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a b s t r a c t

This paper considers the problem of bandwidth allocation on communication networks
with multiple classes of traffic, where bandwidth is determined under the budget
constraint. Due to the limited budget, there is a risk that the network service providers
can not assert a 100% guaranteed availability for the stochastic traffic demand at all
times. We derive the blocking probabilities of connections as a function of bandwidth,
traffic demand and the available number of virtual paths based on the Erlang loss formula
for all service classes. A revenue/profit function is studied through the monotonicity
and convexity of the blocking probability and expected path occupancy. We present the
optimality conditions and develop a solution algorithm for optimal bandwidth of revenue
management schemes. The sensitivity analysis and three economic elasticity notions are
also proposed to investigate the marginal revenue for a given traffic class by changing
bandwidth, traffic demand and the number of virtual paths, respectively. By analysis of
those monotone and convex properties, it significantly facilitates the operational process
in the efficient design and provision of a core network under the budget constraint.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The telecommunication industry is moving toward a converged network because of the rapid growth of Internet traffic,
aggressive deployment of broadband fiber optic network, advance of Voice over IP technology, and the global standardization
of IP technology. The converged network uses a single global IP-based network carrying all types of network traffics to
replace the traditional separated packet switching and circuit switching networks [1]. A core network is a part of the global
IP-based network under a single organization or Internet Service Provider (ISP) [1]. Applications expected to produce the
bulk of traffic in the future multi-service Internet can be broadly categorized as streaming or elastic according to the nature
of the connections they produce [2]. Connections using the core network are typically generated by a very large population
of users independently communicating with an equivalently large population of servers and correspondents for a variety of
applications.

Every core network has a centralized network manager, known as the Bandwidth Broker (BB), which is aware of the
network topology and status, using the underlying routing protocols. First the client (maybe a single user, a corporate
network or an aggregated sub-network) negotiates its Quality of Service (QoS) requirement, known as Service Level
Agreement (SLA) negotiation, with the BB in its core network. For example, real-time multimedia applications require
stringent QoS guarantees, including hard bounds on bandwidth and packet loss probability [3,4]. Then the BB in the source
network negotiates resource allocation with the BBs in intermediate and destination networks. The users accessing the
network via the ISP are guaranteed an amount of bandwidth under the total available budget for their connections [2].
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For a communication network providing performance guarantees, it has to reserve resources and exercise call admission
control [4]. Network users are mainly interested in getting good quality connections whenever they place requests. It is the
network providers’mission to have an virtual pathwith suitable bandwidth. Clearly, it is too costly for the network providers
to assert a 100% guaranteed availability for all connections under the budget constraint at any time. This is also not necessary
since demand for connections or bandwidth capacity varies over time. Traffic flow fluctuates with time, and connections do
not last forever but occur at random times and vanish in the network once the corresponding digital document has been
transferred completely. This results in a random, dynamic set of active connections. Moreover, the bandwidth assigned to
each connection would determine how long that connection will stay active and thus impact the evolution of the set of
active connections. The network provider chooses an optimal sharing scheme for the different users under the total budget
to fulfill connection requirements. In addition, the risk (probability) of rejecting connection requests due to lack of resources
is supposedly kept below a negotiated level.

We deal with the problem of dimensioning bandwidth on core networks to serve all traffic demands under the budget
constraint. In this paper, we aim to analyze the relationship between blocking probability, bandwidth, traffic demand and
the available number of virtual paths on communication networks with service from ISPs, where requests for connections
represent customers arriving at the system. As soon as requests are accepted by the system, the service begins. The installed
bandwidth allocation is used to maintain a guaranteed connection availability where the blocking probability is kept below
certain negotiated level. Our intent is to analyze the sensitivity of the blocking probability by system parameters, including
directional monotone and convex properties. Then we study how these changes affect the long-run average revenue and
find structural results. The relationship among the revenue function, the blocking probability and allocated bandwidth are
investigated under the budget constraint.

Bonald et al. [5] provided a queueing analysis of three usual bandwidth allocations, namely max–min fairness,
proportional fairness and balanced fairness in a communication network. Nain [6] provided a solution to the classical
Erlang blocking model on circuit-switched network, where the author obtained monotone and concave properties for loss
probabilities, throughput and channel occupancy in terms of traffic intensity. Antunes et al. [7] provided an analysis of
loss networks with different classes of requests which move according to some routing policies. Cho et al. [2] investigated
the optimal partitioning of the end-to-end QoS budget to quantify the advantage of having a non-uniform allocation of
the budget over the links in a path. Jin and Jordan [3] studied the sensitivity of resource allocation and the resulting
QoS to resource prices in a reservation-based QoS architecture. Güven et al. [8] formulated an optimization problem of
load balancing the traffic, where multiple paths are provided between a source and a destination using application-layer
overlay. Faragó [9] gave an estimated blocking probability and link utilization for general multi-rate, heterogeneous traffic,
where the individual bandwidth demands may aggregate in complex ways. Maglaras and Zeevi [10] studied the equivalent
behavior of communication systems in a single-class Markovian model under revenue and social optimization objectives.
Bruni et al. [11] designed a connection admission control procedure for resource management in a telecommunication
network. However, it was mentioned that the relationship between performance, demand and capacity has not been well
investigated [12].

We assume the user population is infinite and connections join the core network according to a Poisson process [4,13–15],
etc. The sojourn time during which they occupy virtual paths has an arbitrary distribution. The blocking probability is
determined while allocating resources under the budget constraint. The blocking of connections occurs due to the failure of
meeting the demand of each traffic class for virtual paths, where the traffic demand is considered and written as a function
of the product of the occurrence rate of connections and the average connection volume. The explicit expressions of the
blocking probability and the expected path occupancy are to be derived in terms of model parameters.

The originality of our work lies in derivation of bandwidth elasticity and demand elasticity of blocking in economic
models by analyzing properties of the blocking probability with respect to allocated bandwidth, traffic demand and the
number of virtual paths. The main contribution of the present paper is to prove the relationship between the blocking
probability and allocated bandwidth under the budget constraint. Monotone and convex properties of the blocking
probability are shown in both theoretical construction and numerical examples.

The remainder of the paper is organized as follows. Assumptions and problem definitions are presented in Section 2.
Section 3 introduces two revenuemanagement schemes for allocating bandwidth under the budget constraint. In Section 4,
we provemonotone and convex properties of the blocking probability and expected path occupancy of connections. Through
monotonicity and convexity of the blocking probability, those properties of two revenue/profit functions are studied. The
optimality conditions and a solution algorithm for two revenue management schemes are presented in Section 5. Section 6
provides some applications in economic models to illustrate the use of the monotonicity and convexity of the blocking
probability. Sensitivity analysis with numerical illustrations are conducted in Section 7. Concluding remarks are drawn
in Section 8. We give proofs for each proposition and theorem while providing most of them in the Appendix as the
supplementary material for online publication only in order not to interrupt the flow of presentation.

2. Problem definition

Consider a communication (core) network G, the traffic occurs at the source node randomly, and it will be connected
through the core network G if there exist available virtual paths. We presume the existence of a reservation-based QoS
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architecture using virtual paths for real-time applications and using scheduling policies that are capable of assigning
bandwidth to aggregates of flows. Suppose there are m different traffic classes in the network G, and denote M =

{1, 2, . . . ,m} as an index set consisting ofm traffic classes.
For each class i ∈ M, there exist Ki available virtual (end-to-end) paths for connections of class i, where Ki is a positive

integer. For any incoming connection, say j, of class i ∈ M, when allowed to enter the core network G, it will be routed
through one path pi,j from those Ki virtual paths with allocated bandwidth xi. In other words, data packets of incoming
connection j of class i ∈ M can be transmitted along an virtual path pi,j. In general, every virtual path of class i ∈ M is
allocated by the same amount of bandwidth xi. Every virtual path of class i ∈ M has to meet the same minimum bandwidth
requirement bmin

i ≥ 0, namely,

xi ≥ bmin
i , ∀i ∈ M. (1)

Given limited budget B, network managers would like to determine the bandwidth allocation x = (x1, . . . , xm) under the
available number of virtual paths K⃗ = (K1, . . . , Km). Due to the limited budget B on network planning, there exists the
budget constraint−

i∈M

Kicixi ≤ B, (2)

where ci > 0 is the average cost of one unit bandwidth through virtual paths for class i ∈ M. The goal is to determine the
bandwidth allocation under the budget constraint so that the revenue earned by the network access providers ismaximized.
From the budget constraint (2) and the minimum bandwidth requirement (1), we can determine the possible range of
available bandwidth for each class i ∈ M, e.g.,

bmin
i ≤ xi ≤

B−
∑
j≠i

Kjcjbmin
j

Kici
, ∀i ∈ M. (3)

The maximum throughput of those virtual paths are limited by either the total budget B or bottleneck links which lie on
those virtual paths. The blocking of connections occurs if the dynamic traffic demand exceeds the maximum throughput.

Definition 1. The maximum throughput of class i ∈ M is defined as the maximum connection volume (in packets) that can
be transmitted through those virtual paths in a unit of time [16]. Namely, the maximum throughput Θi of Ki virtual paths
for class i ∈ M, is the product

Θi , Kixi. (4)

Assume that connections of class i occur at the source node in accordance with independent Poisson processes at rate
λi > 0 [4,14], but the connection volume in terms of packets to be transmitted has an arbitrary distribution with mean
σi > 0, i ∈ M. For each class i ∈ M, suppose the mean sojourn time of connections on virtual paths is 1/µi, which
corresponds to the packet transmission time, and it is equal to average connection volume divided by bandwidth, i.e.,

1
µi

,
σi

xi
. (5)

Suppose that connections occupy the virtual paths in the order they occur and that sojourn times are identically distributed
and mutually independent.

Definition 2. The traffic intensity of virtual paths is defined as the fraction of the time in which virtual paths are occupied
[6,15,17]. Namely, the traffic intensity of Ki virtual paths, i ∈ M, is

ρi ,
λi

Kiµi
=
λiσi

Kixi
, (6)

which is the average occupancy of those Ki virtual paths.

Definition 3. The traffic demand is defined as the product of the mean occurrence rate and the average connection
volume [12]. Equivalently, the traffic demand yi for class i ∈ M, is the product

yi , λiσi. (7)

The principal quantity of interest is the blocking probability that all Ki virtual paths of class i ∈ M are occupied. In the
situation here, the blocking is due to the failure of setting up the available number of virtual paths under limited budget
B. For each class i, a connection gets dropped off upon its arrival at the source node when all Ki virtual paths are occupied.
Otherwise, it will be routed through an virtual path pi,j with allocated bandwidth xi. Our objective is to determine blocking
probabilities in terms of bandwidth xi.



422 C.-H. Wang, H.P. Luh / Computers and Mathematics with Applications 62 (2011) 419–439

The risk of blocking possible connections is analyzed according to an Erlang loss model under assumptions of Poisson
arrivals, general sojourn time, preset Ki virtual paths with identical bandwidth xi, and no waiting space [6,14]. Assume that,
for each traffic class i ∈ M, there exists the steady-state occupancy probabilities of n (0 ≤ n ≤ Ki) connections, Pn. The
unique steady-state probability is determined by

Pn = P0
(λi/µi)

n

n!
=

P0
n!


λiσi

xi

n

, n = 1, 2, . . . , Ki. (8)

Solving for P0 in the equation
∑Ki

n=0 Pn = 1, we obtain that

P0 =


Ki−

n=0

1
n!


λi

µi

n
−1
=


Ki−

n=0

1
n!


λiσi

xi

n
−1

(9)

and then

Pn =
1
n!


λiσi

xi

n


Ki−
j=0

1
j!


λiσi

xi

j
−1

, for n = 1, 2, . . . , Ki. (10)

Thus, the blocking probability of incoming connections is formulated as

P (xi, Ki, yi) = PKi =
1
Ki!


yi
xi

Ki


Ki−
n=0

1
n!


yi
xi

n
−1

, (11)

where yi is the traffic demand and is defined by (7). Moreover, the expected (virtual) path occupancy in the steady state can
be formulated as

L(xi, Ki, yi) =
yi
xi
(1− P (xi, Ki, yi)) (12)

from the definition ofL(xi, Ki, yi) =
∑Ki

n=0 nPn. We assume the blocking probabilityP (xi, Ki, yi) is twice differentiable with
respect to bandwidth xi and traffic demand yi, respectively.

Definition 4. The average throughput of class i ∈ M is defined as the average connection volume transmitted through those
virtual paths in a unit of time [5]. That is, the average throughputΘ i of Ki virtual paths for class i ∈ M, is

Θ i ,

Ki−
n=1

nxiPn, (13)

where Pn is the steady-state probabilities that there are n virtual paths occupied by connections, 1 ≤ n ≤ Ki.

Remark 1. For each class i ∈ M, let L(xi, Ki, yi) be the expected virtual path occupancy in the steady state. Then we have
Θ i = xiL(xi, Ki, yi).

Definition 5. The utilization level of virtual paths is defined as the percentage of maximum throughput [9]. That is, the
utilization level of Ki virtual paths is

Ui ,
Θ i

Θi
=

L(xi, Ki, yi)
Ki

. (14)

3. Revenue management schemes

We consider the scenario in which network users access the core network via an ISP, where users belong to m different
classes and the bandwidth received by each class is determined by a revenue management scheme. In this section, we
develop two queueing-based models to determine the amount of bandwidth required by a connection for each traffic
class that maximizes the revenue of the ISP, subject to satisfying the budget constraint. The main aim is to determine the
bandwidth allocation that maximizes the average revenue/profit for the ISP, which allocates bandwidths given each user’s
willingness-to-pay.

3.1. Revenue Management Scheme I

Establishing a pricing scheme that charges the network users can regulate an overwhelming number of connections
during congestion times [4]. Network users will be charged by ISPs to recover the operating cost based on the duration,
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the volume and the distance of a connection, which is incurred for setting and maintaining virtual paths [18]. Other than
recovering costs, the ISP managers may handle congestion control by charging the users for regulating themean occurrence
rate λi of the connections during peak periods [19]. Network users are willing to pay a price because an excessive congestion
would result in the inability of providing service to critical applications.

The operating costs can be determined by the types of traffic transmitted and the QoS guaranteed for such transfer,
e.g., bandwidth allocation and blocking probability [4]. As far as QoS is concerned, bandwidth allocation x and blocking
probability P (xi, Ki, yi) are the key elements of the pricing scheme. For example, the long-run average revenue per unit
time Fi(xi, Ki, yi) for a given traffic class i ∈ M can be expressed as follows [4]:

Fi(xi, Ki, yi) = cti L(xi, Ki, yi)+ cbi λixi(1− P (xi, Ki, yi)), (15)

where cbi > 0 is the cost charged for using per unit of bandwidth and cti > 0 is the cost per unit of time for the sojourn
time 1/µi = σi/xi on those virtual paths. The total long-run average revenue is obtained by summing over (15) for all traffic
classes. In this paper, we illustrate the effect of changing xi, yi and Ki on the average revenue (15) by investigating properties
of P (xi, Ki, yi) and L(xi, Ki, yi). Those phenomena will also be illustrated in the numerical results.

The network managers may want to maximize the long-run average revenue in their bandwidth sharing policies
[4,13,20,21]. Here, we consider the long-run average revenue in (15) as the objective function for each traffic class. To
maximize the average revenue under the budget constraint, we propose Revenue Management Scheme I as follows:

F = max
−
i∈M

wiFi(xi, Ki, yi)

s.t. budget constraint (2),

where the weight 0 < wi < 1 is assigned to traffic class i ∈ M by network managers.

3.2. Revenue Management Scheme II

In this subsection, we provide a congestion-based pricing scheme to allocate bandwidth while taking network users’
utility into account. Bandwidth sharing in a network is frequently evaluated in terms of a utility function [19,22], etc.
For example, Kelly et al. [16] proposed an optimization framework in which the objective is to maximize the total utility
of all network users over their transmission rates. The utility fi(xi) of a connection of class i ∈ M is assumed to be an
increasing function of its bandwidth xi, as introduced by Kelly et al. [16]. The shape of the utility function fi(xi) depends on
the network user’s behavior. For example, utility functions of risk-averse users are different from those of risk-seeking users.
Examples of possible utility functions are fi(xi) = log xi for class i ∈ M, leading to so-called proportional fairness in [16], and
fi(xi) = x1−αi /(1− α), 0 < α <∞, for α-proportional fairness defined more generally by Mo and Walrand [23]. Max–Min
fairness arises in the limit α → ∞ while proportional fairness corresponds to α → 1. In the limit α → 0, the objective is
to maximize overall throughput by the detriment of fairness. More general notions of weighted fairness can be defined by
multiplying the utility function with a class-dependent weight.

As introduced in [5,19,16], etc., network managers may consider the utility function fi(xi) : [bmin
i , bmax

i ] → [0, 1] for
each traffic class i ∈ M, where bmin

i is the minimum bandwidth requirement, and bmax
i is the upper bound of bandwidth

determined from (3). The utility function fi(xi) is assumed to be continuous, increasing, and concave [5,16,24]. For
example, [24] introduced the utility function

fi(xi) = log ai
ri

xi
ri
, (16)

where ai and ri are the aspiration level and reservation level of bandwidth for class-i users, respectively, and they have
bmin
i < ri < ai. The logarithmic function is intimately associated with the concept of proportional fairness [16]. Depending

on the specified reference levels, ai and ri, this utility function can be interpreted as a measure of the user’s satisfaction with
the value of the i-th criteria [24]. It is a strictly increasing function of bandwidth xi, having value 1 if xi = ai, and value 0 if
xi = ri. The utility function can map the different bandwidth requirement of traffic classes onto a normalized scale of the
user’s satisfaction.

Network managers’ economic profit consists of all revenue gained by providing bandwidth xi to class i and the
opportunity cost through calculating the risk of blocking connections/users. Suppose that, for each traffic class i ∈ M,
networkmanagers gain the payoff pi > 0 for achieving the utility fi(xi) by providing bandwidth xi. Meanwhile, we introduce
the opportunity cost of blocking connections/users. Let qi > 0 be the opportunity cost of increasing blocking probability
Pi(xi, Ki, yi) for traffic class i ∈ M. A higher blocking probability will lead to a higher opportunity loss in the network
manager’s revenue. Those two criteria can be combined into single objective function with payoff pi and opportunity cost
qi for all classes i ∈ M, where payoff pi and opportunity cost qi can be applied in designing network pricing mechanisms. By
economic definition, let

Gi(xi, Ki, yi) = piKifi(xi)− qiPi(xi, Ki, yi) (17)
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be the managers’ economic profit gained from class i ∈ M, which represents its payoff minus the opportunity cost. Network
managers determine the optimal bandwidth allocation under the budget constraint when taking both users’ utility and
blocking probability into account. Thus, through the weighted sum of all traffic classes, the optimal bandwidth allocation
can be determined by the following optimization model, Revenue Management Scheme II:

G = max
−
i∈M

wiGi(xi, Ki, yi)

s.t. budget constraint (2),

where the weight 0 < wi < 1 is assigned to traffic class i ∈ M by network managers.

Remark 2. If the budget B is finite and (3) holds, the feasible set is bounded since the bandwidth allocated to each class i has
a upper bound, ∀i ∈ M. Moreover, the feasible set shrinks to an empty set if ‖K⃗‖2 = (

∑m
i=1 K

2
i )

1/2 increases to a sufficiently
large number, where ‖ · ‖2 denotes the well-known Euclidean norm on the vector space Rm.

4. Monotonicity and convexity

In this section, we prove somemonotone and convex properties of the blocking probability and expected path occupancy
of connections. Those two revenue functions (15) and (17) can be analyzed through the monotonicity and convexity of the
blocking probability and expected path occupancy.

Proposition 1 shows that the blocking probability is decreasing in bandwidth. Themonotonicity can be proved by deriving
the first partial derivative of the blocking probabilityP (xi, Ki, yi) in (11). For ease of reading, detailed proofs of the following
propositions are provided in the Appendix as the supplementary material for online publication only.

Proposition 1. The blocking probability P (xi, Ki, yi) is a decreasing function of bandwidth xi, given Ki ≥ 1 and yi > 0 fixed.

Furthermore, by deriving the second partial derivative of (11), it shows that the blocking probability is convex in
bandwidth for a specific region.

Proposition 2. For each Ki ≥ 1 and yi > 0, there exists a subset (or region) Si of positive real numbers such that the blocking
probability P (xi, Ki, yi) is convex (concave) in bandwidth xi for all xi ∈ (∉) Si.

As the number of virtual paths, Ki, is huge in real-world communication systems, Proposition 2 implies that P (xi, Ki, yi)
is convex in bandwidth xi if we have 0.5 < P (xi, Ki, yi) ≤ 1. Otherwise, there exist two inflection points x∗i and x∗∗i when
0 ≤ P (xi, Ki, yi) < 0.5.

In the following result, we demonstrate themonotone property of the expected path occupancyL(xi, Ki, yi)with respect
to allocated bandwidth xi, i.e., ∂L(xi, Ki, yi)/∂xi < 0, for all traffic class i ∈ M.

Proposition 3. If the traffic intensityρi = yi/Kixi > 1 holds in the case of large Ki ≫ 1, the expected path occupancyL(xi, Ki, yi)
is a decreasing function of bandwidth xi, given yi > 0 fixed.

Remark 3. Given yi > 0 and Ki ≥ 1 fixed, there exists an inflection pointxi such that for all xi ≤ (≥)xi the expected path
occupancy L(xi, Ki, yi) is concave (convex) in bandwidth xi.

Remark 4. It can also be observed that the utilization level Ui defined in (14) is a decreasing function of bandwidth xi for
given yi > 0 and Ki ≥ 1. This is because the utilization level Ui equals the expected path occupancy L(xi, Ki, yi) divided by
Ki. Meanwhile, there exists the same inflection pointxi as in L(xi, Ki, yi) such that for all xi ≤ (≥)xi the utilization level Ui
is concave (convex) in bandwidth xi.

Next, we prove the monotone property of the blocking probability with respect to the traffic demand. The monotonicity
can be observed by deriving those partial derivatives of the blocking probability P (xi, Ki, yi) in (11) with respect to yi.

Proposition 4. The blocking probability P (xi, Ki, yi) is increasing in traffic demand yi, given xi > 0 and Ki ≥ 1 fixed.

When traffic demand yi exceeds the maximum throughputΘi, for class i, i.e., λiσi > Kixi, the number of blocked connec-
tions increases indefinitely. It is shown that per-flow QoS depends critically on whether the traffic demand yi is less than
or greater than the maximum throughputΘi.

Remark 5. For fixed xi > 0 and Ki ≥ 1, the blocking probability P (xi, Ki, yi) is convex (concave) in traffic demand yi if we
haveΘi ≥ (≤)yi. Furthermore, the expected path occupancy L(xi, Ki, yi) is an increasing and concave function of the traffic
demand yi, and the upper bound of L(xi, Ki, yi) is Ki no matter what yi increases. The utilization level Ui in (14) is also an
increasing and concave function of the traffic demand yi, and the upper bound of Ui is 1 no matter what yi increases.
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The following monotone and convex properties of the blocking probability with respect to Ki are consistent with those
results of the Erlang-B function proved by Messerli [25], Jagers and Van Doorn [26], and Esteves et al. [27]. For detailed
proofs, interested readers may refer to [25–27].

Proposition 5. The blocking probability P (xi, Ki, yi) is decreasing with respect to the number of virtual paths Ki, given xi > 0
and yi > 0.

Remark 6. For fixed xi > 0 and yi > 0, the blocking probability P (xi, Ki, yi) is convex in Ki, which is considered specifically
in relaxation for continuous functions. Moreover, the expected path occupancy L(xi, Ki, yi) is an increasing function of Ki
given xi and yi are fixed. It can also be observed that the utilization level Ui is an increasing function of Ki because the
increment of L(xi, Ki, yi) is larger than the increment of Ki when both is increased with Ki by one unit.

As mentioned in [4], there exists no closed-form algebraic expression of the optimal solution in Revenue Management
Scheme I. Yacoubi et al. [4] plotted the revenue function (15) only and solved it numerically. To investigate the objective
function (15), we derive and prove the monotonicity of the revenue function Fi(xi, Ki, yi) in (15) with respect to model
parameters xi and Ki, individually, in the following results.

Theorem 1. Let σi > 0 and bmin
i ≥ 0 be the mean connection volume and the minimum bandwidth requirement of class i,

respectively. Given costs cti > 0 and cbi > 0 in (15), if the allocated bandwidth

xi ≥ max


cti σi
cbi
, bmin

i


(18)

holds for class i ∈ M, the long-run average revenue Fi(xi, Ki, yi) is increasing in bandwidth xi, given Ki ≥ 1 and yi > 0.

Proof. From theminimumbandwidth requirement (1), it holds that feasible solution xi ≥ bmin
i for i ∈ M. From the condition

xi ≥

cti σi/c

b
i , it implies that

cbi λi − cti
yi
x2i
≥ 0,

where the traffic demand yi = λiσi. From (12), we obtain that

∂L(xi, Ki, yi)
∂xi

= −
yi
x2i
(1− P (xi, Ki, yi))+

yi
xi


−
∂P (xi, Ki, yi)

∂xi


. (19)

By Proposition 1, we know that ∂P (xi, Ki, yi)/∂xi < 0. Hence, if cbi λi ≥ cti yi/x
2
i , the first derivative of (15) with respect to xi

is

∂Fi(xi, Ki, yi)
∂xi

= (1− P (xi, Ki, yi))
[
cbi λi − cti

yi
x2i

]
−
∂P (xi, Ki, yi)

∂xi

[
cbi λixi + cti

yi
xi

]
≥ 0, (20)

for all Ki ≥ 1 and yi > 0. So, the long-run average revenue Fi(xi, Ki, yi) is an increasing function of bandwidth xi given that
the inequality (18) holds. �

Theorem 2. The long-run average revenue Fi(xi, Ki, yi) is an increasing function of the number of virtual paths Ki for each class
i ∈ M, given xi > bmin

i and yi > 0.

Proof. From Proposition 5, we know that the blocking probability P (xi, Ki, yi) is a decreasing function of the number of
virtual paths Ki. Moreover, the expected path occupancy L(xi, Ki, yi) is an increasing function of Ki. Given xi > bmin

i and
yi > 0, the increment of long-run average revenue (15) with respect to Ki is

Fi(xi, Ki + 1, yi)− Fi(xi, Ki, yi) = cti [L(xi, Ki + 1, yi)−L(xi, Ki, yi)] + cbi λixi[P (xi, Ki, yi)− P (xi, Ki + 1, yi)]

≥ 0, (21)

for all Ki ≥ 1. So, the long-run average revenue Fi(xi, Ki, yi) is increasing in Ki for class i ∈ M. �

Theorem1 implies that the objective function of RevenueManagement Scheme I is increasing in bandwidth xi. Theorem2
shows that the long-run average revenue Fi(xi, Ki, yi) in RevenueManagement Scheme I is also an increasing function of the
number of virtual paths Ki. Those structural results on the long-run average revenue function can be helpful in the problem
of maximizing the long-run average reward in communication networks with dynamic pricing [3,13,21].

Next, in the following results, we prove the monotonicity and convexity of the profit function Gi(xi, Ki, yi).
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Theorem 3. The profit function Gi(xi, Ki, yi) is increasing in bandwidth xi, given Ki ≥ 1 and yi > 0.

Proof. By Proposition 1, we have proved that ∂P (xi, Ki, yi)/∂xi < 0. It can be derived that the first partial derivative of (17)
with respect to xi is

∂Gi(xi, Ki, yi)
∂xi

=
piKi

xi log(ai/ri)
− qi

∂P (xi, Ki, yi)
∂xi

≥ 0, (22)

for all Ki ≥ 1 and yi > 0. So, the profit function Gi(xi, Ki, yi) is an increasing function of bandwidth xi. �

Theorem 4. The profit function Gi(xi, Ki, yi) is an decreasing function of the traffic demand yi for each class i ∈ M, given xi > bmin
i

and Ki ≥ 1.

Proof. By Proposition 4, we know that ∂P (xi, Ki, yi)/∂yi > 0. Then the first partial derivative of (17) with respect to yi is

∂Gi(xi, Ki, yi)
∂yi

= −qi
∂P (xi, Ki, yi)

∂yi
≤ 0 (23)

for all Ki ≥ 1 and xi > bmin
i . So, Gi(xi, Ki, yi) is an decreasing function of traffic demand yi. �

Theorem 5. The profit function Gi(xi, Ki, yi) is an increasing function of the number of virtual paths Ki for each class i ∈ M, given
xi > bmin

i and yi > 0.

Proof. From Proposition 5, we know that the blocking probability P (xi, Ki, yi) is a decreasing function of the number of
virtual paths Ki. Given xi > bmin

i and yi > 0, the increment of the profit function (17) with respect to Ki is

Gi(xi, Ki + 1, yi)− Gi(xi, Ki, yi) = pifi(xi)+ qi[P (xi, Ki, yi)− P (xi, Ki + 1, yi)] ≥ 0 (24)

for all Ki ≥ 1. So, the profit function Gi(xi, Ki, yi) is increasing in Ki for class i ∈ M. �

Theorem 6. For each Ki ≥ 1 and yi > 0, there exists a region Si of positive real numbers such that the profit function Gi(xi, Ki, yi)
is concave in bandwidth xi for all xi ∈ Si.

Proof. From Proposition 2, there exists a region Si of positive real numbers such that the blocking probability P (xi, Ki, yi)
is convex in bandwidth xi for all xi ∈ Si. That is, for all xi ∈ Si, we have ∂2P (xi, Ki, yi)/∂x2 ≥ 0. Then the second derivative
of Gi(xi, Ki, yi)with respect to xi is

∂2Gi(xi, Ki, yi)
∂x2i

= −
piKi

x2i log(ai/ri)
− qi

∂2P (xi, Ki, yi)
∂x2i

≤ 0 (25)

for all Ki ≥ 1 and yi > 0. So, the profit function Gi(xi, Ki, yi) is concave in bandwidth xi for all xi ∈ Si. �

Remark 7. If network managers allocate bandwidth in a specific region Si such that ∂2P (xi, Ki, yi)/∂x2i ≥ 0, the profit
function Gi(xi, Ki, yi) is concave in bandwidth xi, which implies that the marginal profit is decreasing in such a region Si.
Otherwise, network managers could gain insight into the convexity of Gi(xi, Ki, yi) by determining the opportunity cost qi if
bandwidth is allocated such that ∂2P (xi, Ki, yi)/∂x2i < 0. That is, in the case of ∂2P (xi, Ki, yi)/∂x2i < 0,Gi(xi, Ki, yi) becomes
convex in bandwidth xi if the opportunity cost qi is sufficiently large, i.e.,

qi >
piKi

x2i log(ai/ri)(−∂2P (xi, Ki, yi)/∂x2i )
;

otherwise, Gi(xi, Ki, yi) is still concave in bandwidth xi.

5. Solution analysis

In this section, we present the optimality conditions for Revenue Management Scheme I and Revenue Management
Scheme II, respectively. First, for RevenueManagement Scheme I, we introduce the Lagrangianmultiplier v1 and Lagrangian
function ψ1(x, v1), where x = (x1, . . . , xm). The Lagrangian function ψ1(x, v1) is defined as

ψ1(x, v1) =
−
i∈M

wiFi(xi, Ki, yi)+ v1

−
i∈M

Kicixi − B


. (26)

Then, we can obtain

∂ψ1(x, v1)
∂xi

= wi
∂Fi(xi, Ki, yi)

∂xi
+ v1Kici (27)
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for all i ∈ M, where ∂Fi(xi, Ki, yi)/∂xi is determined in (20), and

∂ψ1(x, v1)
∂v1

=

−
i∈M

Kicixi − B. (28)

From ∂ψ1(x, v1)/∂xi = 0 and ∂ψ1(x, v1)/∂v1 = 0, we obtain the following Proposition 6.We can determine the optimal
solution of Revenue Management Scheme I by solving the system of Eqs. (29) and (30) in Proposition 6.

Proposition 6. In solving the optimal solutions for Revenue Management Scheme I, the optimal bandwidth allocation x =
(x1, . . . , xm) and Lagrangian multiplier v1 satisfy

v1 = −
wi

Kici

∂Fi(xi, Ki, yi)
∂xi

, ∀i ∈ M, (29)

and

xi =

B−
∑

j≠i∈M
Kjcjxj

Kici
, ∀i ∈ M, (30)

where ∂Fi(xi, Ki, yi)/∂xi is determined in (20).

Next, we introduce the Lagrangian multiplier v2 and Lagrangian functionψ2(x, v2) for Revenue Management Scheme II.
The Lagrangian function ψ2(x, v2) is defined as

ψ2(x, v2) =
−
i∈M

wiGi(xi, Ki, yi)+ v2

−
i∈M

Kicixi − B



=

−
i∈M

wipiKifi(xi)−
−
i∈M

wiqiPi(xi, Ki, yi)+ v2

−
i∈M

Kicixi − B


. (31)

Then, we can obtain

∂ψ2(x, v2)
∂xi

=
wipiKi

xi log(ai/ri)
− wiqi

∂Pi(xi, Ki, yi)
∂xi

+ v2Kici (32)

for all i ∈ M, and

∂ψ2(x, v2)
∂v2

=

−
i∈M

Kicixi − B. (33)

From ∂ψ2(x, v2)/∂xi = 0 and ∂ψ2(x, v2)/∂v2 = 0, we can determine the optimal solution of Revenue Management
Scheme II in the following Proposition 7.

Proposition 7. In solving the optimal solutions for Revenue Management Scheme II, the optimal bandwidth allocation x =
(x1, . . . , xm) and Lagrangian multiplier v2 satisfy

v2 = −
wi

Kici


piKi

xi log(ai/ri)
− qi


yi
xi
− Ki


yKii e−yi/xi

Ki!x
Ki+1
i


, ∀i ∈ M, (34)

and

xi =

B−
∑

j≠i∈M
Kjcjxj

Kici
, ∀i ∈ M. (35)

In practice, it is complicated to solve the system of Eqs. (34) and (35) because the blocking probabilityPi(xi, Ki, yi) in (11)
is a nonlinear function of bandwidth xi. If we omit temporarily the consideration of blocking probability Pi(xi, Ki, yi) in the
profit function Gi(xi, Ki, yi) defined in (17), the objective function of Revenue Management Scheme II will be reduced to the
weighted sum of utility functions only. Then, Revenue Management Scheme II can be reduced to a utility maximization
problem as studied in [28]. It implies that the objective function of Revenue Management Scheme II can be rewritten
according to [28] as follows:−

i∈M

wipiKifi(xi) =
−
i∈M

Ki


wipi log ai

ri

xi
ri


=

−
i∈M

Ki (Di log xi − Ci) ,
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where Di = wipi/ log(ai/ri) and Ci = wipi log ri/ log(ai/ri) are constant for all i ∈ M. Hence, the utility maximization
problem under budget constraint can be formulated as follows:

max
−
i∈M

Ki (Di log xi − Ci)

s.t. budget constraint (2).
(36)

Then we may relax the result in Proposition 7 to the following Corollary 1, which is an optimal solution to the utility
maximization problem (36).

Corollary 1. In the case of omitting the blocking probability from Revenue Management Scheme II, the optimal bandwidth
allocation (x̂1, . . . , x̂m) and Lagrangian multiplier v̂2 for the utility maximization problem (36) satisfy

v̂2 = −

∑
i∈M

KiDi

B
, (37)

and

x̂i =
BDi

ci
∑
i∈M

KiDi
, ∀i ∈ M, (38)

where Di = wipi/ log(ai/ri) is constant.

Note that Corollary 1 is the same as the result of Proposition 3 studied in Guan et al. [28]. The feasible set of the utility
maximization problem in Guan et al. [28] is the same as that of Revenue Management Scheme II. Observe that the utility
function fi(xi) is increasing in bandwidth xi. Moreover, in Proposition 1, we have shown that the blocking probability
P (xi, Ki, yi) is a decreasing function of bandwidth xi. It implies that the objective function of Revenue Management Scheme
II is increasing in bandwidth xi. Hence, we can determine the optimal solution of RevenueManagement Scheme II efficiently
from the optimal solution of the utility maximization problem (36).

According to Corollary 1, we present an optimal solution x̂i to the utility maximization problem (36) given parameters
Ki, ci and pi corresponding to each class i,∀i ∈ M. Let x̂ and x denote vectors with their component x̂i and xi respectively.
For the Lagrangian function ψ2(x, v2) defined in (31), we denote its gradient vector by ∇ψ2(x, v2) and Hessian matrix by
∇

2ψ2(x, v2) at a point (x, v2) ∈ Rm+1. By using (32) and (33), we can determine

∂2ψ2(x, v2)
∂x2i

=
−KiDi

x2i
− wiqi

∂2Pi(xi, Ki, yi)
∂x2i

, (39)

∂2ψ2(x, v2)
∂xi∂v2

=
∂2ψ2(x, v2)
∂v2∂xi

= Kici, (40)

and

∂2ψ2(x, v2)
∂v22

= 0. (41)

From the above equations, we can compute the gradient vector∇ψ2(x, v2) and Hessianmatrix∇2ψ2(x, v2). Therefore, for a
given x̂ obtained from Corollary 1, we can determine an optimal objective value and the corresponding optimal bandwidth
x = (x1, . . . , xm) as shown in (34) and (35) by using the following algorithm.

A solution algorithm: (Optimal bandwidth of Management Scheme II)
Initialization Set iteration k = 0. Apply Corollary 1, we set the initial solution x0i = BDi/(ci

∑
i∈M KiDi),∀i ∈ M and

v02 = −
∑

i∈M KiDi/B. Set x0 = (x01, . . . , x
0
m), and choose a sufficiently small number ξ > 0.

Step 1 Compute the gradient vector ∇ψ2(xk, vk2) at point (x
k, vk2).

Step 2 If ∇ψ2(xk, vk2) = 0 or

‖ψ2(xk, vk2)− ψ2(xk−1, vk−12 )‖ < ξ,

then stop with an optimal (or near optimal) solution xk and vk2. Otherwise, go to the next step.
Step 3 Compute the Hessian matrix ∇2ψ2(xk, vk2) and its inverse

Hk
= (∇2ψ2(xk, vk2))

−1.

Step 4 Perform the translation

(xk+1, vk+12 )← (xk, vk2)− Hk
∇ψ2(xk, vk2).

Set k← k+ 1 and go to Step 1.
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This algorithm defines a series of (xk, vk2)’s, starting from an initial solution (x̂, v̂2), such that the sequence converges
toward an optimal solution which satisfies ∇ψ2 = 0. The initial solution (x̂, v̂2) obtained from Corollary 1 is a feasible
solution to Revenue Management Scheme II because it satisfies the budget constraint (2). In Step 1, the gradient vector
∇ψ2(xk, vk2) can be easily calculated through Eqs. (32) and (33) given a point (xk, vk2). From Eq. (39)-(41), we can construct
the symmetric Hessianmatrix∇2ψ2(xk, vk2) and determine its inverseHk in Step 3, where∇2ψ2(xk, vk2) andHk are (m+1)-
by-(m+1)matrices. Note that the computational time needed to find∇2ψ2(xk, vk2) andHk is short because the total number
of traffic classes,m, is small in the core network. The descent direction is given by−Hk

∇ψ2(xk, vk2) at the point (x
k, vk2). With

the good initial point (x̂, v̂2), the sequence (xk, vk2) defined in Step 4 converges to the root of ∇ψ2(x, v2) = 0. The stopping
criterion in Step 2 implies that we terminate the algorithm with an optimal solution which satisfies the optimal condition
in Proposition 7. Or, we terminate the algorithm early when the improvement ofψ2(xk, vk2) in (31) is less than a sufficiently
small number ξ . The convergence of the algorithm is quadratic, and it converges quickly to the (near) optimal solution
because the initial point (x̂, v̂2) is easily directed to the root of∇ψ2 = 0 since the monotone property is applied to the case.

6. Applications

In this section, we present connection’s blocking elasticity to bandwidth for each traffic class to illustrate how the
expressions of P (xi, Ki, yi) can be used with some applications. The term elasticity was introduced to the networking
research community by Shenker [29]. Based on the investigation of elasticity, one can develop distributed pricing algorithm
that takes user’s elasticity into consideration [10,18,19,30]. By using the concept of elasticity, we can define the elasticity of
the blocking probability with respect to bandwidth as follows.

Definition 6. The bandwidth elasticity of blocking is defined as

Eb
i ,

1P (xi, Ki, yi)/P (xi, Ki, yi)
1xi/xi

, (42)

where xi is the allocated bandwidth,1xi is the change of allocated bandwidth, P (xi, Ki, yi) is the blocking probability given
predetermined number of virtual paths Ki, and1P (xi, Ki, yi) is the change of the blocking probability.

The bandwidth elasticity of blocking (42) can be rewritten as

Eb
i =

xi
P (xi, Ki, yi)

∂P (xi, Ki, yi)
∂xi

. (43)

The elasticity Eb
i represents the percentage change of the blocking probability in response to a percent change of bandwidth.

Proposition 8 shows the phenomenon that the blocking probability will decrease if the allocated bandwidth increases.

Proposition 8. The bandwidth elasticity of blocking Eb
i is negative for all xi > 0.

As Ki ≫ 1, Proposition 9 shows that the bandwidth elasticity of blocking Eb
i will decrease when the allocated bandwidth

xi increases.

Proposition 9. The bandwidth elasticity of blocking Eb
i is decreasing in bandwidth xi for all xi > 0 as Ki ≫ 1.

As applications of elasticity in economics, we present the demand elasticity of blocking Ed
i and the capacity elasticity of

blocking E c
i for each traffic class i ∈ M in the following. The demand elasticity of blocking is formulated as

Ed
i ,

1P (xi, Ki, yi)/P (xi, Ki, yi)
1yi/yi

=
yi

P (xi, Ki, yi)
∂P (xi, Ki, yi)

∂yi
, (44)

where1yi is the change in the traffic demand. In addition, the capacity elasticity of blocking is written as

E c
i ,

1P (xi, Ki, yi)/P (xi, Ki, yi)
1Ki/Ki

=
Ki

P (xi, Ki, yi)
1P (xi, Ki, yi)

1Ki
, (45)

where1Ki is the change in the number of virtual paths. Similarly, the properties of the demand elasticity of blocking Ed
i and

the capacity elasticity of blocking E c
i are derived as follows.

Proposition 10. The demand elasticity of blocking Ed
i is non-negative for all traffic demand yi ≥ 0.

Proposition 11. The capacity elasticity of blocking E c
i is non-positive for all Ki ≥ 1 and decreasing as the number of virtual paths

Ki increases.

Proposition 10 infers that the blocking probability will increase as the traffic demand increases. Proposition 11 concludes
that the blocking probability is decreasing as increasing the number of virtual paths. Those properties can be easily derived
from the results of Propositions 4 and 5.
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Next, as another application, we present monotone and convex properties of the blocking probability with respect to
traffic intensity ρi defined in (6). In (11), if we replace yi/(Kixi) by traffic intensity ρi, the equivalent expression of (11) is

P (ρi, Ki) =
(Kiρi)

Ki

Ki!


Ki−

n=0

(Kiρi)
n

n!

−1
. (46)

Meanwhile, the expected path occupancy (12) can be rewritten as
L(ρi, Ki) = Kiρi(1− P (ρi, Ki)). (47)

After a little algebra, we derive the first and second derivatives of (46) with respect to ρi as follows:

∂P (ρi, Ki)

∂ρi
=

KiP (ρi, Ki)

ρi
[1− ρi + ρiP (ρi, Ki)] (48)

and

∂2P (ρi, Ki)

∂ρ2
i

=
KiP (ρi, Ki)

ρ2
i

[1− ρi + ρiP (ρi, Ki)]
2H(ρi), (49)

where

H(ρi) = Ki +
KiρiP (ρi, Ki)

1− ρi + ρiP (ρi, Ki)
−

1
[1− ρi + ρiP (ρi, Ki)]2

. (50)

Themonotone and convex properties of the blocking probability in (46) are listed below, which are consistent with those
properties shown by Harel [17]. The blocking probability in (46) is convex in the traffic intensity ρi if ρi is below certain
inflection point ρ∗i and concave if ρi is greater than ρ∗i . For detailed derivations, interested readers may refer to Harel [17],
Bakry [31].

Theorem 7. For each Ki ≥ 1, the blocking probability P (ρi, Ki) is an increasing function of traffic intensity ρi > 0.

Theorem 8. For each Ki ≥ 1, there exists an inflection point ρ∗i such that for all ρi < (>)ρ∗i , the blocking probability P (ρi, Ki)
is convex (concave) in traffic intensity ρi > 0.

Remark 8. For each Ki ≥ 1, the expected path occupancy L(ρi, Ki) is increasing and concave in traffic intensity ρi, and the
upper bound of L(ρi, Ki) is Ki. Moreover, the utilization level Ui is also increasing and concave in traffic intensity ρi, and the
upper bound is 1.

In real world cases, the number of connections on networks is always huge. Next, we investigate the blocking probability
defined in (11) in the case of large Ki ≫ 1. If the traffic intensity ρi = yi/(Kixi) < 1 holds, Eq. (11) can be rewritten as

P (xi, Ki, yi) =
(yi/xi)Ki

Ki!


eyi/xi −R(Ki)

−1
≈

yKii e−yi/xi

Ki!x
Ki
i

, as Ki ≫ 1, (51)

where R(Ki) is the Kith-degree Taylor remainder term of eyi/xi . The remainder term R(Ki) ≈ 0 as Ki ≫ 1. Moreover, we can
conclude that

L(xi, Ki, yi) ≈
yi
xi


1−

yKii e−yi/xi

Ki!x
Ki
i


, as Ki ≫ 1. (52)

From (51) and (52), it implies that

∂P (xi, Ki, yi)
∂xi

=


yi
x2i
−

Ki

xi


· P (xi, Ki, yi), (53)

∂P (xi, Ki, yi)
∂yi

=


Ki

yi
−

1
xi


· P (xi, Ki, yi), (54)

∂2P (xi, Ki, yi)
∂xi∂yi

=
∂2P (xi, Ki, yi)

∂yi∂xi

=
1
xi


1+ 2Ki −

yi
xi
−

K 2
i xi
yi


· P (xi, Ki, yi); (55)

∂L(xi, Ki, yi)
∂xi

= −
yi
x2i

[
1− P (xi, Ki, yi) ·


1+ Ki −

yi
xi

]
, (56)

∂L(xi, Ki, yi)
∂yi

=
1
xi

[
1− P (xi, Ki, yi) ·


1+ Ki −

yi
xi

]
, (57)
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and
∂2L(xi, Ki, yi)

∂xi∂yi
=
∂2L(xi, Ki, yi)

∂yi∂xi

= −
1
x2i


1− P (xi, Ki, yi) ·


1+ Ki −

yi
xi

2

−
yi
xi


(58)

in the case of large Ki ≫ 1 and traffic intensity ρi < 1.
In the case of large Ki ≫ 1, Proposition 1 can be restated as follows.

Corollary 2. If Ki ≫ 1 and ρi < 1 holds, the first derivative of blocking probability P (xi, Ki, yi) with respect to bandwidth xi is
always negative for all xi > 0, i.e.,

∂P (xi, Ki, yi)
∂xi

=


yi
xi
− Ki


yKii e−yi/xi

Ki!x
Ki+1
i

< 0. (59)

As a final application, we present a budget ratio to investigate the budget allocation among different classes in the
network management schemes. Using the maximum throughput Θi defined in (4) for class i ∈ M, the budget constraint
(2) can be represented as−

i∈M

Θi + τ = Φ(K⃗ , B,G), (60)

where τ ≥ 0 is the reserved bandwidth, and Φ(K⃗ , B,G) is the total available bandwidth purchased with limited budget B
for preset numbers of virtual paths K⃗ = (K1, . . . , Km) on the core network G. Then, the budget ratio for each traffic class
i ∈ M is given below.

Definition 7. A budget ratio allocated to class i is defined as the fraction of total available bandwidth Φ(K⃗ , B,G) < ∞
allocated for class i ∈ M. That is, the budget ratio allocated for class i ∈ M is

Bi ,
Θi

Φ(K⃗ , B,G)
, (61)

where the maximum throughputΘi = Kixi.

If there exists sufficient bandwidth, the reserved bandwidth τ > 0 may be shared among all the ongoing connections
with budget ratio Bi for each class i ∈ M at the online process. That is, any remaining bandwidth is shared according to the
budget ratio Bi. In case there is no bandwidth reserved (τ = 0), the allocated bandwidth xi will decrease if Ki increases when
those preset numbers of virtual paths, Ki′ , i′ ≠ i, of other classes are fixed.

Remark 9. If the maximum throughput Θi increases, from (60), the value
∑

i′≠iΘi′ will decrease. Since those numbers Ki′

are fixed for all i′ ≠ i, the bandwidth xi′ will decrease. That is, for certain class i′ ≠ i, the bandwidth xi′ may be snatched by
class i as the maximum throughputΘi of class i becomes larger.

7. Numerical illustrations

7.1. Experimental setting

In this section, we present numerical results to show the optimal bandwidth allocation for different traffic classes under
the budget constraint. Here, we select four traffic classes as test examples from statistical data monitored at the Cooperative
Association for Internet Data Analysis (CAIDA) [32]. Connections of class 4 have the highest priority, and traffic class 1 is given
the lowest priority. The number of connections in the high-priority traffic class is often less than that in the low-priority class,
but the traffic demand and bandwidth requirement of high-priority traffic class are always larger than those of low-priority
traffic class. Those parameters are summarized in Table 1, including class weightwi, minimum bandwidth requirement bmin

i
(Mbps), aspiration level ai (Mbps), reservation level ri (Mbps), the average cost ci (cents) of one unit bandwidth through class
i’s virtual paths, number of virtual paths Ki, mean occurrence rate λi, the connection volume σi (Mb), cost charged for using
per unit of bandwidth cbi (cents), cost per unit of sojourn time cti (cents), payoff pi (cents) and opportunity cost qi (cents).

7.2. Comparison between management scheme I and management scheme II

The allocated bandwidth is determined by solving Revenue Management Scheme I and Revenue Management Scheme
II, respectively. Table 2 shows those optimal bandwidth allocation and optimal values of Management Scheme I and
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Table 1
Characteristics of each traffic class.

i wi bmin
i ai ri yi ci Ki λi σi cti cbi pi qi

1 0.1 0.8 1.32 0.84 59.1 1.0 96 96 0.62 4 130 130 4
2 0.2 1.0 1.85 1.18 96.5 1.3 75 75 1.29 6 180 180 6
3 0.3 2.0 2.79 1.73 185.4 1.8 42 42 4.41 12 320 320 12
4 0.4 2.5 3.58 2.28 324.3 2.5 27 27 12.01 20 500 500 20

Table 2
Budget versus optimal bandwidth allocation xi .

Budget B Scheme I Scheme II
Optimal bandwidth allocation (x1, x2, x3, x4) Revenue F Optimal bandwidth allocation (x1, x2, x3, x4) Profit G

500 (0.80, 1.00, 2.08, 2.50) 10,141 (0.80, 1.00, 2.00, 2.59) 1,412
550 (0.80, 1.00, 2.74, 2.50) 12,898 (0.80, 1.08, 2.08, 3.11) 4,480
600 (0.80, 1.00, 3.40, 2.50) 16,254 (0.80, 1.20, 2.30, 3.44) 7,187
650 (0.80, 1.00, 4.06, 2.50) 19,997 (0.80, 1.31, 2.52, 3.77) 9,646
700 (0.80, 1.00, 4.72, 2.50) 23,787 (0.80, 1.42, 2.74, 4.10) 11,900
750 (0.80, 1.00, 5.38, 2.50) 27,284 (0.80, 1.54, 2.97, 4.43) 13,980
800 (0.80, 1.00, 6.04, 2.50) 30,379 (0.80, 1.65, 3.19, 4.76) 15,911
850 (0.80, 1.00, 6.71, 2.50) 33,203 (0.82, 1.76, 3.40, 5.07) 17,714
900 (0.80, 1.00, 7.37, 2.50) 35,911 (0.87, 1.87, 3.60, 5.37) 19,412
950 (0.80, 1.00, 8.03, 2.50) 38,584 (0.92, 1.97, 3.80, 5.67) 21,018

1000 (0.80, 1.00, 8.69, 2.50) 41,247 (0.97, 2.07, 4.00, 5.97) 22,542

Table 3
Budget versus blocking probability of allocated bandwidth.

Budget B Blocking probability in Scheme I Blocking probability in Scheme II
(P (x1, K1, y1),P (x2, K2, y2),P (x3, K3, y3),P (x4, K4, y4)) (P (x1, K1, y1),P (x2, K2, y2),P (x3, K3, y3),P (x4, K4, y4))

500 (0.0020, 0.2504, 0.5389, 0.7938) (0.0020, 0.2504, 0.5553, 0.7869)
550 (0.0020, 0.2504, 0.4004, 0.7938) (0.0020, 0.1977, 0.5372, 0.7440)
600 (0.0020, 0.2504, 0.2720, 0.7938) (0.0020, 0.1311, 0.4903, 0.7174)
650 (0.0020, 0.2504, 0.1616, 0.7938) (0.0020, 0.0768, 0.4442, 0.6910)
700 (0.0020, 0.2504, 0.0795, 0.7938) (0.0020, 0.0383, 0.3989, 0.6648)
750 (0.0020, 0.2504, 0.0311, 0.7938) (0.0020, 0.0158, 0.3547, 0.6386)
800 (0.0020, 0.2504, 0.0096, 0.7938) (0.0020, 0.0054, 0.3119, 0.6127)
850 (0.0020, 0.2504, 0.0025, 0.7938) (0.0010, 0.0016, 0.2725, 0.5881)
900 (0.0020, 0.2504, 0.0006, 0.7938) (0.0002, 0.0005, 0.2368, 0.5649)
950 (0.0020, 0.2504, 0.0001, 0.7938) (0.0000, 0.0001, 0.2030, 0.5419)

1000 (0.0020, 0.2504, 0.0000, 0.7938) (0.0000, 0.0000, 0.1714, 0.5191)

Management II, where the total budget B varies from $500 to $1000. For each available budget B, according to (38), the
initial solutions x0i = BDi/(ci

∑4
i=1 KiDi) for all i = 1, . . . , 4, are given in the optimization process. In can be observed

from Table 2 that those bandwidth allocations and optimal values are increasing when enlarging the available budget. From
Figs. 1–3, we graphically illustrate the effect of changing budget B on optimal bandwidth allocation and optimal values
of those two schemes. In Fig. 1, it shows that almost all the available resources are allocated in the direction of class 3 in
Management Scheme I, and the others are allocated to satisfy the minimum bandwidth requirements only. However, in
Management Scheme II, it can be seen in Fig. 2 that the available resource is allocated to all classes proportionally. Both
optimal values of Management Scheme I and Management Scheme II are increasing in the total budget B. In Fig. 3, we find
that there exists an inflection point such that the optimal revenues of Management Scheme I are concave up when the
budget B is smaller than the inflection point, and the optimal revenue is concave down if the budget exceeds the inflection
point. However, the optimal profit of Management Scheme II is expressed in logarithmic form. Themarginal (optimal) profit
obtained by solving Management Scheme II is decreasing with respect to the available budget B.

Next, we compare bandwidth sharing policies between Scheme I and Scheme II by showing the blocking probability and
budget ratio for four traffic classes. Table 3 presents those blocking probabilities determined by those optimal bandwidth
allocation of two management schemes. For Management Scheme I, it can be observed from Fig. 4 that the blocking
probability of class 3 is decreasingwhen the budgetB increases from$500 to $1000while other classes’ blockingprobabilities
remain unimproved. However, inManagement Scheme II, Fig. 5 shows that those blocking probabilities of four traffic classes
are decreasing proportionally when increasing the total budget.

Given a budget B, the budget ratio for each traffic class is determined from the definition in (61) as follows: Bi =

Kicixi/
∑4

i=1 Kicixi, for i = 1, . . . , 4, where bandwidth xi is determined by solving Management Scheme I and Management
Scheme II, respectively. Table 4 summarizes those numerical results of the budget ratio for four traffic classes when
increasing the available budget B from $500 to $1000. It can be seen from Fig. 6 that most of the available budget is
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Fig. 1. Budget versus optimal bandwidth allocation of Revenue Management Scheme I.

Fig. 2. Budget versus optimal bandwidth allocation of Revenue Management Scheme II.

Fig. 3. Budget versus optimal values of two revenue management schemes.
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Table 4
Budget versus budget ratio for four traffic classes.

Budget B Budget ratio in Scheme I Budget ratio in Scheme II
(B1, B2, B3, B4) (B1, B2, B3, B4)

500 (15.36%, 19.50%, 31.39%, 33.75%) (15.36%, 19.50%, 30.24%, 34.90%)
550 (13.96%, 17.73%, 37.63%, 30.68%) (13.96%, 19.17%, 28.65%, 38.22%)
600 (12.80%, 16.25%, 42.82%, 28.13%) (12.80%, 19.43%, 29.03%, 38.73%)
650 (11.82%, 15.00%, 47.22%, 25.96%) (11.82%, 19.65%, 29.36%, 39.17%)
700 (10.97%, 13.93%, 50.99%, 24.11%) (10.97%, 19.84%, 29.64%, 39.55%)
750 (10.24%, 13.00%, 54.26%, 22.50%) (10.24%, 20.00%, 29.89%, 39.87%)
800 (9.60%, 12.19%, 57.12%, 21.09%) (9.60%, 20.14%, 30.10%, 40.16%)
850 (9.04%, 11.47%, 59.64%, 19.85%) (9.29%, 20.21%, 30.20%, 40.29%)
900 (8.53%, 10.83%, 61.88%, 18.75%) (9.29%, 20.21%, 30.20%, 40.29%)
950 (8.08%, 10.26%, 63.89%, 17.76%) (9.29%, 20.21%, 30.20%, 40.29%)

1000 (7.68%, 9.75%, 65.69%, 16.88%) (9.29%, 20.21%, 30.20%, 40.29%)

Fig. 4. Budget versus blocking probability determined by optimal solutions of Revenue Management Scheme I.

Fig. 5. Budget versus blocking probability determined by optimal solutions of Revenue Management Scheme II.

allocated to class 3, and the other classes only get the minimum bandwidth to satisfy the feasibility. This is because the
marginal improvement of the objective function in Management Scheme I is the largest in the direction of class 3, i.e.,
∂w3F3(x3, K3, y3)/∂x3 ≥ ∂wiFi(xi, Ki, yi)/∂xi for i = 1, 2, 4. Fig. 7 shows that all the budget is allocated to four traffic classes
proportionally. The budget ratios for four traffic classes are almost invariable when varying budget B from $500 to $1000.
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Fig. 6. Budget versus budget ratio determined by optimal solutions of Revenue Management Scheme I.

Fig. 7. Budget versus budget ratio determined by optimal solutions of Revenue Management Scheme II.

7.3. Sensitivity analysis

In this subsection, we present sensitivity analysis of the blocking probability and system utilization to illustrate
numerically thosemonotone and convex properties of objective functions inManagement Schemes I and II. First, we observe
the effect of changing bandwidth xi on the blocking probability P (xi, Ki, yi) defined in (11). To conduct the sensitivity
analysis, we check the bandwidth xi from 0.1 Mbps to 8 Mbps, and other parameters remain fixed as listed in Table 1. It can
be seen from Fig. 8 that the blocking probability is decreasing and convex when increasing bandwidth, which are consistent
with those theoretical results given in Propositions 1 and 2.

Next, we show the effect of changing bandwidth xi on the expected path occupancy L(xi, Ki, yi), average throughputΘ i
and utilization level Ui, respectively. These three performance measures have been represented as functions of the blocking
probability according to (12)–(14). From Fig. 9, we find that the expected path occupancy L(xi, Ki, yi) in (12) is a decreasing
function of bandwidth xi. In addition, it can be seen from class 1 or class 2 in Fig. 9 that there exists an inflection pointxi
such that for all xi ≤ (≥)xi, the expected path occupancy L(xi, Ki, yi) is concave (convex) in bandwidth xi. Those monotone
and convex properties have been summarized in Proposition 3 and Remark 3. Furthermore, it can be observed from Fig. 10
that average throughputΘ i defined in (13) is increasing in bandwidth xi for four traffic classes. In Fig. 11, it shows the effect
of changing bandwidth on the utilization levels of preset virtual paths for four traffic classes. Proposition 3 infers that those
utilization levels Ui defined in (14) are decreasing when enlarging bandwidth xi, which can be seen numerically in Fig. 11.
Moreover, it can be observed clearly from class 1 or class 2 that there exists an inflection pointxi such that Ui is concave
(convex) in bandwidth xi for all xi < (>)xi.
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Fig. 8. Blocking probability P (xi, Ki, yi) versus bandwidth xi for four traffic classes.

Fig. 9. Expected path occupancy L(xi, Ki, yi) versus bandwidth xi for four traffic classes.

In the following, we present numerical analysis of revenue function (15) in Management Scheme I and profit function
(17) inManagement Scheme II, individually. Those numerical results are shown in Figs. 12 and 13. The results can graphically
illustrate monotone and convex relationships which have been proven in Theorems 1–6.

It has been proven in Theorem 1 that the objective function Fi(xi, Ki, yi) of Revenue Management Scheme I is increasing
in bandwidth xi if it satisfies the inequality (18). It can be seen from Fig. 12 that F1(x1, K1, y1) is increasing in bandwidth

x1 for all bandwidth x1 ≥ max{

ct1σ1/c

b
1, b

min
1 } = 0.8 Mbps. Similarly, F2(x2, K2, y2) is increasing in bandwidth x2 for all

bandwidth x2 ≥ 1 Mbps, and so on. We find that the convexity of average revenue (15) fluctuates when bandwidth xi is
small corresponding to other system parameters. Proposition 2 infers that, for each traffic class i, there exists a region Si of
bandwidth such that the blocking probability P (xi, Ki, yi) is convex (concave) for all xi ∈ (∉)Si, where the region Si can be
constructed from the proof of Proposition 2. From numerical experiments, we find that if the budget B or bandwidth xi is
large enough, those revenue function Fi(xi, Ki, yi)will become increasing and concave.

Finally, we illustrate the effect on the profit Gi(xi, Ki, yi) in Revenue Management Scheme II when increasing bandwidth
xi. It can be observed from Fig. 13 that the economic profit Gi(xi, Ki, yi) defined in (17) increases for all bandwidth xi, which
has already been proved in Theorem 3. Theorem 6 infers that the profit Gi(xi, Ki, yi) is concave for all xi ≤ 8 Mbps, which
can be seen obviously in Fig. 13.

7.4. Summary

Two revenue management schemes have been investigated theoretically and numerically to determine the amount
of bandwidth required by a connection for each traffic class. Given network users’ willingness-to-pay and other system
parameters, our aim is to determine the bandwidth allocation that maximizes the average revenue/profit for the ISP under
the budget constraint.
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Fig. 10. Average throughputΘ i versus bandwidth xi for four traffic classes.

Fig. 11. Utilization level Ui versus bandwidth xi for four traffic classes.

Fig. 12. Average revenue Fi(xi, Ki, yi) versus bandwidth xi for four traffic classes.
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Fig. 13. Economic profit Gi(xi, Ki, yi) versus bandwidth xi for four traffic classes.

In Management Scheme I, almost all the resources are allocated to only one class whose marginal revenue is the largest,
and the remainder are allocated to other classes tomeet their feasibility only. That is,most of the available budget is allocated
to certain traffic class i with the largest marginal improvement ∂wiFi(xi, Ki, yi)/∂xi in Management Scheme I. Network
managers may apply Management Scheme I to allocate limited resources among competing classes in order to maximize
the weighted sum of average revenue. On the other hand, by solving Management Scheme II, all resources are allocated
proportionally to four traffic classes. With the help of the utility function in (16), we can achieve the proportional fairness
by allocating bandwidth through Management Scheme II.

To investigate these two bandwidth allocation policies, monotone and convex properties of the revenue/profit function
as well as the blocking probability have been proven theoretically in previous sections and illustrated numerically in
this section. Those phenomena in numerical experiments are consistent with theoretical results. In practice, those results
may help network managers to determine their optimal/acceptable bandwidth allocation according to one of those two
management schemes.

8. Conclusions

In this paper, we consider the revenue management problems on communication networks with multi-class traffic
under the budget constraint. Two revenuemanagement schemes have been investigated through themonotone and convex
properties of the blockingprobability and expectedpath occupancy of connections.Weanalyze the sensitivity of the blocking
probability to model parameters, where the parameters change one-at-a-time. Under general assumptions, we have proved
that the blocking probability is directionally (i) decreasing in bandwidth, (ii) convex in bandwidth for specific regions,
(iii) increasing in traffic demand, and (iv) decreasing in the number of virtual paths. We also demonstrate the monotone
and convex relations among the expected path occupancy and those model parameters. Furthermore, we prove that for a
fixed number of virtual paths, the blocking probability is increasing and convex in traffic intensity for specific regions.

The optimality conditions are derived to obtain an optimal bandwidth allocation for two revenuemanagement schemes.
A solution algorithm is also developed to allocate limited budget among competing traffic classes. We have conducted the
sensitivity analysis of the average revenue function and the economic profit function for a given traffic class by changing
bandwidth allocation, traffic demand and the available number of virtual paths respectively. Those results have also
been verified with numerical examples interpreting the blocking probability, utilization level, average revenue, etc. The
relationship between blocking probability and bandwidth allocation can help network managers to design network pricing
mechanisms for sharing bandwidth in terms of blocking/congestion costs.

The contribution of the current paper is the analysis of those monotone and convex relations among model parameters
and performance measures of interest. The results of this work may be helpful in the operational processes involved in the
efficient set-up and usage of a core network under the budget constraint, e.g., network design and provisioning purposes.
One application of the relationship between blocking probability and bandwidth allocation may be referred to as designing
network pricing mechanisms for sharing bandwidth in terms of blocking/congestion costs, whose examples were given by
Yacoubi et al. [4] and Anderson et al. [19], etc. The closed-form expression of the blocking probability in terms of bandwidth
can also be used to investigate the optimal buffer size in capacitated communication systems so that the blocking probability
is kept below a specific threshold [15]. Another application of thiswork is used to consider the admission control in networks
under different bandwidth sharing policies including throughput maximization, max–min fairness, proportional fairness
and balanced fairness, etc. Interested readers may refer to Bonald et al. [5], Nilsson and Pióro [33], Jordan [34], etc.
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In addition, we present three elasticities to investigate the effect of changing model parameters on the average revenue
in analysis of economicmodels. The sensitivity results derived here could be used to guide development of congestion-based
pricing of network resources, and to adjust bandwidth in the optimal proportion in response to changes in desired levels
of blocking probability. Future work will be conducted in the direction of further investigation for the network revenue
management schemes. Much additional work would have to be done in the future to make such an approach practical,
e.g., design of reservation protocols, scheduling policies, measurement algorithms, and feedback algorithms to guarantee
convergence.
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Appendix. Proofs of propositions

Detailed proofs of propositions and corollaries can be found online at doi:10.1016/j.camwa.2011.05.024.

References

[1] E. Mingozzi, G. Stea, M.A. Callejo-Rodríguez, J. Enríquez-Gabeiras, G. García-de-Blas, F.J. Ramón-Salquero, W. Burakowski, A. Beben, J. Sliwinski,
H. Tarasiuk, O. Dugeon, M. Diaz, L. Baresse, E. Monteiro, EuQoS: end-to-end quality of service over heterogeneous networks, Computer
Communications 32 (2009) 1355–1370.

[2] H. Cho, A. Girard, C. Rosenberg, On the advantages of optimal end-to-end QoS budget partitioning, Telecommunication Systems 34 (2007) 91–106.
[3] N. Jin, S. Jordan, The effect of bandwidth and buffer pricing on resource allocation and QoS, Computer Networks 46 (2004) 53–71.
[4] M. Yacoubi, M. Emelianenko, N. Gautam, Pricing in next generation networks: a queuing model to guarantee QoS, Performance Evaluation 52 (2003)

59–84.
[5] T. Bonald, L. Massoulié, A. Proutière, J. Virtamo, A queueing analysis of max–min fairness, proportional fairness and balanced fairness, Queueing

Systems 53 (2006) 65–84.
[6] P. Nain, Qualitative properties of the Erlang blocking model with heterogeneous user requirements, Queueing Systems 6 (2) (1990) 189–206.
[7] N. Antunes, C. Fricker, P. Robert, D. Tibi, Analysis of loss networks with routing, The Annals of Applied Probability 16 (4) (2006) 2007–2026.
[8] T. Güven, R.J. La, M.A. Shayman, B. Bhattacharjee, A unified framework for multipath routing for unicast and multicast traffic, IEEE/ACM Transactions

on Networking 16 (5) (2008) 1038–1051.
[9] A. Faragó, Efficient blocking probability computation of complex traffic flows for network dimensioning, Computers & Operations Research 35 (2008)

3834–3847.
[10] C. Maglaras, A. Zeevi, Pricing and capacity sizing for systemswith shared resources: approximate solutions and scaling relations, Management Science

49 (8) (2003) 1018–1038.
[11] C. Bruni, F.D. Priscoli, G. Koch, I. Marchetti, Resource management in network dynamics: an optimal approach to the admission control problem,

Computers & Mathematics with Applications 59 (2010) 305–318.
[12] T. Bonald, A. Proutière, On performance bounds for balanced fairness, Performance Evaluation 55 (2004) 25–50.
[13] T. Aktaran-Kalayci, H. Ayhan, Sensitivity of optimal prices to system parameters in a steady-state service facility, European Journal of Operational

Research 193 (2009) 120–128.
[14] M.Kr. Dutta, V.K. Chaubey, Performance analysis of all-opticalWDMnetworkwithwavelength converter using Erlang C trafficmodel, Communications

in Computer and Information Science 70 (2010) 238–244.
[15] J.M. Smith,M/G/c/K blocking probability models and system performance, Performance Evaluation 52 (2003) 237–267.
[16] F.P. Kelly, A.K. Maulloo, D.K.H. Tan, Rate control for communication networks: shadow prices, proportional fairness and stability, Journal of the

Operational Research Society 49 (1998) 237–252.
[17] A. Harel, Convexity properties of the Erlang loss formula, Operations Research 38 (3) (1990) 499–505.
[18] S. Shakkottai, R. Srikant, Economics of network pricing with multiple ISPs, IEEE/ACM Transactions on Networking 14 (6) (2006) 1233–1245.
[19] E. Anderson, F.P. Kelly, R. Steinberg, A contract and balancing mechanism for sharing capacity in a communication network, Management Science 52

(1) (2006) 39–53.
[20] I.Ch. Paschalidis, Y. Liu, Pricing in multiservice loss networks: static pricing, asymptotic optimality, and demand substitution effects, IEEE/ACM

Transactions on Networking 10 (3) (2002) 425–438.
[21] G. Zachariadis, J.A. Barria, Dynamic pricing and resource allocation using revenue management for multiservice networks, IEEE/ACM Transactions on

Networking 5 (4) (2008) 215–226.
[22] S. van Hoesel, Optimization in telecommunication networks, Statistica Neerlandica 59 (2) (2005) 180–205.
[23] J. Mo, J. Walrand, Fair end-to-end window-based congestion control, IEEE/ACM Transactions on Networking 8 (5) (2000) 556–567.
[24] C.H. Wang, H. Luh, A fair QoS scheme for bandwidth allocation by precomputation-based approach, International Journal of Information and

Management Sciences 19 (3) (2008) 391–412.
[25] E. Messerli, Proof of a convexity property of the Erlang B formula, Bell System Technical Journal 51 (1972) 951–953.
[26] A.A. Jagers, E.A. Van Doorn, On the continued Erlang loss function, Operations Research Letters 5 (1) (1986) 43–46.
[27] J.S. Esteves, J. Craveirinha, D. Cardoso, Computing Erlang-B function derivatives in the number of servers, Communications in Statistics–Stochastic

Models 11 (2) (1995) 311–331.
[28] Y. Guan, W. Yang, H. Owen, D.M. Blough, A pricing approach for bandwidth allocation in differentiated service networks, Computers & Operations

Research 35 (2008) 3769–3786.
[29] S. Shenker, Fundamental design issues for the future Internet, IEEE Journal on Selected Areas in Communications 13 (1995) 1176–1188.
[30] M. Yuksel, S. Kalyanaraman, Elasticity considerations for optimal pricing of networks, in: Proceedings of IEEE Symposium on Computers and

Communications I, 2003, pp. 163–168.
[31] S.H. Bakry, A new method for computing Erlang-B formula, Computers & Mathematics with Applications 19 (2) (1990) 73–74.
[32] The Cooperative Association for Internet Data Analysis. [Online]. Available: http://www.caida.org/home.
[33] P. Nilsson, M. Pióro, Solving dimensioning tasks for proportionally fair networks carrying elastic traffic, Performance Evaluation 49 (2002) 371–386.
[34] S. Jordan, A recursive algorithm for bandwidth partitioning, IEEE Transactions on Communications 58 (4) (2010) 1026–1030.

http://dx.doi.org/doi:10.1016/j.camwa.2011.05.024
http://www.caida.org/home

	Analysis of bandwidth allocation on end-to-end QoS networks under budget control
	Introduction
	Problem definition
	Revenue management schemes
	Revenue Management Scheme I
	Revenue Management Scheme II

	Monotonicity and convexity
	Solution analysis
	Applications
	Numerical illustrations
	Experimental setting
	Comparison between management scheme I and management scheme II
	Sensitivity analysis
	Summary

	Conclusions
	Acknowledgements
	Proofs of propositions
	References


