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On a particular Emden–Fowler equation with non-positive energy
u′′
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= 0
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Abstract

In this paper we work with the ordinary equation u′′
− u3

= 0 and obtain some interesting phenomena concerning blow-up,
blow-up rate and life-span of solutions to those equations under negative energy.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

How to improve the performance and competitiveness of a company is the critical issue of Industrial and
Organizational Psychology in Taiwan. We try to design an appropriate mathematical model of the competitiveness
and the performance of the 293 benchmark enterprises out of 655 companies ?

Unexpectedly, we discover the correlation of performance and competitiveness is extremely high, some benchmark
enterprises present the following phenomena:

Competitiveness (Force, F(P(n))) is a cubic function of the performance (P(n)); that is, there exist positive
constants P0 > 0 and k > 0 such that

F(P(n)) = k(P(n) − P0)
3,

where n is the number of departments or the decision makers of one of the surveying benchmark enterprise, P(n) ≥ P0
and F is proportional to the second derivative of P with respect to n.

Now we consider the special case F(P(n)) = M d2 P(n)

dn2 , and let u(n) :=

√
k
M (P(n) − P0) ≥ 0, then we obtain a

particular Emden–Fowler equation
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− u3

= 0, n ≥ n0,

u(n0) = u0 =

√
k
M

(P(n0) − P0), u′(n0) = u1.
(1.1)

It is clear that the function u3 is locally Lipschitz; hence by the standard theory, the local existence of classical
solutions is applicable to the Eq. (1.1); for the more general case of Lane–Emden type one can read the paper written
by Agarward and O’Regean [9].

We shall use our methods used in [1–8] to deal with the estimates for the life-span of the solutions of (1.1), the
blow-up rates and blow-up constants.

Notation and Fundamental Lemma. For a given function u in this work, we use the following abbreviations:

a(n) = u(n)2, E(n) = u′(n)2
−

1
2

u(n)4, J (n) = a(n)−
1
2 .

Definition. A function g : R → R with a blow-up rate q means that g exists only in finite time; i.e., there is a finite
number T ∗ so that limt→T ∗ g(t)−1

= 0 and there exists a non-zero β ∈ R with limt→T ∗(T ∗
− t)q g(t) = β, in this

case β is called the blow-up constant of g.

After some elementary calculation we obtain the following lemma.

Lemma. Suppose that u is the solution of (1.1), then E(n) is a constant and we have

6u′(n)2
= 4E(n0) + a′′(n), (1.2)

J ′′(n) = 2E(n0)J (n)3 (1.3)

and

J ′(n)2
= J ′(n0)

2
− E(n0)J (n0)

4
+ E(n0)J (n)4. (1.4)

2. Estimates for the life-span, blow-up rate and blow-up constant under E(n0) ≤ 0

To estimate the life-span of the solution of the Eq. (1.1), we separate this section into two parts: E(n0) < 0 and
E(n0) = 0, a′(n0) > 0. Here the life-span N of u means that u exists and makes sense only in the interval [n0, N ) so
that the problem (1.1) possesses the solution u ∈ C̄2(n0, N ). Here we have the following result:

Theorem 2.1. If N is the life-span of the solution u to (1.1) with E(n0) < 0, then N is finite. Further, for a′(n0) ≥ 0
we have the estimate

N ≤ N∗

1 = n0 +

∫ J (n0)

0

dr√
1
2 + E(n0)r4

; (2.1)

for a′(n0) < 0,

N ≤ N∗

2 = n0 +

(∫ α

0
+

∫ α

J (n0)

)
dr√

1
2 + E(n0)r4

, (2.2)

where α = ( 1
2

−1
E(n0)

)
1
4 . Furthermore, if E(n0) = 0 and a′(n0) > 0, then

N ≤ N∗

3 := n0 +
2a(n0)

a′(n0)
. (2.3)

Proof. For E(n0) < 0, we know that a(n0) > 0; otherwise we get a(n0) = 0, that is, u0 = 0, then E(n0) = u2
1 ≥ 0,

this contradicts E(n0) < 0.
(i) a′(n0) ≥ 0. By (1.2) and (1.4) we find that
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a′(n) ≥ a′(n0) − 4E(n0)(n − n0) ∀n ≥ n0, (2.4)

J ′(n) = −

√
1
2

+ E(n0)J (n)4 ≤ J ′(n0) ∀n ≥ n0 (2.5)

and J (n) ≤ 0 for large n. Thus there exists a finite number N∗

1 := N∗

1 (u0, u1) ≤ n0 +
u0
u1

such that J (N∗

1 ) = 0 and so
a(n) → ∞ as n → N∗

1 . This means that N ≤ N∗

1 . By (2.5) and J (N∗

1 ) = 0 we find that∫ J (n0)

J (n)

dr√
1
2 + E(n0)r4

= n − n0 ∀n ≥ n0 (2.6)

and hence we get the estimate (2.1).
(ii) a′(n0) < 0. By (2.4), a′(n0) < 0 and the convexity of a we can find a unique finite number n1 = n1(u0, u1) such
that

a′(n) > 0 for n > n1, (2.7)

and a(n1) > 0; we conclude that a(n) > 0 ∀n ≥ n0, u′(n1) = 0, E(n0) = −
1
2 u(n1)

4 and J (n1)
4

=
−1

2E(n1)
.

After arguments similar to step (i), there exists a finite number N∗

2 := N∗

2 (u0, u1) such that the life-span N of u is
bounded by N∗

2 , that is, N ≤ N∗

2 . By an analogous argument, using (2.7) and (1.4) and the fact that J (n1)
4

=
−1

2E(n0)

and J (N∗

2 ) = 0, we conclude that

J ′(n) = −

√
1
2

+ E(n0)J (n)4 ∀n ≥ n1, (2.8a)

J ′(n) =

√
1
2

+ E(n0)J (n)4 ∀n ∈ [n0, n1] , (2.8b)

∫ J (n1)

J (n)

dr√
1
2 + E(n0)r4

= n − n1 ∀n ≥ n1, (2.9a)

∫ J (n1)

J (n0)

dr√
1
2 + E(n0)r4

= n1 − n0 (2.9b)

and

N∗

2 = n1 +

∫ α

0

dr√
1
2 + E(n0)r4

. (2.10)

This estimate (2.10) is equivalent to (2.2).
(iii) For E(n0) = 0, by (1.3) and a′(n0) > 0 we get that J ′(n0) < 0, J ′′(n) = 0 and J (n) = a(n0)

−
3
2 (a(n0) −

1
2 a′(n0)(n − n0)) ∀n ≥ n0. Thus we conclude that

a(n) = a(n0)
3
(

a(n0) −
1
2

a′(n0)(n − n0)

)−2

∀n ≥ n0,

and (2.3) is proved. �

We also study the blow-up rate and blow-up constant for a, a′ and a′′ under the conditions in Theorem 2.1. We
have got the following results.

Theorem 2.2. If u is the solution of the problem (1.1) with one of the following properties that

(i) E(n0) < 0 or
(ii) E(n0) = 0, a′(n0) > 0.
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Then the blow-up rate of a is 2, and the blow-up constant K1 of a is 2, that is, for m = 1–3,

lim
n→N∗

m
(N∗

m − n)2a(n) = 2. (2.11)

The blow-up rate of a′ is 3, and the blow-up constant K2 of a′ is 4, that is, for m = 1–3,

lim
n→N∗

m
(N∗

m − n)3a′(n) = 4. (2.12)

The blow-up rate of a′′ is 4, and the blow-up constant K3 of a′′ is 12, that is, m = 1–3,

lim
n→N∗

m
a′′(n)(N∗

m − n)4
= 12. (2.13)

Proof. (i) Under this condition, E(n0) < 0, a′(n0) ≥ 0 by (2.1) and (2.6) we get∫ J (n)

0

1
N∗

1 − n
dr√

1
2 + E(n0)r4

= 1 ∀n ≥ n0, (2.14)

lim
n→N∗

1

√
2

J (n)

N∗

1 − n
= 1. (2.15)

This identity (2.15) is equivalent to (2.11) for m = 1.
For E(n0) < 0, a′(n0) < 0 by (2.9) we also have∫ J (n)

0

dr√
1
2 + E(n0)r4

= N∗

2 − n ∀n ≥ n0; (2.16)

therefore we get (2.11) for m = 2.
Seeing (2.5) and (2.8), we find

lim
n→N∗

m
J ′(n) = −

1
2

√
2, (2.17)

lim
n→N∗

m
a′(n)(N∗

m − n)3
= 4, (2.18)

lim
n→N∗

m
u′(n)2(N∗

m − n)4
= 2 (2.19)

for m = 1, 2. Using (1.2) and (2.19) we obtain for m = 1, 2,

lim
n→N∗

m
a′′(n)(N∗

m − n)4
= 6 lim

n→N∗
m

u′(n)2(N∗
m − n)4. (2.20)

Thus, (2.20) and (2.13) are equivalent.
(ii) For E(n0) = 0, a′(n0) > 0, by (2.11) we get for m = 1, 2,

a(n) = a(n0)
3
(

1
2

a′(n0)

)−2

· (N∗

3 − n) ∀n ≥ n0. (2.21)

Therefore, the estimates (2.11)–(2.13) for m = 3 follow from (2.21). �
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