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In recent years, the innovation and improvement of forecasting techniques have caught
more and more attention. Especially, in the fields of financial economics, management
planning and control, forecasting provides indispensable information in decision-making
process. If we merely use the time series with the closing price array to build a forecasting
model, a question that arises is: Can the model exhibit the real case honestly? Since,
the daily closing price of a stock index is uncertain and indistinct. A decision for biased
future trend may result in the danger of huge lost. Moreover, there are many factors that
influence daily closing price, such as trading volume and exchange rate, and so on. In
this research, we propose a new approach for a bivariate fuzzy time series analysis and
forecasting through fuzzy relation equations. An empirical study on closing price and
trading volume of a bivariate fuzzy time series model for Taiwan Weighted Stock Index
is constructed. The performance of linguistic forecasting and the comparison with the
bivariate ARMA model are also illustrated.

Keywords: Fuzzy relation; fuzzy Markov relation matrix; bivariate fuzzy time series,
fuzzy rule base; mean absolute forecasting accuracy.
1. Introduction

In the humanities and social sciences, fuzzy statistics and fuzzy correlation have
gradually received attention. This is a natural result because the complicated phe-

*Tel: 886-2-29387387, Fax: 886-2-29390005

671




672 Y.-Y. Hsu, S.-M. Tse & B. Wu

nomenon of humanities and society is hard to be fully explained by traditional mod-
els. Taking stock market as an example, the essence of closing price is uncertain
and indistinct. Moreover, there are many factors that influence closing price, such
as trading volume and exchange rate, etc. Therefore, if we merely consider closing
price of yesterday to construct our forecasting model, not only will we misestimate
the future trend, but also we will suffer unnecessary loss.

When we apply fuzzy logic in the time series analysis, the first step is to how
to integrate linguistic variable analysis methods in solving the autoregressive rela-
tion problem of the dynamic data. Graham and Newell (1989), Xu and Lee (1987)
presented self-learning methods to modify fuzzy models for dynamic system in lin-
guistic field and later Chiang et. al. (2000) proposed a fuzzy linguistic summary
as one of the data mining function to discover useful knowledge from database. In
fact, fuzzy relation equations are easier to be understood and applied than decision
tables or decision rules.

In view of this, many researchers have adopted fuzzy relation equations for time
series analysis and forecasting. For instance, Song and Chissom (1993a, b) proposed
the procedure for developing fuzzy time series model by using fuzzy relation equa-
tions. Lee et. al. (1994) presented a two-stage fuzzy model identification process
combining the linguistic methods with numerical solutions derived from fuzzy re-
lation equations. Wu and Hung (1999) proposed a fuzzy identification procedure
for ARCH and Bilinear models. Kumar and Wu (2001) used fuzzy statistical tech-
niques in change period’s detection of nonlinear time series. Chen and Hwang (2000)
proposed the two-factors time-variant fuzzy time series model and developed two
algorithms for temperature prediction. Huarng (2001) proposed heuristic models
by integrating problem-specific heuristic knowledge with Chen’s (2000) model to
improve forecasting.

Yet, their methods did not include the concept of Box-Jenkins' model (ARIMA),
such as three steps’ construction: order identification, parameters estimation and
diagnostic checking. Though Tseng et. al. (2001) proposed a fuzzy ARIMA model
which uses the fuzzy regression method to fuzzify the parameters of the ARIMA
model. Tseng and Tzeng (2002) combined the SARIMA model and fuzzy regression
model to develop the fuzzy SARIMA model. However, literatures in the past have
been focusing on univariate fuzzy time series, and it is not easy to apply these
techniques into the multivariate systems,

In this research, we propose a bivariate fuzzy time series modeling process. We
apply this method to the time series of the closing price and trading volume analysis,
and then forecast future trend while comparing the forecasting performance by
mean absolute forecasting accuracy. From the empirical studies, it is shown that
our proposed method demonstrates an appropriate and efficient performance of
prediction for bivariate variables.




A New Approach of Bivariate Fuzzy Times Series Analysis 673

2. Bivariate Fuzzy Time Series
2.1. Fuzzy time series

The increasing structural complexity of objects which modern scientists desired
to study and the fuzziness of human language due to subjectivity, time variation,
environmental change, and different angle of research have made scientists difficult
hard to clearly investigate the real essence of objects. Let alone to properly construct
mathematical models. In response to it, the concept of fuzzy theory is developed
upon.

From the angle of economic and social issues, when analyzing human thinking
and behavior model, we can often find that the boundary between events is not clear.
The fuzzy logic steps in as a viable solution for this problem. The concept of fuzzy
logic primarily focuses on individual preferences without the needs of precise and
clear numbers. Therefore, it is somewhat different from the essence of Boolean logic.
However, because of the complexity of human thinking, language and the ambiguity
of preferences, the operation of fuzzy logic is more complicated than Boolean logic.
In view of this, it is more suitable to evaluate the correlation between objects by
using fuzzy models instead of assigning specific numbers to objects. Though fuzzy
logic is a complement of Boolean logic, it is not a replacement. Both theories exist
for their reasons. The key point is how to apply these two different thinking models
in daily life.

In traditional social and economic researches, they dedicated to the interac-
tive relation and model analysis about human while usually facing some uncertain
factors in modeling. For example, should the number of freshman enrollment be
counted from the beginning, middle or end of year? Should we determine the ex-
change rate of NT dollars to US dollars by opening price, closing price, or the
average of price ceiling and price floor? The results can vary to a great extent.
Hendershot and Placek (1981) had made an extensive review on journals of this
field. Moreover, few questions in the social science and economic researches are ul-
timately true or false. And if we do attempt to analyze human faith, we will soon
be facing the great uncertainty behind many behaviors. The consecutive intervals
in fuzzy sets have the capability to deal with the gray area between true and false.
If this fuzzy characteristic of intervals is applied in analysis, researchers will be able
to handle the uncertainty of factors. Indeed, it is a more practical measuring tool
in real application.

In this research, we attempt to transform observations into fuzzy sets by using
membership functions. Since only through membership functions can we quantify
fuzzy sets and further analyze fuzzy information by implementing precise mathe-
matic methods. In order to develop a fuzzy model for observations or estimate fuzzy
outputs through fuzzy models, the first is to transform observations into fuzzy sets
before tackling fuzzy time series. The fuzzy time series is a method combining lin-
guistic variables with the process of applying fuzzy logic into time series to solve
the fuzziness of data.
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Thus, before developing bivariate fuzzy time series model and forecasting, we
must give some related definitions for fuzzy time series,

Definition 1. (Fuzzy time series) Let {X; € R,t =1,2,...,n} be a time series,
Q be the range of {X; € R,t = 1,2,...,n} and {P;i = 1,2,...,r,U_, P = Q}
be an ordered partition on . Let {L;,i = 1,2,...,7} denote linguistic variables
with respect to the ordered partition set. For t = 1,2,...,n, if u;(X,), the grade of
membership of X, belongs to L;, satisfies j1; : R — [0,1] and 3_[_, mi(X;) = 1,
then {FX,} is said to be a fuzzy time series of {X;} and written as

FXy = i (Xe)/Ly + pa(Xy)/La + - - + pr(Xi)/ Ly,

where / is employed to link the linguistic variables with their memberships in FX,,
and the + indicates, rather than any sort of algebraic addition, that the listed pairs
of linguistic variables and memberships collectively.

For convenience, let us denote FX; as FX; = (1,2, ..+ fr)-

When calculating corresponding memberships of linguistic variables in fuzzy
time series, this research uses triangular membership functions for facilitating trans-
formation process.

Example 1. Consider the time series {X;} = {0.8,1.7,2.6,4.1,2.9,3.2,4.5,3.8}.
Let = [0,5] and choose an ordered partition set {[0,1),[1,2),[2,3),(3,4), [4,5]}
on ). Let {L;, L, L3, L4, L5} denote linguistic variables:
L x [0,1) : Very low; Ly  [1,2) : Low;
L3 o [2,3) : Medium; L4 o [3,4) : High; Ls  [4,5] : Very high.
We evaluate the mean {m; = 0.5,mg = 1.5,mg = 2.5, mq = 3.5,ms = 4.5} of the
ordered partition set. Since X is between (.5 and 1.5, and

15— 0.8 0.8—0.5
1505 - 7€luis o5

we get the fuzzy set FX, with respect to X is (0.7,0.3,0,0,0). Finally, we can get
the fuzzy time series {FX,} of {X,} as follow:

Very low Low Medium High Very high

=0.3 € L,

FX,=( 07, 03, 0 0, 0o )
FXa=( 0O, 08, 02 0, 0 )
FXs=( 0, 0, 09, 01, 0 )
FXs=( 0, 0, 0, 04, 06 )
FXs=( 0, 0, 06 04, 0 )
FXs= 0, 0, 03, 0.7, 0 )
FX;= 0, 0, 0, 0, I )
FXs=( O, 0, 0, 0.7, 03 )

In time series modeling and analysis, the determination of autocorrelation value
is very important. But for a set of uncertain or incomplete data, its autocorrelation
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should not be explained with a number. Therefore, this research attempts to use
fuzzy relation to analyze the autocorrelation level in the fuzzy time series.

To begin, we will define general fuzzy relations necessary for exploring bivariate
fuzzy time series later on.

Definition 2. (Fuzzy relation) Consider an ordered partition set {P;,i =

1,2,...,r7} on Q. Let G = (uy,...,4,) and H = (v1,...,v;) be fuzzy sets, then
a fuzzy relation R between G and H is

R= Gf oH = [R-njlrxrv

where p;, v; denote memberships, t denotes transpose, and Ri; = min(p;, v;).

2.2. Calculation of fuzzy Markov relation matriz R

From Section 2.1, we can find that fuzzy relation is the key for constructing good
fuzzy time series models. If we can precisely handle fuzzy relation matrix through
fuzzy relation, then fuzzy time series models will provide a better fitting result. Be-
sides, there are many different ways for calculating a fuzzy relation matrix. Dubois
and Prade (1991), Wu (1986) had proposed some methods to calculate fuzzy relation
matrix but none of them is based on the same premises.

Firstly, we consider the stationary bivariate fuzzy time series, and assume that
the underlying time series have the Markov property. So, let us define fuzzy Markov
relation matrix R before constructing bivariate fuzzy time series models,

Definition 3. (Fuzzy Markov relation matrix) The fuzzy time series {FX,,t =
1,2,...,n} is an autoregressive process of order one, FAR(1), that is, FX, depends
only on FX,_y, for all . Let FX, has finite memberships p;(X,), 1 = 1,2,...,r,
than the fuzzy Markov relation matrix can be written as

R = [Rijlrxr = zrgfgn[mn(“i(xl—l)sPj(xt))]rxr-

Example 2. Consider a fuzzy time series {FX;} of Example 1. Suppose that this
fuzzy time series {FX,} is an autoregressive process of order one and detect the
linguistic variable according to the position of the greatest membership. We can
find the relationships with linguistic variables for this fuzzy time series as follow:

Ly — La; Ly — Lg; Ly — Lg; Lg —» La; Ly — Lg; Ly —> Ls; Ly — Ly,

Since L, and Ly represent (1,0.5,0,0,0) and (0.5,1,0.5,0,0), respectively. By Def-
inition 2, we get the fuzzy relation of L; — Ly is

1 051 0500
0.5 05050500
Ry=|0|[0510500]= 00

0 0 O
0 0 0 00O
0 0 0 0
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Similarly, we can get the fuzzy relations of {FX,} as follow:

[00.50.50.507 (000 0 07 00 0 0 07
005 1 050 0000.50.5 00 0 00
Ry=|[00505050(,R3= (000051 [,Ry= |00 0 0O,
00 0 00 0000.505 00505050
L0000 0 0 0] 1000 0 O J 1005 1 050
(00 0 0 07 (000 0 07 (000 0 07
000.50.50.5 0000 0 000 0 O
Rs=|0005 105|,Rg=|0000505|,R;=|000 0 0
00050505 00005 1 000.50.50.5
L0000 0 0 J 10000.5 0.5 0005 1 0.5

Finally, by Definition 3, we get the following fuzzy Markov relation matrix.

0510505 0
0505 1 0.50.5
R=|005051 1
0 050505 1
0051 105

3. Modeling Bivariate Fuzzy Time Series and Forecasting
3.1. Modeling bivariate fuzzy time series

The patterns of collected data can be numerical or qualitative formats, or linguistic
values (such as data derived from testing). For these kinds of data, it is hard to
analyze by traditional time series models. Therefore, if using fuzzy sets, the patterns
of data will not be restricted and a more suitable model can be established.

There is no certain rule for the optimal partition in building fuzzy range sets.
Generally, the more partition we do, the more precision we have. However, it also
requires more complicated calculation. In short, the determination between accuracy
and complexity is entirely up to the individual requirements.

Definition 4. (The Bivariate Fuzzy AR(1) (BFAR(1))) Let {(FX;,, FX2,)}
be a bivariate fuzzy time series on the universe domain U. If {(F X\ ¢, FX3,)} can
be written as:

(FX14,FXa4) = (FX14-1,FXg,_1)0 (‘.'Ru D‘hn) ’
m?l 9‘\22

for all t, where R;; denote fuzzy Markov relation matrix of {FX;,} and {FX;,},
i,j = 1,2, Then we say that {(FX,, FXa,)} is a bivariate fuzzy autoregressive
process of ordered one.
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3.2. Decision support by a fuzzy rule base

There are many factors influencing stock index trend such as trading volume, ex-
change rates, interest rates, political causes, and so on. Through fuzzy Markov
relation matrix, we can get a decision by transforming the previous fuzzy numbers
into current fuzzy numbers operation. The question here is how to transfer fuzzy

numbers into corresponding linguistic variables. Firstly, we provide the following
definition,

Definition 5. (Linguistic indicator function) Let (L, ..., L;;) be a linguistic
vector of {FX;} and FX ;.1 be a numerical vector of corresponding linguistic vector,
i = 1,2. Then F)?.-‘t = {(Linyy-- o Jin )i Iij, = 1or0;5 = 1,...,r} is said to be
linguistic indicator function and

{1, if vz, (FXiz) > 2
Lij, = =

4 =1.Qwel . andiii=1.2, oy
0, if vr,(FXiy) <2 ’

where v, (FJ?,,,) denote value of F}A{,_i in L.

Example 3. Let {[(L11, L2, L3, L1a, L13), (Lo, Laz, Log, Laa, L2s)]; L1y ¢ plunge,
Lyy : drop,Lysz : draw,Lyq4 : soar,L;s : surge;Ls; : verylow,Lss : low,
Lp; : medium, Loy : high,Lss : very high} be a bivariate linguis-
tic vector of {(FX;. FX,.)}. After calculating a bivariate fuzzy time se-
ries data by fuzzy Markov relation matrix, we have [F)?M,F)?g,;] =
[(1.5,1.5,1.5,1.5,2),(1.5,1,1.5,2,2)]. By Definition 5, we get [FX;,,FXy,] =
[(0,0,0,0,1),(0,0,0,1,1)].

According to Definition 5, we can transfer fuzzy numbers predicted by bivariate
fuzzy time series model into linguistic indicator functions. Yet, the problem is how
to determine corresponding linguistic variables through linguistic indicator func-
tions. To solve this, we use Definition 5 and establish a threshold function by fuzzy
reasoning to obtain a fuzzy rule base and further analyze its outputting linguistic
variables.

According to the times series data used in this research, we build ranges
as {plunge, drop, draw, soar, surge} and {very low, low, medium, high, very high} for
price limit and trading volume difference and thus set the value of n as 5, respec-
tively. We also use (Ij,,...,/;s,) as fuzzy inference indicator, where I;;, =1 or 0
and j = 1,2,...,5, and thus 32 linguistic indicator functions can be established.
Yet, we need to exclude vector (0,0,0,0,0) because it cannot represent any linguis-
tic variable. However, it's not easy to categorize 31 linguistic indicator functions to
their corresponding linguistic variables. If only a “1” appears in the linguistic indi-
cator function, the output will be the corresponding linguistic variable where this
1 is located. For example, (0,0,0,1,0) represents that the membership of “soar” is
“1", so the outputting of linguistic variable is “soar.”

However, how to deal with the scenario when there is more than one “1"” appear-
ing in the linguistic indicator function will be very time-consuming if we attempt
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to sequentially examine each component of linguistic indicator function in fuzzy
time series, i.e. examining each i;;,, where j = 1,2,...,5, from I;;, = 1 or 0 until
I, =1 or 0. Yet, if we take entire linguistic indicator function to judge, it will be
easy for us to identify its representative linguistic variable through experience rules.
For example, (0,0,0,1,1) represents both the memberships of the linguistic terms
“soar” and “surge” are 1. Through experience rules, we can detect its outputting
linguistic variable is “surge.” Similarly, (1,1,0,0,0) represents that the outputting
linguistic variable is “plunge.”

Therefore, using the above methodology, we consider the threshold function H,
as our decision process for different range partition sets, where H, is defined as
follows:

plunge (very low) , if K; < -2

drop (low) Jif —2< Ky < —-1;0rif Ky=—2and 35, I, >3
H; = ¢ draw (medium) ,if K; =0 -
soar (high) Jif1<K,<2 ;orifK,=2andy ] I >3

surge (very high) | if 2 < K,

where K; = 30_ (4 — 3)Lij,» i = 1,2.

Finally, we can use this threshold function to establish the following fuzzy rule
base.
A fuzzy rule base

Fori=1,2

(i) If FX:, € {(1,0,0,0,0),(1,1,0,0,0),(1,0,1,0,0),(1,1,1,0,0)}, then the out-
putting linguistic variable is “plunge (very low)".

(i) ¥ FX;,, € {(0,1,0,0,0),(1,1,0,1,0),(1,1,1,0,1),(1,1,0,0,1),(1,0,0,1,0),
(1,1,1,1,0),(0,1,1,0,0),(1,0,1,1,0)}, then the outputting linguistic variable
is “drop (low)”.

(i) If FX;, € {(0,0,1,0,0),(1,0,1,0,1),(1,0,0,0,1),(1,1,1,1,1),(0,1,0,1,0),
(1,1,0,1,1),(0,1,1,1,0)}, then the outputting linguistic variable is “draw
(medium)”.

(iv) If FX;: € {(0,0,0,1,0),(0,1,0,1,1),(1,0,1,1,1),(1,0,0,1,1),(0,1,0,0,1),
(0,1,1,1,1),(0,0,1,1,0),(0,1,1,0,1)}, then the outputting linguistic variable
is “soar (high)".

(v) If FX;, € {(0,0,0,0,1),(0,0,0,1,1),(0,0,1,0,1),(0,0,1,1,1)}, then the out-
putting linguistic variable is “surge (very high)”.

For instance, in Example 3, we obtained [F}'El,,,ng,t] = [(0,0,0,0,1),
(0,0,0,1,1)]. Therefore, through fuzzy rule base mentioned above, we can get the
outputting linguistic variables for price limit and trading volume difference which
are “surge” and “very high”, respectively.
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3.3. Mean absolute forecasting accuracy

Forecasting provides indispensable information in decision-making process. Espe-
cially, a precise forecasting result can provide decision makers precious information
to make correct decision and appropriate reaction. To which, we use bivariate fuzzy
times series model for forecasting to realize its predictive effects. After modeling
the bivariate fuzzy time series and constructing the fuzzy rule base, it is necessary
to compare the forecasting performance with other methods.

For the bivariate fuzzy autoregressive process of ordered one, the [-step predic-
tion becomes

!
. R R
(FX10(1),FXan(l)) = (FX1 0, FXan) 0 ( 1 ”) .
Ra1 Rz
To compare the forecasting performances, we need to assign each linguistic vari-
able with an ordered rank. For instance, a “plunge” as —2, “drop” as —1, “draw” as

0, “soar” as 1 and “surge” as 2. By doing so, the mean absolute forecasting accuracy
can be defined.

Definition 6. (Mean Absolute Forecasting Accuracy) Suppose {RL;,t =
1,...,n} and {FL.,t = 1,...,n} denote respectively the real and outputting lin-
guistic variables. Let L = {(Li, Lg,...,Ly) = (=(r = 1)/2,=(r = 3)/2,...,(r —
1)/2; L; : linguistic variable, j = 1,...,7} be corresponding values of linguistic vari-
ables, then MAF A is said to be mean absolute forecasting accuracy and written
as

e |FL=RL|

r—1

MAFA=1-
T

where r denote the number of linguistic variables.

Example 4. Suppose that real linguistic variables of the time series
are {drop, draw, drop, surge, draw, drop, surge, drop, draw, plunge}, then the corre-
sponding values of linguistic variables are {-1,0,-1,2,0,-1,2,—1,0,~2}. The
outputting linguistic variables are {drop,draw, plunge,surge,draw,draw,surge,
drop, surge,draw}, then the corresponding values of linguistic variables are
{-1,0,-2,2,0,0,2,-1,2,0}. By Definition 3.3, we can get

10 |FL,-RL, 6
e t=1 4 =1 = —=0.85.
MAFA=1 = 1 0 0.85

We further provide the integrated process for bivariate fuzzy time series model-
ing,
An algorithm for modeling BFAR(1)

Step 1. For time series {X.},{X3.}. Decide the range of §); and the linguistic
variables {L;;, Li2,..., Lip} of {Xi,},1=1,2.
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Step 2. Calculate the fuzzy time series {FX;,} of {Xi:}, ¢ = 1,2 and detect the
linguistic variable according to the position of the greatest membership in
{FX,"g,t = 1,2,...,11,}, 3= 1‘2.

Step 3. Calculate all fuzzy relations between {F X} and {FX;.}, i,j = 1,2 to
get the fuzzy Markov relation matrix, then construct a bivariate fuzzy time
series model.

Step 4. Examine {F}?‘“t,t =1,2,...,n}, i =1,2. If the number of “1” is only one,
we can detect the corresponding linguistic variable immediately, otherwise
detect the corresponding linguistic variables by fuzzy rule base.

Step 5. Forecast by bivariate fuzzy time series model.

Step 6. Stop.

4. An Empirical Application
4.1. Data analysis

These data source comes from Taiwan Stock Exchange Corporation, including daily
price limit and trading volume difference of weighted index from December 30 2000
to February 9 2001. The tendencies of these data are shown respectively in Fig. 1
and Fig. 2.

100

Pnce limit

-100

-200

Date 502001 12172001 29M/2001  &2/2001

F

[

ig. 1. Trend for price limit of Taiwan Weighted Stock Index
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Trading volume difference
- g
| |

g
!

Date  S12001 1202001 29172001 522001
Fig. 2. Trend for trading volume difference of Taiwan Weighted Stock Index

From these data, we can get that maximum price limit of weighted index is
283.28 and minimum one is —167.85. Also, maximum trading volume difference
of weighted index is 699 and minimum one is —496. Generally speaking, range
should include maximum and minimum so we take two sets, (—167.85,283.28) and
(—496, 699) as the ranges of daily price limit and trading volume difference of weight-
ed index, respectively. Because this research is based on fuzzy theory, we must
fuzzify data so that modeling process can be started. Therefore, we first partition
(—167.85,283.28) and (—496,699) into k intervals (we set k = 5 here), respectively,
ie.

I = (X, (X@ + X4))/2) = (—167.85, —111.93),

the representative value of I1; is —167.85;

Lia = ((X@ + X(4})/2, (X9 + X(10)/2) = (—111.93, —17.345),
the representative value of Iy is —54.015;

Iz = ((X(g) + X10))/2, (Xas) + X(16))/2) = (—17.345,92.485),
the representative value of I3 is 55.95;

Iia = ((Xas) + X16)) /2, (X(gl) + X(22))/2) = (92.485,191.9),
the representative value of 14 is 147.515;

Iis = (X1 + X22))/2, X(24)) = (191.9,283.28),

the representative value of Iz is 283.28.

Iy = (X(1y, (X(a) + X(4))/2) = (—496, —365.5),

the representative value of I3, is —496;

Inp = ((X(3) + X(4))/2, (X(9) + X(10))/2) = (—365.5, ~22),
the representative value of I is —183;

Iz = ((X9) + X(10)) /2, (X(15) + X(16))/2) = (—22,121),
the representative value of I3 is 66.5;

Izs = ((X15) + X(16))/2, (X(21) + X(22))/2) = (121, 316.5),
the representative value of Iy is 265.5;

Ips = ((X(21) + X(22))/2, X(24)) = (316.5, 699),

the representative value of o5 is 699.
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where {Iu,hz,]lg,.{“,hs} and {121,122,I23,I24,I25} are five intervals of
(—167.85,283.28) and (—496,699), respectively. We also define five linguistic vari-
ables with respect to the above intervals for (—167.85,283.28) and (—496,699),
respectively, i.e.

Lu x Iu: “plunge”; Lg] [+ ¢ I‘I!l:
Lyg o Iyg: “drop”; Lag ox Ipg:
L3 ox I3: “draw”; Lo3 o Iz3: “medium”;

L14 oc IMI “soar”; Loy ox Ing: “high";
Lys o Iys: “surge”. Log o Igs: “very high”.

where each linguistic variable denotes a fuzzy set and each element in fuzzy set de-
notes by I; (1=1,2;5 =1,2,...,5) and its corresponding membership. Therefore,
these linguistic variables can be expressed by fuzzy set as follows,

Liy = {1/1;1,0.5/1;2,0/I;3,0/ 14,0/ Iis }

Liz = {0/I;1,0.5/1i2,1/1;3,0.5/I34,0/ L5}, i=1,2.
Lig = {0/1,0/1i2,0.5/ L3, 1/ T4, 0.5/ Iis)

L= 407 X1 013,055, 0.5/ Tig, 1/ o}

where the determination of memberships is based on principle proposed by Song
and Chissom (1993). For convenience, the elements in fuzzy set can be expressed
by their corresponding memberships.

La = (1,0.5,0,0,0)

Ly = (0.5,1,05,0,0)

Ly =(0,0.5,1,0.5,0), i=1,2.
L = (0,0,0.5,1,0.5)

Li = (0,0,0,0.5,1)

4.2. Fuzzy model consiruction

After fuzzifying these data of daily price limit and trading volume difference of
weighted index, we can apply the method mentioned in Section 2.1 to calculate
data’s corresponding memberships in L;; (1 =1,2;5 =1,2,...,5). We illustrate the
results in Table 1 and Table 2.
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Table 1. The memberships for price limit of Taiwan Weighted
Stock Index

Date Price limit | Lyy | Ly2 | Liz | Lig | Lis
2000-12-30 —4.85 0 0.42 | 0.58 0 0
2001-1-2 196.19 0 0 0 0.43 | 0.57
2001-1-3 —40.49 0 0.76 | 0.24 0 0
2001-1-4 241.34 0 0 0 0 1
2001-1-5 159.4 [i] 0 0 0.82 | 0.18
2001-1-8 -107.02 0.56 | 0.44 0 0 0
2001-1-9 187.61 0 0 0 0.52 | 0.48
2001-1-10 60.66 0 0 0.78 | 0.22 0
2001-1-11 —67.54 0.04 | 0.96 0 0 0
2001-1-12 —29.84 0 0.66 | 0.34 0 0
2001-1-15 40.26 0 0 0.97 | 0.03 0
2001-1-16 283.28 0 0 0 0 1
2001-1-17 107.01 0 0 0.34 | 0.66 0
2001-1-18 77.96 0 1] 0.61 | 0.39 0
2001-1-29 —167.85 b 0 0 0 0
2001-1-30 112.44 0 0 0.28 | 0.72 0
2001-1-31 143.7 0 0 0 0.98 | 0.02
2001-2-1 —38.27 0 0.74 | 0.26 0 0
2001-2-2 151.33 0 0 0 0.9 0.1
2001-2-5 —116.84 0.69 | 0.31 0 0 0
2001-2-6 —83.36 0.25 | 0.75 0 0 0
2001-2-7 —155.48 1 0 0 0 0
2001-2-8 65.02 0 0 0.74 | 0.26 0
2001-2-9 51.24 0 0 0.87 | 0.13 0
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Table 2. The memberships for trading volume difference of Taiwan Weighted
Stock Index
Date Trading volume difference
2000-12-30 -102
2001-1-2 317
2001-1-3 70
2001-1-4 175
2001-1-5 263
2001-1-8 12
2001-1-9 —56
2001-1-10 146
2001-1-11 12
2001-1-12 —-412
2001-1-15 —264
2001-1-16 699
2001-1-17 268
2001-1-18 63
2001-1-29 —413
2001-1-30 —-82
2001-1-31 536
2001-2-1 -319
2001-2-2 313
2001-2-5 —319
2001-2-6 96
2001-2-7 —496
2001-2-8 95
2001-2-9 316

t-.
>3

Ly | Lag | Las | Las
0.62 | 0.38 0 0
0 0.66 | 0.34
0.88 | 0.12 0
0.26 | 0.74 0
0 0.85
0.85
0.57
0.43
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From Table 1 and Table 2, we can see the memberships of daily price limit
and trading volume difference of weighted index from December 30 2000 to Febru-
ary 9 2001. If the day's greatest membership of price limit is fallen within L,;
(7 =1,2,...,5), we can consider this day's price limit belonging to this linguistic
variable Lyj (j = 1,2,...,5). Taking data of December 30 2000 as an example,
where the greatest membership is fallen within L;3 and Lo, we can consider this
day’s price limit and trading volume difference belonging to L1z and Lag, respec-
tively. In other words, the price limit is “draw” and trading volume difference is
“low”. From past fuzzy data, we can find fuzzy relations between data and further
obtain fuzzy Markov relation matrix.

Therefore, we can explore the fuzzy cross correlation for two consecutive data,
price limit and trading volume difference. If the price limit and trading volume
difference on date (t—1) is (Lym(t—1), Lau(t—1)) and the trading volume difference
on date (t) is (Lin(t), L2y(t)), the fuzzy relations between date (f — 1) price limit
and date (t) respectively are L}, x Lin, L}, X Lgy, L}, % Lin, and L}, x Ly, (the
subscript for time is omitted here). Hence, we can get fuzzy relations as follows,
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(Price limit — Price limit)

Ry = Lijg X Lgs; Ry = Lig % Lag; R3= L}, x Las; Rq= L5 x Lag;
Rs = Lig x La1; Rg = L§) x Lag; Ry = Lig x Lag; Rg = Li3 x Lag;
Rg = Ljy % Lag; Ryg = Ly x Lag; Ryy = Liz x La1; Rig = Ly x Lag;
Ry3 = L4 x Lag; Rig = Li; x Lag; Ris = L}y x Lag; Rig = Ly % Lay;
R]",r = L’il X L23; RLB = Lris X ng.

(Price limit — Trading volume difference)

Ry = Lig x Loa; Ry = Li5 x Laa; Rz = Liy x Lag; Rq = Li5 x La;
Rs = Liy x La3; Rg= LY, x Lag; Ry =Ljy x Lag; Rg = Lij x Lag;
Rg = Ly x Lay; Ryg = Lij x Lag; Ryy = Li3 X Las; Ryg = L5 x Lay;
Ryz = Ly X Lag; Ria = Liy x Lgs; Rys = Liy x L.

(Trading volume difference — Price limit)

Ry = Li; X Lgs; Ry = Liy x Lag; Rz = Li3 x Los; Rg = L}, X Lag;
Rs = Ly x Lay; Re = Li3 x Laa; Ry = L x Laa; Rs = Li3 x Lag;
Rg = Liy x Lag; Ryg = Li5 X Las; Ru = L4 x Lag; Riz = Liz x Lay;
Rya = Li; x Lag; Rig = L} X Lag; Rys = Lig % Laa; Rig = Li; x Lao.

(Trading volume difference — Trading volume difference)

Ry = L%Z X Lag; Ry = LtM %X Loa; R3 = L’i3 x Lyg; Ry= Lt“ X Lag;
Rs = Liz x La3; Rg = LYz x Lay; Ry = LY; x Laa; Rg = Lij % Los;
Rg = Lig % Lag; Rio = Li5 x Lay; Ry = LY, x Lag; Ri2 = Liy x Lay;
Riz = L§; X Las.

where X denotes minimum operator and ¢ denotes transpose. Taking maximum
operator for each part, we can get, Ry, Ry, Moy, Roz, where Ry is a fuzzy Markov
relation matrix for date (t — 1) price limit and date (t) price limit, ;9 is a fuzzy
Markov relation matrix for date (¢ — 1) price limit and date (i) trading volume
difference, Ma; a is fuzzy Markov relation matrix for date (t — 1) trading volume
difference and date (t) price limit, and Ry, is a fuzzy Markov relation matrix for
date (t—1) trading volume difference and date (¢) trading volume difference. Finally,
the fuzzy Markov relation matrix R will be

(051 1 105051 105 0}
1 1111105105
1051 1051 1
1 1051051 1
Ry Ri2] _ [05 1051050505 1 1
mglmm]_ 0.5 1 05051 1 105
1
1
1
1

1
1
1 1
1 1
1 1
050505 1 1 050505 1
1
1
1

o

1 1051 0.5
051051 0.5
0.5 1 0.5 05610505 1 05]

Therefore, the bivariate fuzzy autoregressive time series of order one model
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is (FXL;,FXQ,:) = (Fxllg-],FX2lg..1) o ER, where (FXL;..;, FXz_g_l) and
(F Xy, FX3,) denote bivariate fuzzy sets of price limit and trading volume dif-
ference for date (f — 1) and date (t), respectively. Finally, we calculate the values
from modeling output and values transformed from linguistic indicator function,
which is shown at Table 3.

Table 3. The values of modeling and transformed outputs for price limit and
trading volume difference of Taiwan Weighted Stock Index

Date Modeling output Transformed output
2001-1-2 | [(1.5,1.5,1.5,15,2),(1.5,1,15,2,2)] | [(0,0,0,0,1),(0,0,0,1,1)
2001-1-3 [(1.5,2,1.5,2,1), (1.5,1,2,2,1)] (0,1,0,1,0),(0,0,1,1,0)
2001-1-4 [(2,2,2,2,2),(2,1.5,1.5,2,1)] (1,1,1,1,1),(1,0,0,1,0)
2001-1-5 [(1.5,2,1.5,2,1), (1.5,1,2,2,1)] (0,1,0,1,0),(0,0,1,1,0)
2001-1-8 [(2,2,2,2,1),(2,1,2,2,1.5)] (1,1,1,1,0),(1,0,1,1,0)
2001-1-9 | [(1.5,2,2,2,1.5),(1.5,1.5,2,1.5,0.5)] | [(0,1,1,1,0),(0,0,1,0,0)
2001-1-10 [(2,2,2,2,15),(2,1,2,2,1.5)] 1, 1,151, 0):41,0,1,1,0)
2001-1-11 [(2,2,2,1.5,1.5),(2,1,2,2,1.5)| (1,1,1,0,0),(1,0,1,1,0)
2001-1-12 1(2,2,2,2,2),(2,1.5,1.5,2,1)] (1,1,1,1,1),(1,0,0,1,0)

2001-1-16 | [(1.5,2,2,2,1.5),(1.5,2, 1.5, 2,1)] (0,1,1,1,0), (0, 1,0, 1,0)
2001-1-16 | [(1.5,1.5,1.5,1.5,2), (1.5, 1, 1.5,2,2)] | 1(0,0,0,0,1),(0,0,0,1,1)

2001-1-17 [(1.5,2,15,2,1),(1.5,1,2,2,1)] (0,1,0,1,0),(0,0,1,1,0)
2001-1-18 [(2.2.2,2,1),(2.1,2,2,1.5)] (1,1,1,1,0),(1,0,1,1,0)
2001-1-29 (2,2,2,15,2),(2,1,2,2,1.5) (1,1,1,0,1),(1,0,1,1,0)
2001-1-30 (1,2,2,2,1),(1,2,2,1.5,0.5) (0,1,1,1,0),(0,1,1,0,0)
2001-1-31 | [(1.5,1.5,1.5,2,1.5), (1.5, 1,1.5,2,2)] | 1(0,0,0,1,0),(0,0,0,1,1)
2001-2-1 (15,2,1.5,2,1),(2,1, 15,2, 1.5) (0,1,0,1,0),(1,0,0,1,0)
2001-2-2 (15,2,2,2,1.5),(1.5,2,1.5,2,1) (0,1,1,1,0),(0,1,0,1,0)
2001-2-5 1(2,2,2,2,1),(2,1,2,2, 1.5)] (1,1,1,1,0),(1,0,1,1,0)
2001-2-6 (1,2,2,2,1),(1,2,2,1.5,0.5) (0,1,1,1,0),(0,1,1,0,0)
2001-2-7 (2,2,2,2,2),(2,15,1.5,2,1) (1,1,1,1,1),(1,0,0,1,0)
2001-2-8 (1,2,2,2,1),(1,2,2,1.5,0.5) (0,1,1,1,0),(0,1,1,0,0)
2001-2-9 (2,2,2,1.5,2),(2,1,2,2,1.5) (1,1,1,0,1),(1,0,1,1,0)

4.3. Forecasting performance

Because this research is to explore the qualitative trend of time series, we computed
the transformed memberships through fuzzy rule base in fuzzy systems for getting
their corresponding linguistic variables to facilitate analysis. We already compre-
hensively defined and introduced fuzzy rule base in Section 3.2 and compared it
with bivariate ARMA model (BARMA(p,q)) usually used in analyzing bivariate
time series data. The results derived from above principles are shown at Table 4
and Table 5.
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Table 4. The comparison of fitted value for price limit of
Taiwan Weighted Stock Index

Date Real value | BARMA(0,1) | FVAR(1)
2001-1-2 Surge Soar Surge
2001-1-3 Drop Surge Draw
2001-1-4 Surge Draw Draw
2001-1-5 Soar Surge Draw
2001-1-8 Drop Plunge Drop
2001-1-9 Soar Surge Draw
2001-1-10 Draw Drop Drop
2001-1-11 Drop Draw Plunge
2001-1-12 Drop Draw Draw

2001-1-15 Draw Draw Draw
2001-1-16 Surge Draw Surge
2001-1-17 Soar Draw Draw
2001-1-18 Draw Draw Drop
2001-1-29 Plunge Draw Drop
2001-1-30 Soar Draw Draw
2001-1-31 Soar Draw Soar
2001-2-1 Drop Surge Draw
2001-2-2 Soar Draw Draw
2001-2-5 Plunge Draw Drop
2001-2-6 Drop Drop Draw
2001-2-7 Plunge Drop Draw
2001-2-8 Draw Draw Draw
2001-2-9 Draw Plunge Drop

Right 0.17 0.26

Accuracy 0.71 0.78
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Table 5. The comparison of fitted value for trading vol-
ume difference of Taiwan Weighted Stock Index

Date Real value | BARMA(0,1) | FVAR(1)
2001-1-2 | Very high High Very high
2001-1-3 Medium Medium High
2001-1-4 High Low Low
2001-1-5 High Very low High
2001-1-8 Medium Very high Low
2001-1-9 Low Low Medium
2001-1-10 High Very high Low
2001-1-11 Medium High Low
2001-1-12 | Very low Low Low
2001-1-15 Low Very low Medium
2001-1-16 | Very high Very high Very high
2001-1-17 High Very low High
2001-1-18 | Medium Very high Low
2001-1-29 | Very low High Low
2001-1-30 Low Medium Low
2001-1-31 | Very high Low Very high
2001-2-1 Low Low Low
2001-2-2 High Very high Medium
2001-2-5 Low Medium Low
2001-2-6 Medinm Low Low
2001-2-7 Very low Low Low
2001-2-8 Medium Medium Low
2001-2-9 High Medium Low

Right 0.22 0.35
Accuracy 0.68 0.8

For comparing the forecasting results, we define mean absolute forecasting ac-
curacy to measure the accuracy of forecasting method. From Table 4 and Table 5,
we can find the FVAR(1) model has better forecasting performance than bivariate
ARMA model, BARMA(0,1), which indicates that FVAR(1) model is an effective
forecasting tool. The prediction for price limit and trading volume difference of
weighted index in future four periods are shown at Table 6 and Table 7.

Table 6. The comparison of real and predictive values
for price limit of Taiwan Weighted Stock Index

Date Real value | BARMA(0,1) | FVAR(1)

2001-2-12 Draw Surge Plunge
2001-2-13 Soar Draw Surge
2001-2-14 Plunge Draw Drop

2001-2-15 Surge Surge Surge
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Table 7. The comparison of real and predictive values
for trading volume difference of Taiwan Weighted Stock

Index
Date Real value | BARMA(0,1) | FVAR(1)
2001-2-12 Low Medium Low
2001-2-13 | Very high Low Very high
2001-2-14 High Low Low
2001-2-15 Low Low Medium

From Table 6 and Table 7, we can get the mean absolute forecasting accuracy
for price limit and trading volume difference of weighted index are 0.75 and 0.81,
respectively. This result illustrates that the bivariate fuzzy time series model in this
research has better forecasting performance. The major reason why the prediction
cannot hit real value is that we only consider the greatest membership and omit
others memberships. Therefore, only with reasonable forecasting model can we de-
cide investment strategy from forecasting results. Otherwise, without the direction
of clear outlines, investors will face a plight as to which information they should
take.

5. Conclusion

In this research, we tried to make an appropriate process of constructing bivariate
fuzzy time series model and use this model to forecast the price limit and trading
volume difference of Taiwan Weighted Stock Index. Compare the bivariate fuzzy
time series model with traditional bivariate ARMA model by the performance of
mean absolute forecasting accuracy, we can find that the bivariate fuzzy time series
model has better forecasting performance than that of traditional bivariate ARMA
model. We hope this method will provide a new forecasting technique for investors
to make optimal decision with fuzzy information.

Finally, in spite of the forecasting performance for bivariate fuzzy time series
modeling, there are some problems for further studies. For example:

(i) To make a general rule for fuzzy order identification instead of the Markov
relation?

(ii) To extend our result to the multivariate fuzzy time series case. In fact, how to
solve the nonstationary or seasonal factors in the bivariate fuzzy time series are
still open questions.

(iii) In this research, we adopt five-ranking classification and transform the time
series data into fuzzy numbers through membership functions. However, seven-
ranking classification used in social sciences may be used in future studies for
special situation. And it is yet to prove where it will provide significant im-
provement on forecasting performance?
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