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ABSTRACT

Pearson’s correlation coeffcient is used to describe dependence between random variables X  
and Y. In some practical situations, however, we have strong correlation for some values X  
and/or Y  and no correlation for other values of  X  and Y. To describe such a local dependence, 
we come up with a natural localized version of  Pearson’s correlation coefficient. We also 
study the properties of  the newly defined localized coefficient.
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1. Formulation of  the problem

1.1 Pearson’s correlation coefficient: reminder

To describe relation between two random variables X  and Y , Pearson’s correlation 
coefficient r is often used; see, e.g., [3]. This coefficient is defined as

  (1)

where C(X , Y ) 
def
=  E[(X  - E[X ]) • (Y  - E[Y ])] = E[X  • Y ] - E[X ] • E[Y ] is the covariance, 

E[X ] means the mean, σ[X ] 
def
=  V[X ] if  the standard deviation, and V[X ] 

def
=  E[(X  

- E[X ])2 ] = E[X 2] - (E[X ])2 is the variance. Pearson’s correlation coefficient ranges 
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between -1 and 1. When the variables X  and Y  are independent, then r[X , Y ] = 0. 
When r[X , Y ] = 1 or r[X , Y ] = -1, this means that Y  is a linear function of  X  (i.e., 
informally, that we have a perfect correlation).

1.2 Need for a local version of  Pearson’s correlation coefficient

Pearson’s correlation coeff icient provides a global description of  the relation 
between the random variables X  and Y . In some practical situations, there is a 
stronger correlation for some values of  X  and/or Y  and a weaker correlation for 
other values of  X  and/or Y. To describe such local dependence, we need to come up 
with a local version of  Pearson’s correlation coefficient.

2.	Towards	a	definition	of 	a	local	version	of 	Pearson’s	
correlation coef ficient

2.1	Motivation	for	the	new	definition

For given random variables X  and Y  and for given real numbers x and y, we 
want to describe the dependence between the variables X  and Y  limited to small 
neighborhood (x - ε, x + ε) × (y - δ, y + δ) of  a point (x, y). This means, in effect, 
that instead of  the pair of  random variables (X , Y ) corresponding to the original 
probability distribution, we consider a pair ( X x±ε,y±δ , Y x±ε,y±δ) with the conditional 
probability distribution, under the condition that (X , Y ) ∈ (x - ε, x + ε) × (y - δ, y + δ).

This conditional probability distribution can be described in the usual way: for 
every measurable set S ⊆ IR2 , the corresponding probability

is defined as

Prob ((X x±ε,y±δ , Y x±ε,y±δ) ∈ S) =

To describe the desired dependence, it is reasonable to consider the asymp- totic 
behavior of  the correlation between X x±ε ,y±δ and Y x±ε ,y±δ when ε → 0 and δ → 0. It 
turns out that for probability distributions with twice continuously differentiable 
probability density function ρ(x, y), we can have an explicit expression for the 
Pearson’s correlation coefficient r[X x±ε ,y±δ , Y x±ε ,y±δ] in terms of  ρ(x, y):
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Pro position 1 For probability distributions with twice continuously dif ferentiable 
probability density functions ρ(x, y), we have

  (2)

This asymptotic behavior is determined by a single parameter 

It is therefore reasonable to use this parameter as a local version of  Pearson’s 
correlation coefficient:

Definition 1 Let ( X , Y ) be a random 2-D vector, and  let ( x, y ) be a 2-D point. By the local 
correlation at a point ( x, y ), we mean the vvalue

  (3)

Proo f  o f  Proposition Since the probability density function is twice diffierentiable, 
in the small vicinity of  the point (x, y), we have

  (4)

where

  (5)

The condition probability distribution is obtained by obtained by dividing the 
original one by

  
(6)
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Pearson’s correlation coefficient does not change if  we shift both X  and Y  by a 
constant, i.e., consider shifted random variables ∆X  

def
=  X x±ε ,y±δ - x and ∆Y  

def
=   Y x±ε ,y±δ 

- y instead of  the original random variables X x±ε ,y±δ and Y x±ε ,y±δ:

  (7)

Here,

  (8)

In this formula,

  (9)

The integral, over a symmetric box, of  any expression which is odd in ∆x and/or ∆y 
is equal to 0. Thus, the main term in this expression that leads to a non-zero integral 
is cx • (∆x)2. For this term, the integral in the numerator of  the formula (8) is equal 

to                                                                                      . We already know that the denominator (6) 

of  the formula (8) is equal to 4c • ε • δ + o, thus the formula (8) leads to:

  (10)

Similarly,

  (11)

For the expected value of  (∆X )2 , we get
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(12)

Here, E[(∆X )2] ~ ε2 and, due to (10), (E[∆X ])2 ~ ε4 = o(ε2). Thus,

  (13)

Similarly,

  (14)

so the denominator of  the expression (7) is equal to

  (15)

For the numerator of  the formula (7), we get

  (16)

In this formula,

  (17)

The only term here which is not odd in ∆x or in ∆y is the term cxy • (∆x)2 • (∆y)2, for 

which the integral in the numerator of  (16) is equal to . Since the

 denominator (6) of  the expression (16) is equal to 4c • ε • δ + o, thus
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  (18)

From (10), (11) and (18), we conclude that

  (19)

From (19) and (15), we can now conclude that the ratio (7) has the form

  (20)

Substituting the expressions (5) for c, cx cy, and cxy in terms of  the probability 
density ρ(x, y) and its derivative, we can easily check that the expression

is indeed equal to the derivative (3). The proposition is proven.

3.	 What	 is	 the	meaning	 of 	 the	 new	definition	 f or	 a	 normal	
distribution

To better understand the meaning of  our newly defined term, let us compute its 
value for a normal distribution, for which

const ‧ exp 

where the matrix

is the inverse matrix to the covariance matrix
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  (21)

For this distribution,

  (22)

and thus,

  (23)

If  we use an explicit formula for the elements of  the inverse 2 × 2 matrix to describe 
axy in terms of  the element of  the covariance matrix (21), we get the following 
expression:

  (24)

Substituting V[X ] = (σ[X ])2 , V[Y ] = (σ[Y ])2, and
             C[X , Y ] = σ[X ] • σ[Y ] • r[X , Y ]

into the formula (24), we conclude that

  (25)

4. Criterion for independence

It turns out that the new localized version of  Pearson’s correlation coefficient 
provides a natural criterion for independence.

Pro position 2 For a random 2-D vector ( X , Y ) with a twice  continuously 
differentiable probability density function ρ(x, y), the following two conditions are  
equivalent to each other:
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• X  and Y  are  independent;
• rx,y [X , Y ] = 0 for all x and y.

Proof  If  X  and Y  are independent, then ρ(x, y) = ρX(x) ρY(y), where ρX(x) and ρY(y) 
are probability densities corresponding to the marginal distributions. Thus, ln (ρ(x, y)) 
= ln(ρX(x)) + ln(ρY( y)) and therefore, for every x and y, we have have. 

Vice versa, let us assume that rx,y [X , Y ] =  =0 for all x and y. The

fact that the x-partial derivative of  the auxiliary function  is equal to 0

 means that this auxiliary function does not depend on x, i.e., that it depends only on 
y: 

  (26)

for some function f 1(y). Integrating over y, we get

  (27)

where f 2(y) 
def
=  ∫ 0

y
f 1(t) dt is an integral of  the function f 1(y), and f 3(x) is a constant 

of  integration, constant which may depend on x. For ρ(x, y) = exp(ln(ρ(x, y)), we thus 
conclude that 

 ρ(x , y) = exp(F3(x)) exp(F2(y)) (28)

where F3(x) 
def
=  ( f 3(x)) and F2(y) 

def
=  ( f 2(y)). Since ρ(x, y) ≥ 0 for all x and y, we can 

conclude that

  (29)

with |F3(x)| ≥ 0 and |F2(x)| ≥ 0. By normalizing the functions of  x and y, i.e., by

taking ρX(x)  and  we conclude that ρ(x, y) = ρX(x)

ρY(y), i.e., that X  and Y  are indeed independent. The proposition is proven.
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5 . Relation to copulas

A probability distribution with a probability distribution function F(x, y) 
def
=  

Prob (X  ≤ x & Y  ≤ y) can be described as

  (30)

where F X(x) 
def
=  Prob (X  ≤ x) and FY(y) 

def
=  Prob (Y  ≤ y) are marginal distri-butions, 

and a function C(a, b) 
def
=  F(F X

-1(a), FY
-1(b)) is known as a copula; see, e.g., [1-2].

A copula can also be viewed as a probability distribution function for a 2-D 

random vector (A, B), with a probability density function c(a, b) 
def
= . The 

probability density function ρ(x, y) of  the original distribution can be described, in 

terms of the cumulative distribution function F(x, y), as ρ(x, y) =  Substituting 

the expression (30) into this formula and using the chain rule, we conclude that

  (31)

where ρX(x) and ρY(y) are the probability densities corresponding to the marginal 
distributions.

For the copula’s random vector (A, B), we can also define the local Pearson’s 
correlation coefficient:

  (32)

It turns out that the above localized version of  Pearson’s correlation coefficient can 
be naturally reformulated in terms of  the copula and marginal distributions; namely, 
the relation is the same as the relation (31) for probability densities:

Proposition 3 Let (X , Y ) be a random 2-D vector with marginal distributions F X(x) 
and FY(y), and let (A, B) be the corresponding copula distribution. Then,

  (33)

Proo f  By taking logarithms of  both sides of  the formula (31), we get
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  (34)

Differentiating both sides of  this formula with respect to x and y, we get the desired 
expression (33). The proposition is proven.
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