Towards a Localized Version of Pearson's Correlation Coefficient

Vladik Kreinovich ${ }^{1 \text { }}$, Hung T. Nguyen ${ }^{2,3}$ and Berlin Wu ${ }^{4}$
${ }^{1}$ Department of Computer Sciences, University of Texas, El Paso, USA
${ }^{2}$ Department of Mathematical Sciences, New Mexico State University, New Mexico, USA
${ }^{3}$ Department of Economics, Chiang Mai University, Chiang Mai, Thailand
${ }^{4}$ Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan

Abstract

Pearson's correlation coeffcient is used to describe dependence between random variables X and Y. In some practical situations, however, we have strong correlation for some values X and/or Y and no correlation for other values of X and Y. To describe such a local dependence, we come up with a natural localized version of Pearson's correlation coefficient. We also study the properties of the newly defined localized coefficient.

Keywords: Pearson's correlation coefficient; Local correlation; Copulas

1. Formulation of the problem

1.1 Pearson's correlation coefficient: reminder

To describe relation between two random variables X and Y, Pearson's correlation coefficient r is often used; see, e.g., [3]. This coefficient is defined as

$$
\begin{equation*}
r[X, Y] \stackrel{\text { def }}{=} \frac{C[X, Y]}{\sigma[X] \cdot \sigma(Y)}, \tag{1}
\end{equation*}
$$

where $C(X, Y) \stackrel{\text { def }}{=} E[(X-E[X]) \cdot(Y-E[Y])]=E[X \cdot Y]-E[X] \cdot E[Y]$ is the covariance, $E[X]$ means the mean, $\sigma[X] \stackrel{\text { def }}{=} \sqrt{V[X]}$ if the standard deviation, and $V[X] \stackrel{\text { def }}{=} E[(X$ $\left.-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}$ is the variance. Pearson's correlation coefficient ranges

[^0]between -1 and 1 . When the variables X and Y are independent, then $r[X, Y]=0$. When $r[X, Y]=1$ or $r[X, Y]=-1$, this means that Y is a linear function of X (i.e., informally, that we have a perfect correlation).

1.2 Need for a local version of Pearson's correlation coefficient

Pearson's correlation coefficient provides a global description of the relation between the random variables X and Y. In some practical situations, there is a stronger correlation for some values of X and/or Y and a weaker correlation for other values of X and/or Y. To describe such local dependence, we need to come up with a local version of Pearson's correlation coefficient.

2. Towards a definition of a local version of Pearson's correlation coefficient

2.1 Motivation for the new definition

For given random variables X and Y and for given real numbers x and y, we want to describe the dependence between the variables X and Y limited to small neighborhood $(x-\varepsilon, x+\varepsilon) \times(y-\delta, y+\delta)$ of a point (x, y). This means, in effect, that instead of the pair of random variables (X, Y) corresponding to the original probability distribution, we consider a pair ($X_{x \pm \varepsilon, y \pm \delta}, Y_{x \pm \varepsilon, y \pm \delta}$) with the conditional probability distribution, under the condition that $(X, Y) \in(x-\varepsilon, x+\varepsilon) \times(y-\delta, y+\delta)$.

This conditional probability distribution can be described in the usual way: for every measurable set $S \subseteq \mathrm{IR}^{2}$, the corresponding probability

$$
\operatorname{Prob}\left(\left(X_{x \pm \varepsilon, y \pm \delta}, Y_{x \pm \varepsilon, y \pm \delta}\right) \in S\right)
$$

is defined as

$$
\begin{gathered}
\operatorname{Prob}\left(\left(X_{x \pm \varepsilon, y \pm \delta}, Y_{x \pm \varepsilon, y \pm \delta}\right) \in S\right)= \\
\frac{\operatorname{Prob}((X, Y) \in S \cap(x-\varepsilon, x+\varepsilon) \times(y-\delta, y+\delta))}{\operatorname{Prob}((X, Y) \in(x-\varepsilon, x+\varepsilon) \times(y-\delta, y+\delta))} .
\end{gathered}
$$

To describe the desired dependence, it is reasonable to consider the asymp- totic behavior of the correlation between $X_{x \pm \varepsilon, y \pm \delta}$ and $Y_{x \pm \varepsilon, y \pm \delta}$ when $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$. It turns out that for probability distributions with twice continuously differentiable probability density function $\rho(x, y)$, we can have an explicit expression for the Pearson's correlation coefficient $r\left[X_{x \pm \varepsilon, y \pm \delta}, Y_{x \pm \varepsilon, y \pm \delta}\right]$ in terms of $\rho(x, y)$:

Proposition 1 For probability distributions with twice continuously differentiable probability density functions $\rho(x, y)$, we have

$$
\begin{equation*}
r\left[X_{x \pm \varepsilon, y \pm \delta}, Y_{x \pm \varepsilon, y \pm \delta}\right]=\frac{1}{3} \cdot \varepsilon \cdot \delta \cdot \frac{\partial^{2} \ln (\rho(x, y))}{\partial x \partial y}+o(\varepsilon \cdot \delta) \tag{2}
\end{equation*}
$$

This asymptotic behavior is determined by a single parameter $\frac{\partial^{2} \ln (\rho(x, y))}{\partial x \partial y}$
It is therefore reasonable to use this parameter as a local version of Pearson's correlation coefficient:

Definition 1 Let (X, Y) be a random 2-D vector, and let (x, y) be a 2-D point. By the local correlation at a point (x, y), we mean the vvalue

$$
\begin{equation*}
r_{x, y}[X, Y] \stackrel{\text { def }}{=} \frac{\partial^{2} \ln (\rho(x, y))}{\partial x \partial y} \tag{3}
\end{equation*}
$$

Proof of Proposition Since the probability density function is twice diffierentiable, in the small vicinity of the point (x, y), we have

$$
\begin{gather*}
\rho(x+\Delta x, y+\Delta y)=c+c_{x} \cdot \Delta x+c_{y} \cdot \Delta y+ \\
\frac{1}{2} \cdot c_{x x} \cdot(\Delta x)^{2}+c_{x y} \cdot \Delta x \cdot \Delta y+\frac{1}{2} \cdot c_{y} y \cdot(\Delta y)^{2}+o\left(\varepsilon^{2}, \delta^{2}\right) \tag{4}
\end{gather*}
$$

where

$$
\begin{gather*}
c \stackrel{\text { def }}{=} \rho(x, y), \quad c_{x} \stackrel{\text { def }}{=} \frac{\partial \rho}{\partial x}, \quad c_{y} \stackrel{\text { def }}{=} \frac{\partial \rho}{\partial y}, \\
c_{x x} \stackrel{\text { def }}{=} \frac{\partial^{2} \rho}{\partial x^{2}}, \quad c_{x} \stackrel{\text { def }}{=} \frac{\partial^{2} \rho}{\partial x \partial y}, \quad c_{y y} \stackrel{\text { def }}{=} \frac{\partial^{2} \rho}{\partial y^{2}} . \tag{5}
\end{gather*}
$$

The condition probability distribution is obtained by obtained by dividing the original one by

$$
\begin{gather*}
\operatorname{Prob}((X, Y) \in(x-\varepsilon, x+\varepsilon) \times(y-\delta, y+\delta))= \\
\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta} \rho(x+\Delta x, y+\Delta y) d \Delta x d \Delta y=c \cdot(2 \varepsilon) \cdot(2 \delta)+o(\varepsilon, \delta)=4 c \cdot \varepsilon \cdot \delta+o(\varepsilon \delta) \tag{6}
\end{gather*}
$$

Pearson's correlation coefficient does not change if we shift both X and Y by a constant, i.e., consider shifted random variables $\Delta X \stackrel{\text { def }}{=} X_{x \pm e, y \pm \delta}-x$ and $\Delta Y \stackrel{\text { def }}{=} Y_{x \pm \varepsilon, y \pm \delta}$ $-y$ instead of the original random variables $X_{x \pm \varepsilon, y \pm \delta}$ and $Y_{x \in \varepsilon, y \pm \delta}$:

$$
\begin{align*}
& C\left[X_{x \pm \varepsilon, y \pm \delta}, Y_{x \pm \varepsilon, y \pm \delta}\right]=C[\Delta X, \Delta Y]= \\
& \frac{E[\Delta X \cdot \Delta Y]-E[\Delta X] \cdot E[\Delta Y]}{\sqrt{E\left[(\Delta X)^{2}\right]-(E[\Delta X])^{2}} \cdot \sqrt{E\left[(\Delta Y)^{2}\right]-(E[\Delta Y])^{2}}} . \tag{7}
\end{align*}
$$

Here,

$$
\begin{equation*}
E[\Delta X]=\frac{\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta} \Delta x \cdot \rho(x+\Delta x, y+\Delta y) d \Delta x d \Delta y}{\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta} \rho(x+\Delta x, y+\Delta y) d \Delta x d \Delta y} \tag{8}
\end{equation*}
$$

In this formula,

$$
\begin{gather*}
\Delta x \cdot \rho(x+\Delta x, y+\Delta y)= \\
\Delta x \cdot\left(c+c_{x} \cdot \Delta x+c_{y} \cdot \Delta y+\frac{1}{2} \cdot c_{x x} \cdot(\Delta x)^{2}+c_{x y} \cdot \Delta x \cdot \Delta y+\frac{1}{2} \cdot c_{y} y \cdot(\Delta y)^{2}+o\right) \tag{9}
\end{gather*}
$$

The integral, over a symmetric box, of any expression which is odd in Δx and/or Δy is equal to 0 . Thus, the main term in this expression that leads to a non-zero integral is $c_{x} \cdot(\Delta x)^{2}$. For this term, the integral in the numerator of the formula (8) is equal to $c_{x} \cdot(2 \delta) \cdot\left(\frac{\varepsilon^{3}}{3}-\frac{(-\varepsilon)^{3}}{3}\right)=c_{x} \cdot \delta \cdot \frac{4}{3} \cdot \varepsilon^{3}$. We already know that the denominator (6) of the formula (8) is equal to $4 c \cdot \varepsilon \cdot \delta+o$, thus the formula (8) leads to:

$$
\begin{equation*}
E[\Delta X]=\frac{1}{3} \cdot \varepsilon^{2} \cdot \frac{c_{x}}{c} . \tag{10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
E[\Delta Y]=\frac{1}{3} \cdot \delta^{2} \cdot \frac{c_{y}}{c} . \tag{11}
\end{equation*}
$$

For the expected value of $(\Delta X)^{2}$, we get

$$
\begin{gather*}
E\left[(\Delta X)^{2}\right]=\frac{\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta}(\Delta x)^{2} \cdot \rho(x+\Delta x, y+\Delta y) d \Delta x d \Delta y}{\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta} \rho(x+\Delta x, y+\Delta y) d \Delta x d \Delta y}= \\
\frac{\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta}\left(c \cdot(\Delta x)^{2}+o\right) d \Delta x d \Delta y}{\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta}(c+o) d \Delta x d \Delta y}=\frac{c \cdot 2 \cdot \delta \cdot\left(\frac{\varepsilon^{3}}{3}-\frac{(-\varepsilon)^{3}}{3}\right)+o}{4 c \cdot \varepsilon \cdot \delta+o}=\frac{1}{3} \cdot \varepsilon^{2} . \tag{12}
\end{gather*}
$$

Here, $E\left[(\Delta X)^{2}\right] \sim \varepsilon^{2}$ and, due to (10), $(E[\Delta X])^{2} \sim \varepsilon^{4}=o\left(\varepsilon^{2}\right)$. Thus,

$$
\begin{equation*}
E\left[(\Delta X)^{2}\right]-(E[\Delta X])^{2}=E\left[(\Delta X)^{2}\right]+o=\frac{1}{3} \cdot \varepsilon^{2}+o . \tag{13}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
E\left[(\Delta Y)^{2}\right]-(E[\Delta Y])^{2}=\frac{1}{3} \cdot \varepsilon^{2}+o, \tag{14}
\end{equation*}
$$

so the denominator of the expression (7) is equal to

$$
\begin{equation*}
\sqrt{E\left[(\Delta X)^{2}\right]-(E[\Delta X])^{2}} \cdot \sqrt{E\left[(\Delta Y)^{2}\right]-(E[\Delta Y])^{2}}=\frac{1}{3} \cdot \varepsilon \cdot \delta+o \tag{15}
\end{equation*}
$$

For the numerator of the formula (7), we get

$$
\begin{equation*}
E[\Delta X \cdot \Delta Y]=\frac{\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta} \Delta x \cdot \Delta y \cdot \rho(x+\Delta x, y+\Delta y) d \Delta x d \Delta y}{\int_{-\varepsilon}^{\varepsilon} \int_{-\delta}^{\delta} \rho(x+\Delta x, y+\Delta y) d \Delta x d \Delta y} \tag{16}
\end{equation*}
$$

In this formula,

$$
\begin{gather*}
\Delta x \cdot \Delta y \cdot \rho(x+\Delta x, y+\Delta y)= \\
\Delta x \cdot \Delta y \cdot\left(c+c_{x} \cdot \Delta x+c_{y} \cdot \Delta y+\frac{1}{2} \cdot c_{x x} \cdot(\Delta x)^{2}+c_{x y} \cdot \Delta x \cdot \Delta y+\frac{1}{2} \cdot c_{y} y \cdot(\Delta y)^{2}+o\right) . \tag{17}
\end{gather*}
$$

The only term here which is not odd in Δx or in Δy is the term $c_{x y} \cdot(\Delta x)^{2} \cdot(\Delta y)^{2}$, for which the integral in the numerator of (16) is equal to $c_{x y} \cdot \frac{2}{3} \cdot \varepsilon^{3} \cdot \frac{2}{3} \cdot \delta^{3}+o$. Since the denominator (6) of the expression (16) is equal to $4 c \cdot \varepsilon \cdot \delta+o$, thus

$$
\begin{equation*}
E[\Delta X \cdot \Delta Y]=\frac{1}{9} \cdot \frac{c_{x y}}{c} \cdot \varepsilon^{2} \cdot \delta^{2}+o \tag{18}
\end{equation*}
$$

From (10), (11) and (18), we conclude that

$$
\begin{equation*}
E[\Delta X \cdot \Delta Y]-E[\Delta X] \cdot E[\Delta Y]=\frac{1}{9} \cdot \varepsilon^{2} \cdot \delta^{2} \cdot\left(\frac{c_{x y}}{c}-\frac{c_{x} \cdot c_{y}}{c^{2}}\right)+o \tag{19}
\end{equation*}
$$

From (19) and (15), we can now conclude that the ratio (7) has the form

$$
\begin{equation*}
C\left[X_{x \pm \varepsilon, y \pm \delta}, Y_{x \pm \varepsilon, y \pm \delta}\right]=C[\Delta X, \Delta Y]=\frac{1}{3} \cdot \varepsilon \cdot \delta \cdot\left(\frac{c_{x y}}{c}-\frac{c_{x} \cdot c_{y}}{c^{2}}\right)+o \tag{20}
\end{equation*}
$$

Substituting the expressions (5) for $c, c_{x} c_{y}$, and $c_{x y}$ in terms of the probability density $\rho(x, y)$ and its derivative, we can easily check that the expression

$$
\frac{c_{x y}}{c}-\frac{c_{x} \cdot c_{y}}{c^{2}}
$$

is indeed equal to the derivative (3). The proposition is proven.

3. What is the meaning of the new definition for a normal distribution

To better understand the meaning of our newly defined term, let us compute its value for a normal distribution, for which

$$
\begin{gathered}
\rho(x, y)= \\
\text { const } \cdot \exp \left(-\frac{a_{x x} \cdot\left(x-x_{0}\right)^{2}+2 a_{x y} \cdot\left(x-x_{0}\right) \cdot\left(y-y_{0}\right)+a_{y y} \cdot\left(y-y_{0}\right)^{2}}{2}\right)
\end{gathered}
$$

where the matrix

$$
a=\left(\begin{array}{ll}
a_{x x} & a_{x y} \\
a_{x y} & a_{y y}
\end{array}\right)
$$

is the inverse matrix to the covariance matrix

$$
C=\left(\begin{array}{cc}
V[X] & C[X, Y] \tag{21}\\
C[X, Y] & V[Y]
\end{array}\right)
$$

For this distribution,

$$
\begin{equation*}
\left.\ln (\rho(x, y))=-\frac{1}{2} \cdot\left(a_{x x} \cdot\left(x-x_{0}\right)^{2}+2 a_{x y} \cdot\left(x-x_{0}\right) \cdot\left(y-y_{0}\right)+a_{y y} \cdot\left(y-y_{0}\right)^{2}\right)\right) \tag{22}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
r_{x, y}[X, Y]=\frac{\partial^{2} \ln (\rho(x, y))}{\partial x \partial y}=-a_{x y} \tag{23}
\end{equation*}
$$

If we use an explicit formula for the elements of the inverse 2×2 matrix to describe $a_{x y}$ in terms of the element of the covariance matrix (21), we get the following expression:

$$
\begin{equation*}
r_{x, y}[X, Y]=\frac{C[X, Y]}{V[X] \cdot V[Y]-(C[X, Y])^{2}} \tag{24}
\end{equation*}
$$

Substituting $V[X]=(\sigma[X])^{2}, V[Y]=(\sigma[Y])^{2}$, and

$$
C[X, Y]=\sigma[X] \cdot \sigma[Y] \cdot r[X, Y]
$$

into the formula (24), we conclude that

$$
\begin{equation*}
r_{x, y}[X, Y]=\frac{r_{x, y}[X, Y]}{1-\left(r_{x, y}[X, Y]\right)^{2}} \cdot \frac{1}{\sigma[X] \cdot \sigma[Y]} \tag{25}
\end{equation*}
$$

4. Criterion for independence

It turns out that the new localized version of Pearson's correlation coefficient provides a natural criterion for independence.

Proposition 2 For a random 2 -D vector (X, Y) with a twice continuously differentiable probability density function $\rho(x, y)$, the following two conditions are equivalent to each other:

- X and Y are independent;
- $r_{x, y}[X, Y]=0$ for all x and y.

Proof If X and Y are independent, then $\rho(x, y)=\rho_{X}(x) \cdot \rho_{Y}(y)$, where $\rho_{X}(x)$ and $\rho_{Y}(y)$ are probability densities corresponding to the marginal distributions. Thus, $\ln (\rho(x, y))$ $=\ln \left(\rho_{X}(x)\right)+\ln \left(\rho_{Y}(y)\right)$ and therefore, for every x and y, we have have. $r_{x, y}[X, Y]=$ $\frac{\partial^{2} \ln (\rho(x, y))}{\partial x \partial y}=0$.

Vice versa, let us assume that $r_{x, y}[X, Y]=\frac{\partial^{2} \ln (\rho(x, y))}{\partial x \partial y}=0$ for all x and y. The fact that the x-partial derivative of the auxiliary function $\frac{\partial \ln (\rho(x, y))}{\partial y}$ is equal to 0 means that this auxiliary function does not depend on x, i.e., that it depends only on y :

$$
\begin{equation*}
\frac{\partial \ln (\rho(x, y))}{\partial y}=f_{1}(y) \tag{26}
\end{equation*}
$$

for some function $f_{1}(y)$. Integrating over y, we get

$$
\begin{equation*}
\ln (\rho(x, y))=f_{2}(y)+f_{3}(x) \tag{27}
\end{equation*}
$$

where $f_{2}(y) \stackrel{\text { def }}{=} \int_{0}^{y} f_{1}(t) d t$ is an integral of the function $f_{1}(y)$, and $f_{3}(x)$ is a constant of integration, constant which may depend on x. For $\rho(x, y)=\exp (\ln (\rho(x, y))$, we thus conclude that

$$
\begin{equation*}
\rho(x, y)=\exp \left(F_{3}(x)\right) \cdot \exp \left(F_{2}(y)\right) \tag{28}
\end{equation*}
$$

where $F_{3}(x) \stackrel{\text { def }}{=}\left(f_{3}(x)\right)$ and $F_{2}(y) \stackrel{\text { def }}{=}\left(f_{2}(y)\right)$. Since $\rho(x, y) \geq 0$ for all x and y, we can conclude that

$$
\begin{equation*}
\rho(x, y)=\left|F_{3}(x)\right| \cdot\left|F_{2}(y)\right|, \tag{29}
\end{equation*}
$$

with $\left|F_{3}(x)\right| \geq 0$ and $\left|F_{2}(x)\right| \geq 0$. By normalizing the functions of x and y, i.e., by taking $\rho_{X}(x) \frac{\left|F_{3}(x)\right|}{\int_{-\infty}^{\infty}\left|F_{3}(t)\right| d t}$ and $\rho_{Y}(y) \stackrel{\text { def }}{=} \frac{\left|F_{2}(y)\right|}{\int_{-\infty}^{\infty}\left|F_{2}(t)\right| d t}$ we conclude that $\rho(x, y)=\rho_{X}(x)$. $\rho_{Y}(y)$, i.e., that X and Y are indeed independent. The proposition is proven.

5 . Relation to copulas

A probability distribution with a probability distribution function $F(x, y) \stackrel{\text { def }}{=}$ $\operatorname{Prob}(X \leq x \& Y \leq y)$ can be described as

$$
\begin{equation*}
F(x, y)=C\left(F_{X}(x), F_{Y}(y)\right), \tag{30}
\end{equation*}
$$

where $F_{X}(x) \stackrel{\text { def }}{=} \operatorname{Prob}(X \leq x)$ and $F_{Y}(y) \stackrel{\text { def }}{=} \operatorname{Prob}(Y \leq y)$ are marginal distri-butions, and a function $C(a, b) \stackrel{\text { def }}{=} F\left(F_{X}^{-1}(a), F_{Y}^{-1}(b)\right)$ is known as a copula; see, e.g., [1-2].

A copula can also be viewed as a probability distribution function for a 2-D random vector (A, B), with a probability density function $c(a, b) \stackrel{\text { def }}{=} \frac{\partial^{2} C(a, b)}{\partial a \partial b}$. The probability density function $\rho(x, y)$ of the original distribution can be described, in terms of the cumulative distribution function $F(x, y)$, as $\rho(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}$ Substituting the expression (30) into this formula and using the chain rule, we conclude that

$$
\begin{equation*}
\rho(x, y)=c\left(F_{X}(x), F_{Y}(y)\right) \cdot \rho_{X}(x) \cdot \rho_{Y}(y) \tag{31}
\end{equation*}
$$

where $\rho_{X}(x)$ and $\rho_{Y}(y)$ are the probability densities corresponding to the marginal distributions.

For the copula's random vector (A, B), we can also define the local Pearson's correlation coefficient:

$$
\begin{equation*}
r_{a, b}[A, B]=\frac{\partial^{2} \ln (c(a, b))}{\partial a \partial b} \tag{32}
\end{equation*}
$$

It turns out that the above localized version of Pearson's correlation coefficient can be naturally reformulated in terms of the copula and marginal distributions; namely, the relation is the same as the relation (31) for probability densities:

Proposition 3 Let (X, Y) be a random 2-D vector with marginal distributions $F_{X}(x)$ and $F_{Y}(y)$, and let (A, B) be the corresponding copula distribution. Then,

$$
\begin{equation*}
r_{x, y}[X, Y]=r_{F_{X}(x), F_{Y}(y)}[A, B] \cdot \rho_{X}(x) \cdot \rho_{Y}(y) . \tag{33}
\end{equation*}
$$

Proof By taking logarithms of both sides of the formula (31), we get

$$
\begin{equation*}
\ln (\rho(x, y))=\ln \left(c\left(F_{X}(x), F_{Y}(y)\right)+\ln \left(\rho_{X}(x)\right)+\ln \left(\rho_{Y}(y)\right) .\right. \tag{34}
\end{equation*}
$$

Differentiating both sides of this formula with respect to x and y , we get the desired expression (33). The proposition is proven.

References

[1] P. Jaworski, F. Durante, W. K. Härdle, and T. Ruchlik (Eds.) (2010). Copula Theory and Its Applications, Springer Verlag, Berlin, Germany.
[2] R. B. Nelsen (1999). An Introduction to Copulas, Springer Verlag, New York.
[3] D. J. Sheskin (2011). Handbook of Parametric and Nonparametric Statistical Procedures, Chapman and Hall/CRC, Boca Raton, Florida.

Copyright of International Journal of Intelligent Technologies \& Applied Statistics is the property of Airiti Press Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: * Corresponding author: vladik@utep.edu

