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Abstract We consider a version of directed bond percolation on the triangular lattice such
that vertical edges are directed upward with probability y, diagonal edges are directed from
lower-left to upper-right or lower-right to upper-left with probability d , and horizontal edges
are directed rightward with probabilities x and one in alternate rows. Let τ(M, N ) be the
probability that there is at least one connected-directed path of occupied edges from (0, 0) to
(M, N ). For each x ∈ [0, 1], y ∈ [0, 1), d ∈ [0, 1) but (1 − y)(1 − d) �= 1 and aspect ratio
α = M/N fixed for the triangular lattice with diagonal edges from lower-left to upper-right,
we show that there is an αc = (d − y −dy)/[2(d + y −dy)]+[1−(1−d)2(1− y)2x]/[2(d +
y − dy)2] such that as N → ∞, τ(M, N ) is 1, 0 and 1/2 for α > αc, α < αc and α = αc,
respectively. A corresponding result is obtained for the triangular lattice with diagonal edges
from lower-right to upper-left. We also investigate the rate of convergence of τ(M, N ) and
the asymptotic behavior of τ(M−

N , N ) and τ(M+
N , N ) where M−

N /N ↑ αc and M+
N /N ↓ αc

as N ↑ ∞.

Keywords Domany–Kinzel model · Directed percolation · Random walk ·
Asymptotic behavior · Berry–Esseen theorem · Large deviation

1 Introduction

Directed percolation, or oriented percolation, can be thought of simply as a percolation
process on a directed lattice in which connections are allowed only in a preferred direction.
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Asymptotic Behavior for a Directed Percolation 501

It was first studied by Broadbend and Hammersley [1] and it has remained to this day as
one of the most outstanding interesting problems in probability and statistical mechanics.
Furthermore, directed percolation is closely related to the Reggeon field theory in high-energy
physics and the Markov processes with branching, recombination and absorption that occur
in chemistry and biology [2,3], etc. Various properties, results and conjectures of directed
percolation can be found in [4,5] and the references therein. However very little is known in
the way of exact solutions for the directed percolation problem.

Domany and Kinzel [6] defined a solvable version of compact directed percolation on
the square lattice in 1981 as follows. For a fixed p ∈ (0, 1), each vertical bond is directed
upward with occupation probability p (independently of the other bonds) and each horizontal
bond is directed rightward with occupation probability 1. Furthermore, it is known that the
boundary of the Domany–Kinzel model has the same distribution as the one-dimensional last
passage percolation model [7]. A three-dimensional version of Domany–Kinzel model with
occupation probability 1 along two spatial directions was considered in Ref. [8]. Recently,
one of the authors considered a version of directed percolation on the square lattice whose
vertical edges occupied with a probability pv and horizontal edges in the n-th row occupied
with a probability 1 if n is even and ph if n is odd [9]. Particularly for ph = 0 or 1, that
model reduces to the Domany–Kinzel model. In this article, we generalize further to consider
a triangular lattice as follows. Instead of using regular triangles, it is easier to start from a
square lattice with vertical probability y and horizontal probabilities 1 and x alternatively,
then add diagonal edges from lower-left to upper-right or from lower-right to upper-left with
probability d as shown in Fig. 1. Notice that the model we study is not a compact directed
percolation as holes may exist.

The vertices (sites) of the triangular lattice are now located at a two-dimensional rec-
tangular net {(m, n) ∈ Z × Z+ : −M ≤ m ≤ M and 0 ≤ n ≤ N }. Consider the
probabilities x ∈ [0, 1], y ∈ [0, 1) and d ∈ [0, 1) but (1 − y)(1 − d) �= 1, i.e., d and
y should not be zero simultaneously, throughout this article, and the percolation always
starts from the origin (0, 0). We say that the vertex (m, n) is percolating if there is at least
one connected-directed path of occupied edges from (0, 0) to (m, n). Given any α ∈ R, let
Nα = 	αN
 = sup{m ∈ Z : m ≤ αN } with N ∈ Z+. It is clear that α ≥ 0 for the triangular
lattice with diagonal edges from lower-left to upper-right and α ≥ −1 with diagonal edges
from lower-right to upper-left. Let us define

αmin =
{

0 if diagonal edges from lower-left to upper-right ,

−1 if diagonal edges from lower-right to upper-left .

Denote P as the probability distribution of the bond variables, and define the two point
correlation function

τ(Nα, N ) = P((Nα, N ) is percolating) .

It is appropriate to define some of the standard critical exponents and to sketch the phenom-
enological scaling theory of τ(Nα, N ). A critical value of α exists, that is denoted as αc. For
α < αc and α close to αc, the scaling theory of critical behavior asserts that the singular part
of τ(Nα, N ) varies asymptotically as (c.f. [10])

τ(Nα, N ) ≈ exp(
−B N

(αc − α)−ν
) , (1.1)

where the notation f1,α(N ) ≈ f2,α(N ) means that limN→∞ log f1,α(N )/ log f2,α(N ) = 1.
The critical exponent ν ∈ (0,∞) is a universal constant [11]. The constant B will be derived
explicitly below, that does not depend on α but does depend on x , y and d . Note that there
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(a)

(b)

(c)

Fig. 1 a Triangular lattice with regular triangles; b square lattice plus diagonal edges from lower-left to
upper-right; c square lattice plus diagonal edges from lower-right to upper-left. The probabilities for the edges
to be occupied are shown in b and c

has been no general proof of the existence of the critical exponents. For α < αc, the critical
exponent of the correlation length ν = 2 as shown below is the same as what was found in
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Asymptotic Behavior for a Directed Percolation 503

the Domany–Kinzel model [6,12–14]. The consideration here generalizes and amends the
corresponding results for the square lattice in Ref. [9] by one of the authors (Chen).

The main purpose of this article is to find the critical value

αc = d − y − dy

2(d + y − dy)
+ 1 − (1 − d)2(1 − y)2x

2(d + y − dy)2 (1.2)

for the triangular lattice with diagonal edges from lower-left to upper-right, and the critical
value

αc = − 3d + y − dy

2(d + y − dy)
+ 1 − (1 − d)2(1 − y)2x

2(d + y − dy)2 (1.3)

for the triangular lattice with diagonal edges from lower-right to upper-left, such that

lim
N→∞ τ(2Nα, 2N ) =

⎧⎨
⎩

1 if α > αc ,

0 if α < αc ,
1
2 if α = αc .

(1.4)

Notice that we use the same symbol αc to denote the critical value for the triangular lattice
with diagonal edges either from lower-left to upper-right or from lower-right to upper-left,
because (1.4) and the following theorems apply to both cases. The meaning will be clear from
context. We also obtain the values of ν and B for the triangle lattice. We use large derivation
argument and the Berry–Esseen theorem to quantify the rate.

The rest of this paper is organized as follows. In Sect. 2, we state the main results (Theo-
rem 2.1, Theorem 2.2 and Theorem 2.4) of this paper. In Sect. 3, we derive the critical value
αc and the variance σ 2. Theorem 2.1 is proved in Sect. 4 while Theorem 2.2 and Theorem 2.4
are proved in Sect. 5.

2 Main Results

First we study the rate of convergence of τ(2Nα, 2N ) for a fixed α. For notation convenience,
define

a = 1 + b − (d + y − dy)2 , b = (1 − d)2(1 − y)2x (2.1)

from now on, thus (1.2) and (1.3) can be written as

αc = 1

2
− y

d + y − dy
+ 1 − b

2(1 − a + b)

for the triangular lattice with diagonal edges from lower-left to upper-right, and the critical
value

αc = −1

2
− d

d + y − dy
+ 1 − b

2(1 − a + b)

for the triangular lattice with diagonal edges from lower-right to upper-left. Moreover, we
define

α =
{

αmin if αc < − 3
4 + σ

2 ,

−3+
√

(4αc+3)2−4σ 2

4 if αc ≥ − 3
4 + σ

2 ,
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where the variance is given by

σ 2 = 2(1 − y)dy − 1 − b

1 − a + b
+ (1 − b)2

(1 − a + b)2 (2.2)

for the triangular lattice with diagonal edges from lower-left to upper-right, and

σ 2 = 2(1 − d)dy − 1 − b

1 − a + b
+ (1 − b)2

(1 − a + b)2 (2.3)

for the triangular lattice with diagonal edges from lower-right to upper-left. Here we again
use the same symbol σ 2 to denote the variance for the two cases.

Theorem 2.1 Given x ∈ [0, 1], y ∈ [0, 1), d ∈ [0, 1) with (1 − y)(1 − d) �= 1 and the
critical aspect ratio αc in (1.2) or (1.3), the asymptotic behavior of the two point correlation
function is ⎧⎨

⎩
τ(2Nα, 2N ) ≈ exp (−2N I (α)) for α < αc ,

τ (2Nα, 2N ) = 1
2 + O( 1√

N
) for α = αc ,

1 − τ(2Nα, 2N ) ≈ exp (−2N I (α)) for α > αc ,

(2.4)

where
1

σ 2 (αc − α)2 ≤ I (α) ≤ − ln y for α ∈ (αmin, αc) (2.5)

1

σ 2 (αc − α)2 ≤ I (α) ≤
1
σ 2 (αc − α)2

1 −
(

4(α+αc)+6
σ 2

)
(αc − α)

for α ∈ (α, αc) (2.6)

1
σ 2 (αc − α)2

1 +
(

4(α+αc)+6
σ 2

)
(α − αc)

≤ I (α) ≤ 1

σ 2 (αc − α)2 for α > αc . (2.7)

Furthermore,⎧⎪⎪⎨
⎪⎪⎩

τ(2Nα, 2N ) ≤ exp
(−2N

σ 2 (αc − α)2
)

for α ∈ (α, αc) ,

1 − τ(2Nα, 2N ) ≤ exp
(

2(α−αc)

σ 2

)
exp

(
−2N
σ2 (αc−α)2

1+
(

4(α+αc)+6
σ2

)
(α−αc)

)
for α > αc .

(2.8)

According to the definition of α, it is easy to see that α < αc, and for α ∈ (α, αc) we have(
4(α + αc) + 6

σ 2

)
(αc − α) < 1,

such that the upper bound of I (α) in (2.6) remains positive and finite. By Theorem 2.1, we
have the following theorem:

Theorem 2.2 Given x ∈ [0, 1], y ∈ [0, 1), d ∈ [0, 1) with (1 − y)(1 − d) �= 1 and the
critical aspect ratio αc in (1.2) or (1.3), inequalities

τ(2Nα, 2N + 1)

τ (2Nα, 2N )
≤ 1 ,

τ (2Nα, 2N + 2)

τ (2Nα, 2N )
≤ 1

hold and the asymptotic behavior of the two point correlation function is⎧⎨
⎩

τ(Nα, N ) ≈ exp (−N I (α)) for α < αc ,

τ (Nα, N ) = 1
2 + O( 1√

N
) for α = αc ,

1 − τ(Nα, N ) ≈ exp (−N I (α)) for α > αc .
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Remark 2.3 Theorem 2.1 and Theorem 2.2 lead to the following information:

1. The function I (α) for α �= αc does not have a simple expression. However, for the
original Domany–Kinzel model on the square lattice (i.e., d = 0, x = 1), it is given by
(see Remark 4.1)

I (α) = α ln

(
α

(1 − y)(1 + α)

)
− ln (y(1 + α)) . (2.9)

2. For d = 0, the expressions of αc in (1.2), (1.3) and the expressions of σ 2 in (2.2), (2.3)
reduce to those for the square lattice in [9].

3. For x = 1, our model corresponds to a Domany–Kinzel model on the 2Nα×2N triangular
lattice. (1.2) and (2.2) lead toαc = (1−y)/(d+y−dy),σ 2 = 2(1−y)(1−d+dy)/(d+y−
dy)2 for the triangular lattice with diagonal edges from lower-left to upper-right. (1.3) and
(2.3) lead to αc = (1−2d−y+dy)/(d+y−dy), σ 2 = 2(1−d)(1−y+dy)/(d+y−dy)2

for the triangular lattice with diagonal edges from lower-right to upper-left.
4. Our result gives that τ(Nα, N ) with α < αc and 1 − τ(Nα, N ) with α > αc both decay

exponentially to zero. Furthermore, we obtain B = 1/σ 2 and the critical exponent ν = 2
in (1.1) for α < αc.

Finally, we investigate the asymptotic phenomena of τ(Nα−
N
, N ) and τ(Nα+

N
, N ) where α+

N ↓
αc and α−

N ↑ αc as N ↑ ∞. A sequence {�n}∞n=1 is called a regularly varying sequence
if for any λ ∈ (0,∞), limn→∞ �	λn
/�n = 1. For example, �n = log n or �n = c ∈
(0,∞) for all n. For convenience, we denote �(x) = 1√

2π

∫ x
−∞ e− u2

2 du as the standard
cumulative distribution function of Gaussian distribution with mean 0, variance 1 and let


(x) = 1 − �(x) = 1√
2π

∫ ∞
x e− u2

2 du. It is not difficult to see that


(x) = e− x2
2√

2πx

(
1 + O(x−2)

)
when x is large.

Theorem 2.4 Given x ∈ [0, 1], y ∈ [0, 1), d ∈ [0, 1) with (1 − y)(1 − d) �= 1, ρ ∈ (0,∞)

and a positive regularly varying sequence {�n}∞n=1. Denote α−
N = αc − σ N−ρ�N /

√
2 and

α+
N = αc + σ N−ρ�N /

√
2, then both

τ(Nα−
N
, N ) , 1 − τ(Nα+

N
, N )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≈ exp(−N−2ρ+1�2
N ) if ρ ∈ (0, 1

2 )

≈ exp(−�2
N ) if ρ = 1

2 , �N → ∞
= 
(�) + O(1) max{ 1√

N
, |� − �N |} if ρ = 1

2 , �N → � ∈ [0,∞)

= 1
2 + O(1)N−ρ+ 1

2 �N if ρ ∈ ( 1
2 , 1)

= 1
2 + O( 1√

N
) if ρ ∈ [1,∞)

Note that ρ = 1
2 is a critical value and we have the following corollary.

Corollary 2.5 Under the same assumptions of Theorem 2.2, we have

lim
N→∞ τ(Nα−

N
, N ) = lim

N→∞

(
1 − τ(Nα+

N
, N )

)
=

{
0 if ρ ∈ (0, 1

2 ) ,
1
2 if ρ ∈ ( 1

2 ,∞) .

When ρ = 1/2 and �N → � ∈ [0,∞], we have

lim
N→∞ τ(Nα−

N
, N ) = exp(−�2) , lim

N→∞ τ(Nα+
N
, N ) = 1 − exp(−�2) .
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3 Derivation of αc and σ 2

For any N ∈ N, we say that an occupied vertical or diagonal edge in a bond configuration
is wet if it lies on a percolating path where (2Nα, 2N ) is percolating. For a certain occupied
vertical or diagonal edge ending at (m, n), we say that it is primary wet if it is the wet
edge with smallest m value for that n. In a percolating configuration where (2Nα, 2N ) is
percolating, there is one primary wet edge for each n ∈ {1, 2, · · · , 2N }. Define PN (m) as
the probability that the primary wet edge for n = 2N ends at (m, 2N ), and formally define
P0(m) = δ0,m where δ is the Kronecker delta. Since the primary wet edge can occur at any
value of m ≤ 2Nα , we have

τ(2Nα, 2N ) =
∑

m≤2Nα

PN (m)

for N ∈ N.
In terms of one-dimensional independent and identically distributed random variables

w(m) = P1(m) for m ∈ Z, PN (m) can be written as

PN (m) =
∑
k∈Z

P1(k)PN−1(m − k) = w∗N (m) ,

where w∗N is the N -fold convolution. We can define a N -step random walk SN with the
probability Prob. such that for N ∈ N

SN = X1 + X2 + · · · + X N ,

where Prob.(X j = m) = w(m) for j ∈ {1, 2, ..., N }, Prob.(SN = m) = PN (m) with m ∈ Z

and Prob.(S0 = m) = δ0,m . The expectation for Prob. is denoted by Exp.
In this section, we shall obtain that the mean and the variance of w are 2αc and σ 2, and

Exp.(|X1|3) < ∞ for the triangular lattice with diagonal edges from lower-left to upper-right
in Sect. 3.1 and that with diagonal edges from lower-right to upper-left in Sect. 3.2.

3.1 Diagonal Edges from Lower-Left to Upper-Right

Let us first consider the triangular lattice with diagonal edges from lower-left to upper-right
(c.f. Fig. 1b) in this subsection. We shall derive the generating function

W (t) =
∞∑

m=0

w(m)tm .

As aforementioned w(m) is the probability that (m, 2) is percolating with the primary wet
edge in the top row ending at (m, 2). However the primary wet edge in the bottom row can
be ending at (k, 1) for any k in 0 ≤ k ≤ m. Therefore, we have

w(m) =
m∑

k=0

u(k)v(m − k) ,

where u(k) is the probability that the primary wet edge in the bottom row is ending at (k, 1)

and v(m − k) is the probability that starting from (k, 1) the primary wet edge in the upper
row is ending at (m, 2). Now since the primary wet edge can be either vertical or diagonal,
both u(m) and v(m) should be further divided into two cases:

u(m) = u1(m) + u2(m) , v(m) = v1(m) + v2(m) ,
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(b)(a)

Fig. 2 Constructions of a v1(m) and b v2(m) for m = 3 in (3.1). Occupied edges are shown as oriented
edges; while unoccupied edges are not shown. Dotted edges can be either occupied or vacant

where we use the subscript 1 when the primary wet edge is vertical and 2 when the primary
wet edge is diagonal. It is easy to see that

v1(m) = (1 − d)m(1 − y)m xm y for m ≥ 0 ,

v2(m) =
{

0 for m = 0 ,

(1 − d)m−1(1 − y)m xm−1d for m ≥ 1 ,
(3.1)

as shown in Fig. 2, and the generating functions are

V1(t) =
∞∑

m=0

v1(m)tm = y

1 − (1 − d)(1 − y)xt
,

V2(t) =
∞∑

m=0

v2(m)tm = (1 − y)dt

1 − (1 − d)(1 − y)xt
,

V (t) =
∞∑

m=0

v(m)tm = y + (1 − y)dt

1 − (1 − d)(1 − y)xt
. (3.2)

The computation of the factor u(m) with m ≥ 1 is more complicated. We first notice that
u1(0) = y and u2(0) = 0, and decompose both u1(m) and u2(m) into two terms for m ≥ 1
as follows:

u1(m) = δ1(m) + θ1(m) , u2(m) = δ2(m) + θ2(m) ,

where δ j (m) with j ∈ {1, 2} is the probability that the first primary wet edge in the bottom
row is ending at (m, 1) such that the site (m−1, 1) is disconnected from (0, 0), while θ j (m) is
the probability such that the site (m − 1, 1) is connected with (0, 0). For δ1(m) with m > 0,
one can start from u1(m − 1), then convert the vertical edge connecting (m − 1, 0) and
(m − 1, 1) into a vacant edge, so that

δ1(m) =
[

1 − y

y
u1(m − 1)

]
(1 − d)y = (1 − d)(1 − y)u1(m − 1) . (3.3)

For θ1(m) with m > 0, one can start from w1(m − 1) = ∑m−1
k=0 u(k)v1(m − 1 − k) whose

primary wet edge in the upper row is a vertical edge connecting (m − 1, 1) and (m − 1, 2),
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(a) (b)

Fig. 3 Constructions of a δ1(m) and b θ1(m) in (3.3) and (3.4), respectively. Occupied edges are shown as
oriented edges; while unoccupied edges and most edges between (0, 0) and (m − 1, 2) are not shown. Dotted
edges can be either occupied or vacant. The linebetween (0, 0) and (m − 1, 1) in b indicates that they are
connected

(a) (b)

Fig. 4 Constructions of a δ2(m) and b θ2(m) in (3.5). Occupied edges are shown as oriented edges; while
unoccupied edges and most edges between (0, 0) and (m − 1, 2) are not shown. Dotted edges can be either
occupied or vacant. The line between (0, 0) and (m − 1, 1) in b indicates that they are connected

then convert that edge into a vacant edge, and impose the conditions that the edges from
(m − 1, 1) to (m, 1) and (m, 2) are vacant to ensures that the site (m − 1, 1) is not on a
percolating path, so that

θ1(m) =
[

1 − y

y
w1(m − 1)

]
(1 − d)2(1 − x)y = (1 − d)2(1 − x)(1 − y)w1(m − 1) .

(3.4)

(3.3) and (3.4) are illustrated in Fig. 3. Similarly, we have

δ2(m) = (1 − y)d

y
u1(m − 1) ,

θ2(m) = (1 − d)(1 − x)(1 − y)d

y
w1(m − 1) (3.5)

for m > 0 as illustrated in Fig. 4.
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Asymptotic Behavior for a Directed Percolation 509

Because the generating function of w1(m) is given by W1(t) = ∑∞
m=0 w1(m)tm =

U (t)V1(t), using (3.2), (3.4) and (3.5) we have

�1(t) =
∞∑

m=1

θ1(m)tm = (1 − d)2(1 − x)(1 − y)tW1(t)

= (1 − d)2(1 − x)(1 − y)yt

1 − (1 − d)(1 − y)xt
U (t) ,

�2(t) =
∞∑

m=1

θ2(m)tm = (1 − d)(1 − x)(1 − y)dt

1 − (1 − d)(1 − y)xt
U (t) = d

(1 − d)y
�1(t) .

Using (3.3) and (3.5) to have

�1(t) =
∞∑

m=1

δ1(m)tm = (1 − d)(1 − y)tU1(t)

= (1 − d)(1 − y)t [y + �1(t) + �1(t)] ,

�2(t) =
∞∑

m=1

δ2(m)tm = (1 − y)dt

y
U1(t) = d

(1 − d)y
�1(t) ,

we solve

�1(t) = (1 − d)3(1 − x)(1 − y)2 yt2

[1 − (1 − d)(1 − y)t][1 − (1 − d)(1 − y)xt]U (t) + (1 − d)(1 − y)yt

1 − (1 − d)(1 − y)t
.

Therefore,

U (t) = y + �1(t) + �1(t) + �2(t) + �2(t) = y + d + y − dy

(1 − d)y

[
�1(t) + �1(t)

]

= (1 − d)(1 − x)(1 − y)(d + y − dy)t

[1 − (1 − d)(1 − y)t][1 − (1 − d)(1 − y)xt]U (t) + y + (1 − y)dt

1 − (1 − d)(1 − y)t

which leads to

U (t)= [1−(1−d)(1−y)xt][y+(1 − y)dt]
[1−(1−d)(1−y)t][1−(1−d)(1−y)xt]−(1−d)(1−x)(1−y)(d+y−dy)t

.

(3.6)

Combining (3.2) and (3.6), we finally have

W (t) = U (t)V (t)

= [y + (1 − y)dt]2

1 − [1 + (1 − d)2(1 − y)2x − (d + y − dy)2]t + (1 − d)2(1 − y)2xt2

= [y + (1 − y)dt]2

1 − at + bt2 . (3.7)

Furthermore, it follows that the mean of w(m) is given by

μ =
∞∑

m=0

mw(m) = dW (t)

dt

∣∣∣
t=1

= d − y − dy

d + y − dy
+ 1 − b

1 − a + b
= 2αc , (3.8)
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(a) (b)

Fig. 5 Constructions of a v1(m) and b v2(m) for m = 3 in (3.10). Occupied edges are shown as oriented
edges; while unoccupied edges are not shown. Dotted edges can be either occupied or vacant

and the variance of w(m) is given by

σ 2 =
∞∑

m=0

m2w(m) − μ2 = d2W (t)

dt2

∣∣∣
t=1

+ μ − μ2

= 2(1 − y)dy − 1 − b

1 − a + b
+ (1 − b)2

(1 − a + b)2 (3.9)

for the triangular lattice with diagonal edges from lower-left to upper-right. It is easy to check

that Exp.(|X1|3) = ∑∞
m=0 m3w(m) = d3W (t)

dt3

∣∣∣
t=1

+ 3 d2W (t)
dt2

∣∣∣
t=1

+ μ < ∞.

3.2 Diagonal Edges from Lower-Right to Upper-Left

Let us consider the triangular lattice with diagonal edges from lower-right to upper-left (c.f.
Fig. 1c) in this subsection. No confusion should result from our use of the same notations as
in the previous subsection. w(m) again is the probability that (m, 2) is percolating with the
primary wet edge in the top row ending at (m, 2). However now the primary wet edge in the
bottom row can be ending at (k, 1) for any k in −1 ≤ k ≤ m + 1. Therefore, we have

w(m) =
m+1∑

k=−1

u(k)v(m − k) .

It is easy to see that for the probability v(m) = v1(m) + v2(m) in the upper row,

v1(m) =
{

0 for m = −1 ,

(1 − d)m+1(1 − y)m xm y for m ≥ 0 ,

v2(m) = (1 − d)m+1(1 − y)m+1xm+1d for m ≥ −1 , (3.10)

as shown in Fig. 5, and the generating functions are

V1(t) =
∞∑

m=−1

v1(m)tm = (1 − d)y

1 − (1 − d)(1 − y)xt
,

V2(t) =
∞∑

m=−1

v2(m)tm = d/t

1 − (1 − d)(1 − y)xt
,

V (t) =
∞∑

m=−1

v(m)tm = (1 − d)y + d/t

1 − (1 − d)(1 − y)xt
. (3.11)
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(a) (b)

Fig. 6 Constructions of a δ1(m) with m ≥ 1 and b θ1(m) in (3.12). Occupied edges are shown as oriented
edges; while unoccupied edges and most edges between (0, 0) and (m − 1, 2) are not shown. Dotted edges
can be either occupied or vacant. The line between (0, 0) and (m −1, 1) in b indicates that they are connected

(a) (b)

Fig. 7 Constructions of a δ2(m) with m ≥ 1 and b θ2(m) in (3.13). Occupied edges are shown as oriented
edges; while unoccupied edges and most edges between (0, 0) and (m − 1, 2) are not shown. Dotted edges
can be either occupied or vacant. The line between (0, 0) and (m −1, 1) in b indicates that they are connected

For the probability u(m) = u1(m)+u2(m) in the bottom row, we again have the decompo-
sition u1(m) = δ1(m)+θ1(m) and u2(m) = δ2(m)+θ2(m). We first notice that u1(−1) = 0
and u2(−1) = d . By the arguments similar to those in the previous subsection, we have

δ1(m) =
{

(1 − d)y for m = 0 ,

(1 − d)(1 − y)u1(m − 1) for m ≥ 1 ,

θ1(m) = (1 − d)(1 − x)(1 − y)y

d
w2(m − 2) for m ≥ 0 , (3.12)

as illustrated in Fig. 6, and

δ2(m) =
{

(1 − d)(1 − y)d for m = 0 ,
(1−d)(1−y)2d

y u1(m − 1) for m ≥ 1 ,

θ2(m) = (1 − d)(1 − x)(1 − y)2w2(m − 2) for m ≥ 0 (3.13)

as illustrated in Fig. 7.
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Because the generating function of w2(m) is given by W2(t) = ∑∞
m=−2 w2(m)tm =

U (t)V2(t), using (3.11), (3.12) and (3.13) we have

�1(t) =
∞∑

m=0

θ1(m)tm = (1 − d)(1 − x)(1 − y)yt2

d
W2(t)

= (1 − d)(1 − x)(1 − y)yt

1 − (1 − d)(1 − y)xt
U (t) ,

�2(t) =
∞∑

m=0

θ2(m)tm = (1 − d)(1 − x)(1 − y)2dt

1 − (1 − d)(1 − y)xt
U (t) = (1 − y)d

y
�1(t) .

Using (3.12) and (3.13) to have

�1(t) =
∞∑

m=0

δ1(m)tm = (1 − d)y + (1 − d)(1 − y)tU1(t)

= (1 − d)y + (1 − d)(1 − y)t [�1(t) + �1(t)] ,

�2(t) =
∞∑

m=0

δ2(m)tm = (1 − d)(1 − y)d + (1 − d)(1 − y)2dt

y
U1(t)

= (1 − y)d

y
�1(t) ,

we solve

�1(t) = (1 − d)2(1 − x)(1 − y)2 yt2

[1 − (1 − d)(1 − y)t][1 − (1 − d)(1 − y)xt]U (t) + (1 − d)y

1 − (1 − d)(1 − y)t
.

Therefore,

U (t)

= �1(t) + �1(t) + d

t
+ �2(t) + �2(t) = d

t
+ d + y − dy

y

[
�1(t) + �1(t)

]

= (1 − d)(1 − x)(1 − y)(d + y − dy)t

[1 − (1 − d)(1 − y)t][1 − (1 − d)(1 − y)xt]U (t) + d/t + (1 − d)y

1 − (1 − d)(1 − y)t

which leads to

U (t)= [1−(1−d)(1−y)xt][d/t+(1−d)y]
[1−(1−d)(1−y)t][1−(1−d)(1−y)xt]−(1−d)(1−x)(1−y)(d+y − dy)t

.

(3.14)

Combining (3.11) and (3.14), we finally have

W (t) = U (t)V (t) = [d/t + (1 − d)y]2

1 − at + bt2 . (3.15)

The mean of w(m) is given by

μ =
∞∑

m=−2

mw(m) = dW (t)

dt

∣∣∣
t=1

= −3d + y − dy

d + y − dy
+ 1 − b

1 − a + b
= 2αc , (3.16)
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and the variance of w(m) is given by

σ 2 =
∞∑

m=−2

m2w(m) − μ2 = d2W (t)

dt2

∣∣∣
t=1

+ μ − μ2

= 2(1 − d)dy − 1 − b

1 − a + b
+ (1 − b)2

(1 − a + b)2 (3.17)

for the triangular lattice with diagonal edges from lower-right to upper-left. It is easy to check

that Exp.(|X1|3) = ∑∞
m=−2 m3w(m) = d3W (t)

dt3

∣∣∣
t=1

+ 3 d2W (t)
dt2

∣∣∣
t=1

+ μ < ∞.

Notice that if d and y are switched to each other, then the μ in (3.16) plus two is equal to
the mean we obtain in the previous subsection in (3.8). This is expectable since the triangular
lattice with diagonal edges from lower-right to upper-left (c.f. Fig. 1c) is equivalent to the
triangular lattice with diagonal edges from lower-left to upper-right (c.f. Fig. 1b) if each
vertex (m, n) is moved to (m + n, n) and the probabilities d and y are switched. Therefore,
the σ 2 in (3.17) is equal to the variance we obtain in the previous subsection in (3.9) with d
and y switched.

Let us remark that we only need the set of vertices (m, n) with m ≥ 0 and n ≥ 0 for
the triangular lattice with diagonal edges from lower-left to upper-right as the percolation
directions are chosen to be directed upward and rightward. However, if we only consider
the set of vertices (m, n) with m ≥ 0 and n ≥ 0 for the triangular lattice with diago-
nal edges from lower-right to upper-left, then the problem is non-trivial and the current
method does not apply. The reason is because the boundary condition for the percolation
from the origin (0, 0) to (m1, 2) for a certain m1 is different from that for the percolation
from (m1, 2) to (m2, 4) for a certain m2, etc. That is, they are not independent and identically
distributed.

4 Proof of Theorem 2.1

When α > αmin, by the definition of Nα given in the introduction, we have

τ(2Nα, 2N ) = Prob.(SN ≤ 2Nα) = Prob. (SN ≤ 2αN − cα)

for some cα ∈ [0, 1) depending on α. Berry–Esseen theorem (c.f. [15]) asserts that

τ(2Nα, 2N ) = Prob.

(
SN − 2αc N√

2Nσ
≤ 2N (α − αc) − cα√

2Nσ

)
+ O

(
1√
N

)

=
2N (α−αc)−cα√

2Nσ∫
−∞

1√
2π

e− u2
2 du + O

(
1√
N

)
. (4.1)

Setting α = αc, we have

τ(2Nαc , 2N ) =
−cα√
2Nσ∫

−∞

1√
2π

e− u2
2 du + O

(
1√
N

)
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=
0∫

−∞

1√
2π

e− u2
2 du −

0∫
−cα√
2Nσ

1√
2π

e− u2
2 du + O

(
1√
N

)

= 1

2
+ O

(
1√
N

)
, (4.2)

which gives the second line in (2.4).
In the rest part of this section, we shall use the argument of large deviation [16] to consider

a general α �= αc. Since X1 is a finite logarithmic moment generating function, we set
λ = − ln t for α < αc and use the Chebyshev inequality and Markov’s property to have

Prob.(SN ≤ 2Nα) = inf
λ>0

Prob.(e−λSN ≥ e−2λαN+λcα )

≤ inf
λ>0

Prob.(e−λSN ≥ e−2λαN )

≤ inf
λ>0

(
Exp.(e−λX1)

e−2λα

)N

= e−2N I (α) ,

where we define

I (α) = sup

t∈
(

0, a−
√

a2−4b
2b

)
(

α ln t − 1

2
ln W (t)

)
:= α ln tα − 1

2
ln W (tα) ,

and tα is a function of α. Notice that t should be less than a−√
a2−4b
2b such that the denominator

of W (t) in (3.7) or (3.15), and hence W (t) itself remains positive. Similarly for α > αc, we
set λ = ln t to have

Prob.(SN > 2Nα) = inf
λ>0

Prob.(eλSN > e2λαN−λcα )

≤ inf
λ>0

(
Exp.(eλX1)

e2λα

)N

eλ

≤ eln tα e−2N I (α) .

By Cramér’s theorem, the first and third lines of (2.4) are established.

Remark 4.1

1. We shall show that tα ∈ (0, 1) for α < αc and tα > 1 for α ∈
(
αc,

a−√
a2−4b
2b

)
.

2. I (α) does not have a simple expression. However, for the original Domany–Kinzel model
on the square lattice (d = 0, x = 1), both (3.7) and (3.15) reduce to W (t) = ( y

1−(1−y)t

)2.

For each α �= αc = 1−y
y , we solve

d

dt

(
α ln tα − 1

2
ln W (tα)

)
= 0

to obtain tα = α
(1−y)(1+α)

, and (2.9) follows.

The following discussion is devoted to the derivation of upper and lower bounds of I (α)

given in (2.5)–(2.7). Let us first consider the case with diagonal edges from lower-left to
upper-right, so that α is positive. By definition,
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α

tα
= 1

2

(
dW (tα)

d t

W (tα)

)
(4.3)

such that

d

dα
I (α) := I ′(α) = ln tα − 1

2

(
d

d t W (tα)

W (tα)
− 2α

tα

)
tα

′ = ln tα , (4.4)

where t ′ = dtα
d α

and

I ′′(α) = tα ′

tα
, I ′′′(α) = tα ′′tα − (tα ′)2

t2
α

. (4.5)

As W (t)|t=1 = 1 by definition and (3.8), (3.16) give dW/dt |t=1 = 2αc, setting tα = 1 in
(4.3) leads to tαc = W (tαc ) = 1 and hence I (αc) = I ′(αc) = 0. To obtain (2.5)–(2.7), we
need to show the following properties:

⎧⎪⎨
⎪⎩

I ′(α) ≤ 0 for α ∈ (0, αc)

I ′′(αc) = 2
σ 2

−(4α + 3)I ′′(α)2 ≤ I ′′′(α) ≤ 0 for α > 0

. (4.6)

Assuming that (4.6) holds, by Taylor formula we have

I (α) ≥ I ′′(αc)

2
(α − αc)

2 = 1

σ 2 (αc − α)2 for α ∈ (α, αc) ,

I (α) ≤ I ′′(αc)

2
(α − αc)

2 = 1

σ 2 (αc − α)2 for α > αc ,

which yields the lower bound of (2.6) and the upper bound of (2.7).
On the other hand, consider α ∈ (0, αc) and integrate α in −(4α+3)I ′′(α)2 ≤ I ′′′(α) ≤ 0

from α to αc, we obtain

− (2αc + 2α + 3) (αc − α) ≤ 1

I ′′(α)
− 1

I ′′(αc)
≤ 0 ,

such that

I ′′(α) ≤ I ′′(αc)

1 − (2αc + 2α + 3)(αc − α)I ′′(αc)
for any α ∈ (α, αc) ,

where α must be larger than α so that the denominator on the right-hand-side is positive.
Therefore by Taylor formula, for any α ∈ (α, αc), there exists a ξ ∈ (α, αc) such that

I (α) = I (αc) + I ′(αc)(α − αc) + I ′′(ξ)

2
(α − αc)

2

≤ I ′′(αc)

2 {1 − (2ξ + 2αc + 3)(αc − ξ)I ′′(αc)} (αc − α)2

≤ I ′′(αc)

2
{
1 − (2α + 2αc + 3

)
(αc − α)I ′′(αc)

} (αc − α)2

≤
1
σ 2 (αc − α)2

1 −
(

4(α+αc)+6
σ 2

)
(αc − α)

.
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Similarly for any α > αc, we have

I ′′(α) ≥ I ′′(αc)

1 + (2αc + 2α + 3) (α − αc)I ′′(αc)

and use Taylor formula again,

I (α) ≥
1
σ 2 (αc − α)2

1 +
(

4(α+αc)+6
σ 2

)
(α − αc)

for α > αc .

These give the upper bound of (2.6) and the lower bound of (2.7). To establish the second
line of (2.8) for α > αc, we use (4.4) and I ′′′(t) < 0 for all t > 0 to have

ln tα = I ′(α) ≤ I ′(αc) + I ′′(αc)(α − αc) = 2(α − αc)

σ 2 .

So the remaining task is to claim that (4.6) holds. First we show the second identity of (4.6)
as follows. The first equality of (4.5) at α = αc gives

I ′′(αc) = tαc
′

tαc

= tαc
′ .

Taking derivative with respect to α on both sides of (4.3) and setting α = αc, we have

1

tαc

− αct ′αc

t2
αc

= 1

2

⎛
⎝ d2

d t2 W (tαc )

W (tαc )
−

(
d

d t W (tαc )

W (tαc )

)2
⎞
⎠ tαc

′ .

Since tαc = 1 and 2αc = μ = d
d t W (tαc ), it follows that

2 − 2αct ′αc = (σ 2 − 2αc)tαc
′ ,

such that I ′′(αc) = 2
σ 2 .

Next we show that I ′(α) ≤ 0, i.e., tα ∈ (0, 1) by (4.4), for α ∈ (0, αc). Using W (t) =
[y + (1 − y)dt]2/(1 − at + bt2) given in (3.7), where a and b are defined in (2.1), (4.3)
multiplied by 2 becomes

2α

tα
= 2(1 − y)d

y + (1 − y)dtα
+ a − 2btα

1 − atα + bt2
α

, (4.7)

so that

2α = − 2y

y + (1 − y)dtα
+ 2 − atα

1 − atα + bt2
α

. (4.8)

Taking derivative with respect to α on both sides of (4.8), we have

2 =
(

2yd(1 − y)

(y + (1 − y)dtα)2 + a − 4btα + abt2
α

(1 − atα + bt2
α)2

)
tα

′ . (4.9)

Since a − 4btα + abt2
α = a(1 − atα + bt2

α) + (a2 − 4b)tα where 1 − atα + bt2
α > 0 and

a2 − 4b ≥ 0 (the equality a2 − 4b = 0 holds when x = 1), we have

a − 4btα + abt2
α

(1 − atα + bt2
α)2 ≥ 0 .
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(4.9) leads to tα ′ > 0 for all α > 0. Hence tα ∈ (0, 1) for α ∈ (0, αc) and tα ∈
(

1, a−√
a2−4b
2b

)
for α > αc. This yields I (α) ≤ I (0) = − ln y for α ∈ (0, αc).

Finally we show that −(4α + 3)I ′′(α)2 ≤ I ′′′(α) ≤ 0 for all α > 0. Taking derivative
with respect to α on both sides of (4.9), we have

0 =
(

2yd(1 − y)

(y + (1 − y)dtα)2 + a − 4btα + abt2
α

(1 − atα + bt2
α)2

)
tα

′′

+
[

d

d tα

(
2yd(1 − y)

(y + (1 − y)dtα)2 + a − 4btα + abt2
α

(1 − atα + bt2
α)2

)]
(tα

′)2 . (4.10)

To obtain I ′′′(α) ≤ 0 for all α > 0, it is sufficient to show that

d

d tα

(
2yd(1 − y)

(y + (1 − y)dtα)2 + a − 4btα + abt2
α

(1 − atα + bt2
α)2

)
≥ 0.

Since 1 + atα − 3bt2
α = 1 − atα + bt2

α + 2tα(a − 2btα) ≥ 0 for tα ∈
(

0, a−√
a2−4b
2b

)
, we

have

d

d tα

(
2yd(1 − y)

(y + (1 − y)dtα)2 + a − 4btα + abt2
α

(1 − atα + bt2
α)2

)

= −4yd2(1 − y)2

(y + (1 − y)dtα)3 + a(a − 2btα)

(1 − atα + bt2
α)2 + (a2 − 4b)

(1 − atα + bt2
α)3 (1 + atα − 3bt2

α)

︸ ︷︷ ︸
≥0

≥ −4yd2(1 − y)2

(y + (1 − y)dtα)3 + a(a − 2btα)

(1 − atα + bt2
α)2 . (4.11)

By (4.8), we have

(a − 2btα)tα
1 − atα + bt2

α

= −2 + 2 − atα
1 − atα + bt2

α

≥ −2 + 2y

y + (1 − y)dtα
= 2(1 − y)dtα

y + (1 − y)dtα
.

This yields

(a − 2btα)

1 − atα + bt2
α

≥ 2(1 − y)d

y + (1 − y)dtα
,

such that

−4yd2(1 − y)2

(y + (1 − y)dtα)3 + a(a − 2btα)

(1 − atα + bt2
α)2

≥ −4yd2(1 − y)2

(y + (1 − y)dtα)3 + (a − 2btα)2

(1 − atα + bt2
α)2

≥ 4d2(1 − y)2

(y + (1 − y)dtα)2

( −y

y + (1 − y)dtα
+ 1

)
≥ 0 ,

and I ′′′(α) ≤ 0 for all α > 0 is proved.
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To show the lower bound −(4α + 3)I ′′(α)2 ≤ I ′′′(α), we use (4.5), (4.10) and (4.11) to
have

I ′′′(α) = −I ′′(α)2

⎛
⎝

−4yd2(1−y)2tα
[y+(1−y)dtα]3 + 2tα(6b−a2−abtα)

[1−atα+bt2
α ]2 + 2(a2−4b)tα(2−atα)

[1−atα+bt2
α ]3

2yd(1−y)

(y+(1−y)dtα)2 + a
1−atα+bt2

α
+ tα(a2−4b)

(1−atα+bt2
α)2

+ 1

⎞
⎠

≥ −I ′′(α)2

⎛
⎝

2tα(6b−a2−abtα)

[1−atα+bt2
α ]2 + 2tα(a2−4b)(2−atα)

[1−atα+bt2
α ]3

a
1−atα+bt2

α
+ tα(a2−4b)

(1−atα+bt2
α)2

+ 1

⎞
⎠ . (4.12)

It is easy to see that 2 − atα > 0 for all tα ∈ (0,
(

a − √
a2 − 4b

)
/(2b)), we have

2tα(6b − a2 − abtα)

[1 − atα + bt2
α]2

= −2tα(a2 − 4b)

[1 − atα + bt2
α]2 + 2btα(2 − atα)

[1 − atα + bt2
α]2

= −2tα(a2 − 4b)

[1 − atα + bt2
α]2 + a

1 − atα + bt2
α

× 2btα
a

× 2 − atα
1 − atα + bt2

α

≤ −2tα(a2 − 4b)

[1 − atα + bt2
α]2 + a

1 − atα + bt2
α

× 2 − atα
1 − atα + bt2

α

,

so that

2tα(6b − a2 − abtα)

[1 − atα + bt2
α]2 + 2(a2 − 4b)tα(2 − atα)

[1 − atα + bt2
α]3

≤
(

2 − atα
1 − atα + bt2

α

)(
a

1 − atα + bt2
α

+ tα(a2 − 4b)

(1 − atα + bt2
α)2

)

+ t2
α(a2 − 4b)(a − 2btα)

(1 − atα + bt2
α)3 .

(4.12) becomes

I ′′′(α) ≥ −I ′′(α)2

⎛
⎜⎝

(
2−atα

1−atα+bt2
α

) (
a

1−atα+bt2
α

+ tα(a2−4b)

(1−atα+bt2
α)2

)
+ t2

α(a2−4b)(a−2btα)

(1−atα+bt2
α)3

a
1−atα+bt2

α
+ tα(a2−4b)

(1−atα+bt2
α)2

+ 1

⎞
⎟⎠

≥ −I ′′(α)2

⎛
⎜⎜⎜⎝

2 − atα
1 − atα + bt2

α︸ ︷︷ ︸
∈(0,2α+2)

+ tα(a − 2btα)

1 − atα + bt2
α︸ ︷︷ ︸

∈(0,2α)

+1

⎞
⎟⎟⎟⎠

≥ −(4α + 3)I ′′(α)2 ,

where the last inequality holds by (4.7) and (4.8), and the proof for the case with diagonal
edges from lower-left to upper-right is completed.

For the case with diagonal edges from lower-right to upper-left, (3.15) reads W (t) =
[(d/t + (1 − d)y)2]/(1 − at + bt2), where a and b are defined in (2.1). Multiply both sides
of (4.3) by 2 again, we have
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2(α + 1)

tα
= 2(1 − d)y

d + (1 − d)ytα
+ a − 2btα

1 − atα + bt2
α

,

so that

2α + 2 = − 2d

d + (1 − d)ytα
+ 2 − atα

1 − atα + bt2
α

. (4.13)

Note that 2α + 2 > 0 since we only consider α > −1. Taking derivative with respect to α

on both sides of (4.13), we have

2 =
(

2yd(1 − d)

(d + (1 − d)ytα)2 + a − 4btα + abt2
α

(1 − atα + bt2
α)2

)
tα

′ .

By the same argument, (4.6) can be shown. This completes the proof.

5 Proof of Theorem 2.2 and Theorem 2.4

5.1 Proof of Theorem 2.2

To show Theorem 2.2, it is easy to see the case for α = αc by the same argument of (4.2). For
the case of α �= αc, we consider diagonal edges from lower-left to upper-right with y > 0
first. Since τ(m1, 2N ) ≤ τ(m2, 2N ) for any m1 < m2 and N ∈ N, by the definition of u1(m)

and u2(m), we have

τ(2Nα, 2N + 1) =
2Nα∑
m=0

PN (m) (u1(2Nα − m) + u2(2Nα − m))

≤ τ(2Nα, 2N )

2Nα∑
m=0

(u1(2Nα − m) + u2(2Nα − m))

≤ τ(2Nα, 2N ) ,

such that

τ(2Nα, 2N + 1)

τ (2Nα, 2N )
≤ 1 for all N ∈ N . (5.1)

On the other hand, we also have

τ(2Nα, 2N + 2)

=
2Nα∑
m=0

τ(m, 2N + 1) (v1(2Nα − m) + v2(2Nα − m))

=
2Nα−1∑

m=0

τ(m, 2N + 1)v1(2Nα − m) +
2Nα−1∑

m=0

τ(m, 2N + 1)v2(2Nα − m)

+τ(2Nα, 2N + 1)v1(0)

≤
2Nα−1∑

m=0

τ(m, 2N )v1(2Nα − m) +
2Nα−1∑

m=0

τ(m, 2N )v2(2Nα − m)

+ yτ(2Nα, 2N + 1)
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≤ τ(2Nα, 2N )

(
(1 − y)(1 − d)xy

1 − (1 − y)(1 − d)x
+ (1 − y)d

1 − (1 − y)(1 − d)x

)

+ yτ(2Nα, 2N + 1)

≤ (1 − y)τ (2Nα, 2N ) + yτ(2Nα, 2N + 1) ≤ τ(2Nα, 2N ). (5.2)

By (5.1) and (5.2) and using τ(m, n) ∈ (0, 1] for all m, n ∈ N, we have

log τ(2Nα, 2N + 2)

log τ(2Nα, 2N )
≤ log ((1 − y)τ (2Nα, 2N ) + yτ(2Nα, 2N + 1))

log τ(2Nα, 2N )
≤ 1 .

Taking the limit of N → ∞, Theorem 2.1 yields

τ(2Nα, 2N + 1) ≈ τ(2Nα, 2N ) ≈ e−2N I (α) . (5.3)

Using similar argument for the case with y = 0, we have

τ(2Nα + 1, 2N + 1) ≤ τ(2Nα, 2N ) ,

τ (2Nα + 2, 2N + 2) ≤ (1 − d)τ (2Nα, 2N ) + dτ(2Nα + 1, 2N + 1)

≤ τ(2Nα, 2N ) .

Taking the limit of N → ∞, we also obtain (5.3). The proof for the case with diagonal edges
from lower-right to upper-left can be shown by the same method.

5.2 Proof of Theorem 2.4

First consider ρ ∈ (0, 1
2 ) or ρ = 1

2 with limN→∞ �N = ∞. By Theorem 2.1, we have

N−2ρ�2
N ≤ I (α−

N ) ≤ N−2ρ�2
N (1 + cN−ρ�N ) ,

N−2ρ�2
N (1 − cN−ρ�N ) ≤ I (α+

N ) ≤ N−2ρ�2
N

for some c > 0, so both

τ(Nα−
N
, N ) and 1 − τ(Nα+

N
, N ) ≈ exp(−N 1−2ρ�2

N ) .

For ρ > 1
2 or ρ = 1

2 with limN→∞ �N = � ∈ [0,∞), we use (4.1) to have

τ(Nα−
N
, N ) = 


(
N

1
2 −ρ�N + O(

1√
N

)

)
+ O(

1√
N

) .

For the first case ρ > 1
2 , we have




(
N−ρ+ 1

2 �N + O(
1√
N

)

)
=

∞∫
0

1√
2π

e− u2
2 du −

N−ρ+ 1
2 �N +O( 1√

N
)∫

0

1√
2π

e− u2
2 du

=
{

1
2 + O(1)N−ρ+ 1

2 �N ρ ∈ ( 1
2 , 1) ,

1
2 + O(1/

√
N ) ρ ≥ 1 ,

and for the second case ρ = 1
2 with limn→∞ �N = � ∈ [0,∞)


(N−ρ+ 1
2 �N ) =

∞∫
�

1√
2π

e− u2
2 du +

�∫
�N

1√
2π

e− u2
2 du = 
(�) + O(|� − �N |) .
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Therefore,

τ(Nα−
N
, N ) =

{
1
2 + O(1) max{ 1√

N
, N−ρ+ 1

2 �N } ρ > 1
2 ,


(�) + O(1) max{ 1√
N

, |� − �N |} ρ = 1
2 , limn→∞ �N = � ∈ [1,∞).

Using the same argument, it is easy to obtain the corresponding result for α = α+
N for ρ > 1

2
or ρ = 1

2 with limN→∞ �N = � ∈ [0,∞), and the proof is omitted here. This completes the
proof of Theorem 2.4.

6 Future Works

In conclusion, we have considered a version of directed percolation model on the triangular
lattice, and investigated the critical behavior of the probability that there is at least one
connected-directed path of occupied edges from (0, 0) to (M, N ). The main result given as
Theorem 2.2 includes the lower and upper bounds of the exponential rate of convergence for
the two point correlation function when α �= αc. These bounds are by no means optimal and
may be tightened. A more general model would be considering all the horizontal probability
are directed rightward with probability x ∈ (0, 1). This reduces to the original directed
percolation model when x = y and d = 0. The real challenging work is the directed
percolation on the Z

d lattice with nontrivial occupation probabilities in all directions. As
the limiting behavior of the three-dimensional version of Domany–Kinzel model has been
considered in Ref. [8], it would be interesting to investigate the rate of convergence for this
model.
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