for bilinear and single linear regressions of 
fencers, pole-vaulters, and nonathletes. Bilinear fitting shows the combined SSR from the regressions 
of the subsecond and suprasecond ranges of time. Note that the lower the value of SSR, the better 
the data fitting. Error bars indicate standard errors, *p < .05. (b) Average slope value of two regres-
sion lines fitted from data of the sub- and suprasecond ranges of time for fencers, pole-vaulters, and 
nonathletes. Error bars indicate standard errors, *p < .05.

Figure 1 — One example of reproduced times of a pole-vaulter: data plotted as a function 
of 8 sample times in the subsecond range (regression line shown by gray solid line) and in 
the suprasecond range (black solid line) and as a function of the total 16 sample times (light 
gray solid line). The dashed light gray line denotes the identical line where the participant’s 
reproduced time equals the sample time.
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Slope Difference Between the Biregressions

As shown in Figure 2b, the slope of subsecond regression was steeper than the 
slope of suprasecond regression. Indeed, the two-way (2 ranges of time × 3 groups) 
repeated-measures ANOVA detected a significant main effect of range, with signifi-
cantly greater value for the subsecond range than for the suprasecond range (0.802 
vs. 0.644), F(1, 47) = 17.818, p < .001. The other main effect of group, F(2, 47) = 
0.239, p = .789, and range-by-group interaction, F(2, 47) = 0.605, p = .550, were not 
found to be significant. The ratio of reproduced time in the percentage of respective 
sample time was indeed in our experiment greater than 1 (1.023) and lower than 1 
(0.857) for sub- and suprasecond ranges, respectively. This result was in accordance 
with the “Vierordt-like effect” (Vierordt, 1868) which proposes that shorter (sub-
second) durations are overestimated and longer (suprasecond) ones underestimated.

Reproduction Error (AE Ratio) and Variability (CV)

Based on the previous result of SSR by fitting participants’ reproduced times, we 
found that elite athletes, independent of their background in fencing or pole-vaulting, 
were not significantly different in terms of time reproduction. Again, as shown in 
Figure 3a and 3c, we observed that fencers and pole-vaulters appeared to have 
extremely similar tendencies of reproduction error and variability along with the 
increase of sample time. The ANOVA (2 ranges of time × 3 groups) of AE ratio 
detected a significant main effect of range of time, F(1, 47) = 38.063, p < .001, 
with greater error observed in the subsecond range than in the suprasecond range 
(mean values were 0.238 and 0.177, respectively). There was also a significant 
main effect of group, F(2, 47) = 8.597, p < .01, with both fencers and pole-vaulters 
making fewer errors than nonathletes, p values of the two pairs of comparison all 
less than .005, while there was no difference between the two groups of athletes, p 
= 1.000 (mean values were 0.195, 0.191, and 0.235 for fencers, pole-vaulters, and 
nonathletes, respectively). The interaction effect was found to be significant, F(2, 
47) = 4.741, p < .05 (see Figure 3b). Post hoc comparisons showed that both fencers 
and pole-vaulters made fewer errors than nonathletes, particularly in reproducing 
the subsecond durations, p values < .005 (mean values were 0.220, 0.208, and 0.285 
for fencers, pole-vaulters, and nonathletes, respectively), while no such tendencies 
were found for the suprasecond time durations, p values = 1.000 (mean values were 
0.170, 0.175, and 0.185 for fencers, pole-vaulters, and nonathletes, respectively). 
Fencers and nonathletes showed greater error in temporal estimates for subsecond 
time reproductions compared with suprasecond reproductions (p values < .05 for 
fencers and nonathletes and p = .09 for pole-vaulters).

Illustrated in Figure 3c, the ANOVA (2 ranges of time × 3 groups) of CV 
detected a significant main effect of range of time, F(1, 47) = 128.102, p < .001, 
again with the subsecond range of time revealing greater variability compared 
with the suprasecond range of time (respective means were 0.236 and 0.163). A 
significant main effect of group was also found, F(2, 47) = 7.710, p < .005, with 
both fencers and pole-vaulters making fewer errors than nonathletes, p values of the 
two pairs of comparison all less than .005, while there was no difference between 
the two groups of athletes, p = 1.000 (mean values were 0.174, 0.169, and 0.211 for 
fencers, pole-vaulters, and nonathletes, respectively; see Figure 3d). The interaction 
effect was not significant, F(2, 47) = 1.202, p = .310.
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Discussion
The aim of this study was to investigate whether the long-term training experience 
of elite athletes has an impact on evaluating the passage of time in a time repro-
duction task. We tested multiple time durations ranging from 300 to 1,800 ms in 
100-ms steps to check whether a single or a two-clock mechanism is applied in 
sub- and suprasecond ranges of time.

As a general result we found that for all participants, independent of their level 
of skill, two different clocks for evaluating time below and above a second, respec-
tively, were applied (Buhusi & Meck, 2005). We were able to support this idea by 
showing a better fit (lower value of SSR) when two separate linear regressions, one 
for the sub- and the other one for the suprasecond range, were analyzed compared 
with a single linear regression computed across the entire range of durations tested. 
The two regressions also showed two different rates of increment. Moreover, the 
results for reproduction error yield a violation of the first scalar property for time 

Figure 3 — (a) Average reproduction error (AE ratio = absolute error of reproduced time/sample 
time) in different sample times for fencers, pole-vaulters, and nonathletes. (b) Average reproduction 
error in the sub- and suprasecond ranges of time for fencers, pole-vaulters, and nonathletes. (c) Aver-
age reproduction variability (CV = standard deviation/mean of reproduced time) at different sample 
times for fencers, pole-vaulters, and nonathletes. (d) Average reproduction variability in the sub- and 
suprasecond ranges of time for fencers, pole-vaulters, and nonathletes. Error bars indicate standard 
errors, *p < .05.
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evaluation (Wearden & Lejeune, 2008), supporting the presence of multiple clocks 
for evaluating time across multiple scales. Indeed, the idea of having multiple 
clocks has also been proposed by Kagerer and colleagues (2002) although at dif-
ferent timescales (from 1 to 3 s and from 3.5 to 5.5 s). Here we provide evidence 
that even for very brief durations, more than one clock is applied. In addition, the 
results for reproduction variability demonstrate a violation of the second scalar 
property of time evaluation: As the temporal durations to be reproduced increased, 
participants’ estimation variance (CV) decreased (e.g., Vidalaki, Ho, Bradshaw, & 
Szabadi, 1999; Wearden & Lejeune, 2008). Taken together, these results suggest 
that two hypothesized clocks may exist within timescales below and above 1 s.

Although the data of both athletes and nonathletes can be better fitted by two 
separate regressions, athletes showed higher reproducibility than nonathletes at all 
the temporal durations tested: Athletes possessed the capacity to keep the reproduced 
times closer to the target times more consistently compared with nonathletes, even 
when the task did not specify their domain of expertise and even when time was 
considered in isolation from space. Moreover, no difference between the two groups 
of athletes was found. This result implies that high-level sport achievements are 
obtained by recalibrating and refining athletes’ temporal perception independently 
from their training specificity (closed vs. open skill; Schmidt & Wrisberg, 2008).

It is important to underline that for these clocks to work properly, both accuracy 
and precision have to be considered, the former to limit deviation from the target 
time and the latter to minimize the dispersion of estimates around the target (Gibbon 
et al., 1984; Wearden & Lejeune, 2008). Thus, less error and lower variability in 
time evaluation imply a better clock system. Remarkably, the athletes’ better time 
estimates were found to be particularly pronounced in the range of time below a 
second. The ability to reproduce short (subsecond) durations has been related to 
unconscious and automatic behaviors, triggered by a motor neural loop in particular 
for SMA, primary motor cortex, and cerebellum (e.g., Buhusi & Meck, 2005; Ivry 
& Spencer, 2004; Koch et al., 2007). Athletes express higher ability in understand-
ing (Williams & Davids, 1998) and in anticipating (Aglioti et al., 2008; Tomeo, 
Cesari, Aglioti, & Urgesi, 2012) dynamic events occurring in the space–time domain 
underpinned by a specific activation of the primary motor cortex (Aglioti et al., 
2008). It is important to notice that most sport actions are explosive in nature and 
are usually performed within a short time window. Therefore, athletes can better 
recognize and then reproduce time durations particularly within the range of 100 
ms. A similar result was found in our recent study (Chen, Pizzolato, & Cesari, 2013) 
investigating subsecond time estimations of professional pianists.

For the suprasecond range of time, athletes showed the same level of accu-
racy as nonathletes. Indeed, many daily life activities take place within the range 
of time from 1 to 2 s. As a result, the ability to reproduce these durations might 
be easily available for the general population. Nevertheless, athletes presented 
less variability over trials, implying a better sensory and motor stability as well 
as timing strategy. In this range of time, temporal processing is considered less 
automatic while working memory and attention are mostly involved in prefrontal 
and parietal cortex (e.g., Casini & Ivry, 1999; Lewis & Miall, 2003). Indeed, 
long-term physical practice can induce adaptive functional and structural changes 
in the brain such as larger gray matter volumes in frontal and parietal lobe found 
in skilled golfers (Jäncke et al., 2009) and internationally competitive high-level 
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professional judo practitioners (Jacini et al., 2009). Physical activity is also found 
to enhance working memory capacity in both children and young adults (Chaddock 
et al., 2010; Lambourne, 2006). Moreover, recent studies found that an involve-
ment of parietal regions reduces timing variability in suprasecond time (Vicario et 
al., 2013; Wiener et al., 2010). To sum up, these findings all support the idea that 
long-term sporting experience can benefit time estimation (lower variability) in 
the suprasecond range of time.

In fact, these hypothetical internal clocks can also be damaged as already 
demonstrated by several neurophysiological studies testing several pathologies 
(Malapani et al., 1998) or by studies investigating the effect of aging (Rammsayer, 
2001). In parallel, cognitive development has also been found to be beneficial in 
improving the quality of these clocks. For example, Szelag, Kowalska, Rymarczyk, 
and Pöppel (2002) found that the two older groups of children ages 6–7, 9–10, 
and 13–14 were more accurate in reproducing temporal durations from 1 to 2.5 
s than the youngest group. Whether excellent experience obtained over years of 
training, such as that possessed by athletes, can recalibrate entirely the sense of 
time has never been studied. Only a few results suggest that time evaluation may 
be improved by musical training (Cicchini, Arrighi, Cecchetti, Giusti, & Burr, 
2011) or through practice but only by considering a short-term learning period 
of 5 days (Rammsayer, 1994; Karmarkar & Buonomano, 2003; Perrett, Ruiz, & 
Mauk, 1993). Here we chose vision as the perceptual modality to be tested because 
both types of sport considered involve primarily vision for time evaluation: for 
fencers in anticipating and judging interceptive movements of an opponent and for 
pole-vaulters in evaluating, for instance, the correct moment of contact for hitting 
the ground with the pole. In the future auditory stimuli could also be used to test 
athletes’ superiority in the perception of time (Rodger & Craig, 2011).

An important and still unanswered question is whether perceptual and motor 
systems of time estimation share the same mechanisms and circuits. The results 
found in this paper suggest that this might be the case. Here we speculate that the 
better ability expressed by athletes in time evaluation derives from their intense 
training that specifies time action contexts. Interestingly, motor control researchers 
involved in understanding action-perception capabilities do not adopt an internal-
clock perspective but rather a dynamical system perspective by advancing the idea 
that time perception is an emergent property within the visuomotor modality (e.g., 
Bootsma & Van Wieringen, 1990). Several theoretical explanations about timing 
evaluation refer to intrinsic models (Ivry & Schlerf, 2008) or systems strongly 
dependent on modality and modality-coordination patterns (Jantzen, Steinberg, & 
Kelso, 2005) or dependent on a neural network state (e.g., Buonomano, 2007). In 
these cases, an internal clock does not guide the time evaluation (across different 
timescales) but the changes in the modalities and their coordinative patterns or 
the state of the neuronal networks. That is, judging a time duration means being 
able to recognize these patterns (Buonomano & Laje, 2010). Recently, it has been 
shown that it is the acquisition of a better control of time that denotes the level 
of musical performance during learning (Rodger, O’Modhrain, & Craig, 2013). 
This result has been supported by applying measures derived from “the general 
tau theory” of temporal guidance of movement (Lee, 1976; Lee et al., 2001). This 
finding might also sustain our idea that a superior control in time evaluation is a 
consequence of sport training.
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In conclusion, we provide psychophysical data which show the existence 
of two clocks in estimating temporal durations below and above a second. Elite 
athletes, as perceptual and motor experts in the time–space domain, even coming 
from different sports disciplines, demonstrate refined internal clocks compared with 
nonathletes, especially for very brief durations, because they have a more efficient 
“automatic” timing system that has been highly developed through sports training. 
Future research will be performed to test the strength of the two clocks by applying 
a Bayesian analysis which will consider the nonathletes’ estimates as a prior and the 
athletes’ estimates as a likelihood function for building up posterior information.
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