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1. INTRODUCTION 

The solutions of a parabolic partial differential equation can be considered as a 
semiflow in some function space. In order to apply the index theory (for example 
[5]) to study the qualitative behavior of the semiflow, it is often very useful to 
have a compact positively invariant set which is large enough to contain all 
intersting solutions (steady state solutions, traveling wave solutions, etc.). 

The purpose of this paper is to find a compact positively invariant set of 
solutions of the Nagumo equation 

Ut = olzl - /3u 

vt = %x +f(u> - u, (1) 

where u, v are real functions in P(R x R+), (Y, /3 > 0 and f E C3(@ satisfying 
the following conditions: 

(9 f (0) = 0 
(ii) f (-m) > (ol/@m, f(m) < -(a/& for large m. 

We also assume that there exists K > 0 such that for every fixed t, I u(x, t)] 
and 1 V(X, t)l are less than eKx2 provided 1 x I is sufficiently large. 

A Compact Positively Invariant Set 

For fixed t, we consider a solution (z) of Eq. (1) as a curve l? R + R4 with 
parameter X, and 

u(x, t)‘ 

P(x) = $ ;; 

i 1 

. 

&: t) 
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We find a bounded closed region B in R* (see Fig. 2) such that if To(x) E B 
for all x E R, then P(X) E B for all (x, t) E R x Rf. 

2. A BOUNDED POSITIVELY INVARIANT SET 

DEFINITION 1. A positively invariant set S means a subset of f?(R) x O+(R) 
such that every solution of Eq. (1) with initial value in S will stay in S for all 
t > 0. 

DEFINITION 2. f%(m) = ((3 E C3(R) x CYR) I I v I < m and I u I < (4/W>. 
For fixed t, we consider a solution (z) of Eq. (1) as a curve # in R2 with parameter 
x E R and yt(x) = (z{$))). 

Roughly speaking, in the next lemma, we show that if yt is inside the rectangle 
in Fig. 1, and if it touches the boundary of the rectangle, it will be bounced 
inward. Therefore, once yt is in the rectangle, it will be trapped forever, 

U 

FIGURE 1 

LEMMA 3. For su..ciently large m, S,(m) is positively invariant. 

Proof. Let (t) be a solution of Eq. (1) with the initial value (z$$,‘) in S,(m). 
Assume that for every fixed t > 0, 1 u(x, t)I, 1 v(x, t)l are less than eKze for suffi- 
ciently large j x I. 

Let b = 4(K + 2)?, a > 2(K + 2), E > 0 and 4(x, t) = eat+(bt+K+l)s’. 
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Define two auxiliary functions: 

8(x, 4 = m + +, 9; 7(X> 9 = ww~, 4. 

It is easy to see that 1 U(X, O)l < 7(x, 0) and / a(x, O)l < [(x, 0); and for every 
fixed t, if 1 XI is sufficiently large, we have / u(x, t)i < 7(x, t) and [ v(x, t)l < ((x, t). 

By simple computation, we have 

qt = (a + bx2)q and 

4 rz = [4(bt + K + 1)2X2 + 2(bt + K + l)]q. 

Let 0 < t < l/6. Consider the following 4 cases: 

(i) If 1 u 1 < 7, v = f, v, = 5, and vz, < [,, , substituting v, by (I), we 

have tt - vt = ft - (v,, + f(v) - 4 3 & - Lz -f(f) - 7 >, [a + h2 - 
4(bt + K + 1)2x2 - 2(bt + K + l)]q - f(E) - a//3 > 0, because bt < 1, 
b = 4(K + 2)2, a > 2(K + 2) and for sufficiently large t,f([) < -(a/&!. 

(ii) If j u I < 7, v = -5, v, = -& and v,, > -[,, , then we have 

-tt - vt = -5t - (v,, +-f(v) - 4 

,< -tt + Lc -f(-5) + (c+)f -=c 0. 

(iii) If I v 1 < 5, u = 7, then we have 

7t - Ut = 7t - (,v - If4 

>, (4is) <(a + bx2)q - d + B(Q)5 > 0. 

(iv) If [ v I < 5, u = -7, then we have 

-7t - ut < -(4% + 4 - /37 < a5 - /+/P)5 = 0. 

Therefore, applying the Nagumo-Westphal lemma for systems of parabolic 
equations (see [4]), we have I v(x, t)I < f(x, t) and 1 u(x, t)l < 7(x, t) for 
0 < t < l/b. 

Since E can be arbitrarily small we have 1 u(x, t)l < (a/,f?)m and 

I 4x, t)l < m for O<t<l/b. 

The above argument can be applied again and again, hence 

I 4x, t)l G (4)m and I v(x, 9 < m for all t > 0. 

3. A COMPACT POSITIVELY INVARIANT SET 

S,(m) is bounded but not compact. Now we find a positively invariant subset 
of S,(m) whose elements have uniformly bounded derivatives. 
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At first we have to develop some technical results. 
Consider the autonomous system of ordinary differential equations. 

dvldx = w 

dwjdx = -f(v) F VW. @*I 

In the v-w phase space, let G+(v) (z%(v)) be the orbit of the system (2+) 
(system (2-)) passing through the point z?+(O) = (fi/2a)rz (G-(O) = -(/3/2ol)n, 
respectively), where 

(3) 

n = max{8mr2(ar//3), 2m12, 32(a2/p2)}. (4 

Note. The definitions of r9, and m, , n will be used throughout this paper. 

LEMMA 4. 1 < j Zz*(v)I < (/3/c+ for I v I < m, . 

Proof. From Eq. (2*), it follows 

Assuming that 1 zii* 

But G*(v) starts at 1 
have 

using (3), (4), (5) 

dr.9 ~ zz* = -f(v) T vzz*. 
dv 

3 1, and using the above formula and (3), we get 

(5) 

G*(O)/ = $(/3/a)n > 1, therefo re by (5), if 1 v I < m, , we 

1 zz’(v)I > 22*(o) - 1 g 1 Iv1 

(6) 

So the above assumption is a fact. 
Using (5) again and recalling (3) (4), we have 

I 6t’WI < e*(O) + 1 g 1 l v I 

< W+> f2 + 2m12 (7) 

Thus we have proved the lemma. 1 
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DEFINITION 5. s,(m) = {(z) E s,(m) 1 j u, 1 -=c n and &(w(x)) < z)~(x) < 
CJ+(W(X)) for x E R) (see Fig. 2). 

THEOREM 6. S,(m) is positively invariant for large m. 

Before we prove the theorem, we need to establish some identities. 
Let (z) be a solution of Eq. (1). Set w = v, , z = u, . Differentiating Eq. (1) 

wrt x, we get 

Zt = cxw - pi (8) 

Wt = w,, +f'(v)w - z (9) 

When vu, # 0, locally we can consider z, w as functions of v and t. Define 

qv, t) = qJ(x, t), t) = x(x, t), (10) 
w(v, t) = iqD(X, t), t) = w(x, t). (11) 

Through a change of variable, Eqs. (S)-(9) can be rewritten as: 

and 

,?q = -.q.$ + Zt 

= --z,(w,w + f (v) - 24) + am - p,T (12) 

tq = --w,v, + Wt 

= w-w 212) - f (w)q + f ‘(v)iiT - z + i&J4 (13) 

These will be needed later. 
Now let us consider the ordinary differential equation (2*) which can be 

written, as: 

d2vldxz + f (v) = ~vw. (147 

When dvjdx # 0, locally we can define: 

d(v) = d(v(x)) = w(x) (15) 

Using (14*), we get the following identity 

+f (4) + g (2 +f (4) = - 2 (TV4 + $ (Fvw), 

which can be simplified as: 

ti2g +f’(v)eir -f(v)& = +?P. 
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Proof of Theorem 6. Let (z) be a solution of Eq. (l), w = o, , z = U, , 
2, w be defined as in (lo), (11). For fixed t, we consider (t) as a curve P in R4 by 
defining 

Let B be the closed region in R4 bounded by a = &m, u = -J-(a//3)m, z = fn, 
w = G+(v), and w = G-(v) (see Fig. 2). We show that if P is in B and if it 
touches the boundary of B, it will be bounced inward. 

FIGURE 2 

In Lemma 3 we have covered the cases of P touching the boundary in u, v 
directions, so we only need to discuss the following two cases. 

Case 1. If P touches the z directional boundary at x = x0 , then ,x(x0 , t) = n 
and z,(3c0 , t) = 0. Applying (8) and Lemma 4 we have 

Zt(Xo ) t) = aw - pz < 011 fz* j - pz 

< a . (/3/c+ - /en < 0. 
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Case 2. If rt touches the w directional boundary at v = v0 , then we have 

and 17) 

Using (13), at the point (v,, , t), we have 

f& zzz fj,i‘+ 921 -f(q) eo, +f’(v,) @ - 2 + w,u 

d2iz+ < (e+)” -p - f(vJ z&,+ +f’(v,) el+ - z + &+u by (17) 

= -(zE+)~ - z + 6?,+u by (16) 

using the definition of B and (6), (5), and (3) 

< -(t(/+) n)” + n + 2m12 

= - &&32/a2) 11 * n + n + 2m,2 

-< -2n + n + 2m12 by (4) 

< -n + 2~2,~ < 0 by (4). 

The same argument can be applied to the cases rt touches z = --n or 
w = z?(w). 

Therefore, once (t) is in S2(m), it will stay in S,(m) forever. 1 

THEOREM 7. S,(m) is compact wrt c-0 topology. (i.e., the topology generated 
by sup-norms of u, v restricted to every bounded interval of the real line.) 

Proof. Let (z) E S,(m) . u, v, 24,) vz are uniformly bounded. Hence by 
Ascoli-Azela Theorem, S,(m) is compact wrt c-0 topology. 
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