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Multistability for Delayed Neural Networks
via Sequential Contracting

Chang-Yuan Cheng, Kuang-Hui Lin, Chih-Wen Shih, and Jui-Pin Tseng

Abstract— In this paper, we explore a variety of new
multistability scenarios in the general delayed neural network
system. Geometric structure embedded in equations is exploited
and incorporated into the analysis to elucidate the underlying
dynamics. Criteria derived from different geometric configura-
tions lead to disparate numbers of equilibria. A new approach
named sequential contracting is applied to conclude the global
convergence to multiple equilibrium points of the system. The
formulation accommodates both smooth sigmoidal and piecewise-
linear activation functions. Several numerical examples illustrate
the present analytic theory.

Index Terms— Complete stability, delay equations,
multistability, neural network.

I. INTRODUCTION

IN RECENT decades, various neural network models
have been proposed and employed in diverse applied

sciences and engineering successfully. Most of the neural
networks developed are based on Hopfield model [12] or
Cohen–Grossberg model [8]. Delays have been considered in
the neural network modeling, as time lags occur in transmitting
signal among real neurons and artificial neurons. Hopfield-
type neural network with delays was introduced in [25]. Later,
delay has been considered and extensively studied in neural
networks [1], [2], [13], [20], [29], [31], [36]. Concerning
the mathematical modeling, delays can modify the collective
dynamics for neural networks. Thus, in neural network models,
it is appealing to investigate how the collective dynamics
are determined by the connection strength, nonlinear coupling
functions, and transmission delays. Although the accomplish-
ments in those investigations have advanced the theories on
these delayed network systems, effective approaches combined
with powerful mathematical techniques are still in demand in
tackling the unsolved problems, for example, to elucidate the
variations of collective dynamics of the network system with
respect to the size of the network, connection strength, and
delay magnitude.
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Multistability is a notion to describe the coexistence of
multiple stable equilibria or cycles. Such dynamics is essential
in several applications of neural networks, including pattern
recognition and associative memory storage [6], [9], [11], [12].
Hopfield-type neural networks, with or without consideration
of transmission delays, have been the primary models that
attract a great deal of research interests on multistability.

In this paper, we consider the general delayed neural
network
dxi (t)

dt
= −μi xi (t)

+
n∑

j=1

[αi j g j (x j (t)) + βi j g j (x j (t − τi j ))] + Ii (1)

where i = 1, . . . , n, μi > 0, αi j , βi j are connection weights
from neuron j to neuron i , g j (·) are activation functions,
0 ≤ τi j are time lags that are bounded above by τM , and
Ii stand for independent bias current sources. A typical class
of activation functions is

class A :
⎧
⎨

⎩

gi ∈ C2(R), g′
i(ξ) > 0, for all ξ ∈ R

(ξ − σi )g′′
i (ξ) < 0, for all ξ ∈ R, ξ �= σi

limξ→+∞ gi(ξ) = vi , limξ→−∞ gi(ξ) = ui

where vi , ui , and σi are constants with ui < vi , i = 1, . . . , n.
Class A contains the general bounded sigmoidal functions;
a typical example is gi (ξ) = tanh ξ . The present theory
also applies to (1) with piecewise-linear activation functions,
such as the three-segment standard output function in cellular
neural networks, gi(ξ) = [|ξ + 1| − |ξ − 1|]/2. Let
ρi := max{|ui |, |vi |}, i = 1, . . . , n.

System (1) reduces to the classical and delayed Hopfield
neural networks in [12] and [25], as βi j = 0 and αi j = 0
for all i, j , respectively. It also represents the cellular neural
networks without delays [6] and with delays [29].

Multistability for (1) has been studied in several papers. The
existence of 3n equilibria for (1) with activation functions in
class A was established in [4] and [5]. Therein, it was also
shown that the 2n equilibria out of those 3n equilibria are
stable, and each of them is located in a positively invariant
region. Later, different criteria for stability were obtained
in [14] using the Lyapunov functional and matrix inequality
techniques. Several works are strongly restricted to the class of
piecewise-linear activation functions. For example, for (1) with
standard piecewise-linear output function, it was shown in [38]
that the system cannot have more than 3n equilibria, and
can have 2n locally exponentially stable equilibria. Hopfield
neural network with nondecreasing piecewise-linear activation
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functions with 2r corner points (2r + 1 saturation regions),
without time delays, was investigated in [34]. It was asserted
that the n-neuron system can have and only have (2r + 1)n

equilibria under some conditions, of which (r +1)n are locally
exponentially stable and the others are unstable. In [40], the
existence of (2k + 2m − 1)n equilibria was concluded for (1)
with piecewise-linear activation functions with k+m saturation
regions. Other related works include [19], [21], and [26]–[28].

Convergence of dynamics (also called complete stability),
which means that every solution of the system converges
to one of the equilibrium points, is a key ingredient in
multistability. Quasi-convergence of dynamics for (1) was
established in [5]. It indicates that almost every orbit converges
to one of the 3n equilibria, and 2n among these 3n equilibria
are stable, under a delay-dependent criterion. Therein, (1) is
shown to be a strongly order-preserving under a special order
on the space of continuous functions C([−τM , 0]). System (1)
is said to be cooperative (competitive) if αi j , βi j ≥ 0 (≤ 0)
for all j �= i . Chua and Roska [7] have demonstrated that
if the interconnection matrix is irreducible, and the neuron
activations are modeled by sigmoidal functions (C1, bounded
and strictly increasing), then the solution flow generated by a
cooperative cellular neural network without delay is eventu-
ally strongly monotone. According to the standard theory of
cooperative dynamical systems, the flow enjoys the so-called
limit set dichotomy, and generically, the solution converges
to the set of equilibria. Marco et al. extended the limit set
dichotomy to (1) with piecewise-linear activation functions,
nonsymmetric cooperative interconnection matrix, and without
delays [22] and with delays [23]. There were other studies on
complete stability that consider only piecewise-linear activa-
tion functions, such as [35] and [39]. Some investigations on
convergence of neural networks with discontinuous activation
functions can be found in [16] and [24].

Multistability has also been studied for Cohen–Grossberg
neural networks with a class of piecewise-smooth activation
functions with two saturated segments in [3]. It was shown
that under some conditions, the n-neuron networks can have
2n locally exponentially stable equilibrium points, each located
in a saturated region.

The purpose of this paper is two folds. The first is to
explore more multistability scenarios in the delayed neural
networks (1). The second is to introduce new analytic method-
ologies into the study of multistability in delayed systems.
For locating an equilibrium, we develop an approach that
combines the Brouwer’s fixed-point theorem or contracting
mapping theorem with the geometric configurations induced
from the structure of the equations. With such an approach,
we shall exploit a variety of multiple equilibria for (1).
For global convergence of dynamics (complete stability),
we introduce a new approach named sequential contracting.
We start by constructing a preliminary upper and lower dynam-
ics for each component of the system. The upper and lower
dynamics are designed to have their own solutions contracted
to some compact intervals. We then construct finer upper and
lower dynamics successively, so that the original dynamics
are attracted to more concentrated regions. A criterion for
contraction is then formulated so that these nested intervals

collapse into points, as the iterative constructions of upper
and lower dynamics carry on. Under different formulations
of lower and upper dynamics, delay-dependent criteria and
delay-independent criteria for multistability of (1) can be
derived, respectively. This approach can also lead to a network-
scale-dependent criterion for asymptotic behaviors and
synchronization in network systems [31], [32].

In previous works, as mentioned above, mathematical
studies on multistability in neural networks centered
around analyzing the existence of multiple equilibria using
standard method or utilizing the piecewise-linear structure
of the activation functions. Stability of the equilibrium and
local dynamics were studied by the linearization theory or
Lyapunov functional and matrix inequality techniques. On the
other hand, monotone dynamics theory, which requires the
interconnection matrix to be cooperative, has been adopted to
conclude the global dynamics. To explore further dynamical
scenarios for (1), which are embedded in the equations, new
ideas are required. The sequential contracting has been applied
to establish global convergence of dynamics for (1) in [30].
The dynamical scenario concluded therein is that every orbit
converges to one of the 3n equilibria. As only 2n out of
those 3n equilibria are stable, it was further concluded that
almost every orbit converges to one of the 2n stable equilibria.
In this paper, we improve the methodology to exploit further
fruitful dynamics in (1). One of the main results in this paper
is the existence of 3k equilibria, among which 2k equilibria
are attracting, for any k ≤ n, in the n-neuron network (1).

Almost all the existing results on the number of multiple
equilibria are in terms of n-power of the number of saturated
(or near saturated) regions in a n-neuron system, as mentioned
above. Herein, the numbers of equilibria we derive are not in
power of n. These new multistability scenarios demonstrate the
strength of the present methodology, as they are inaccessible
by other treatments. Our approach applies to both smooth
sigmoidal and nondecreasing piecewise-linear activation func-
tions. Thus, the formulation also covers the case of piecewise-
linear activation functions with two saturated segments, but
with smooth corners.

The existence of 3k equilibria for (1) is discussed in
Section II. The global convergence of dynamics to 3k equilib-
ria via sequential contracting is presented in Section III. More
varieties of multiple equilibria are discussed in Section IV. The
extension of the results in Sections II–IV to piecewise-linear
activation functions is mentioned in Section V. We provide two
numerical examples in Section VI. Finally, the conclusion is
drawn in Section VII.

II. MULTIPLE EQUILIBRIA IN (1)

Set N = {1, 2, . . . , n}. The stationary equation for (1) is

Fi (x) := −μi xi +
n∑

j=1

(αi j + βi j )g j (x j ) + Ii = 0 (2)

for i ∈ N , and we denote F = (F1, . . . , Fn).
There are various ways to find the equilibrium for an ordi-

nary differential equation system or delay equations. In this
paper, we present an approach that combines a geometric
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formulation on Fi (x) in (2) and the Brouwer’s fixed-point the-
orem to study the existence of equilibrium for (1). Brouwer’s
fixed-point theorem states as: every continuous function from a
convex compact subset K of a Euclidean space to K itself has
a fixed point. Our idea is to locate a region (box)
K := K1 × K2 × · · · × Kn , with each Ki an interval in
R, so that for an arbitrary (ζ1, . . . , ζn) ∈ K , there exists a
solution xi ∈ Ki to Fi (ζ1, . . . , ζi−1, xi , ζi+1, . . . , ζn) = 0, for
every i ∈ N . If this holds and the corresponding mapping
	(ζ1, . . . , ζn) = (x1, . . . , xn) is continuous, then there exists
a x that satisfies Fi (x) = 0 for all i ∈ N . x is then an
equilibrium of (1). To locate such a region K , we develop
a geometric formulation based on the structure of Fi .

Let us define the single-variable upper and lower functions

f̂i (ξ) := −μiξ + (αii + βii )gi(ξ) + k+
i

f̌i (ξ) := −μiξ + (αii + βii )gi(ξ) + k−
i

for i ∈ N , where k+
i := ∑n

j=1, j �=i ρ j |αi j + βi j | + Ii ,
k−

i := −∑n
j=1, j �=i ρ j |αi j + βi j | + Ii . It follows that

f̌i (xi ) ≤ Fi (x) ≤ f̂i (xi)

for all x = (x1, . . . , xn) and i ∈ N . For Ji with k−
i ≤ Ji ≤ k+

i ,
i ∈ N , we introduce a family of single-neuron equations

dξ

dt
= fi (ξ) := −μiξ + (αii + βii )gi(ξ) + Ji (3)

where ξ ∈ R.
For given parameters μi , αii , βii , and i ∈ N , we denote

M :=
{

i ∈ N | max
ξ∈R

g′
i(ξ) ≤ μi

αii + βii

}

B :=
{

i ∈ N | inf
ξ∈R

g′
i(ξ) <

μi

αii + βii
< max

ξ∈R

g′
i(ξ)
}
.

The notation M and B are related to the sense of monostable
and (potentially) bistable scenarios, respectively.

Lemma 1: If i ∈ B, there exist two points p̃i and q̃i with
p̃i < σi < q̃i such that f ′

i ( p̃i) = f ′
i (q̃i ) = 0, or equivalently,

g′
i ( p̃i) = g′

i(q̃i ) = μi/(αii + βii ).
Proof: For each i ∈ N , with f ′

i (ξ) = −μi + (αii + βii )
g′

i (ξ), we have f ′
i (ξ) = 0 if and only if g′

i (ξ) = μi/αii + βii .
The graph of function g′

i(ξ) has a global maximum at σi and
limξ→±∞ g′

i(ξ) = 0. Hence, by continuity of g′
i , if

0 = inf
ξ∈R

g′
i (ξ) <

μi

αii + βii
< max

ξ∈R

g′
i (ξ) = g′

i (σi )

that is, and i ∈ B, there exist two points p̃i and q̃i , with
p̃i < σi < q̃i , such that g′

i ( p̃i ) = g′
i (q̃i ) = μi/αii + βii .

Note that f̌i , f̂i , and fi are vertical shifts of one another,
and they attain local minimum at p̃i and local maximum at q̃i .

We consider six disjoint subsets of B
Br

r = {i ∈ N |i ∈ B, f̌i ( p̃i ) > 0}
Bl

l = {i ∈ N |i ∈ B, f̂i (q̃i) < 0}
B3

3 = {i ∈ N |i ∈ B, f̂i ( p̃i ) < 0, f̌i (q̃i ) > 0}
Br

3 = {i ∈ N |i ∈ B, f̂i ( p̃i ) > 0, f̌i ( p̃i) < 0, f̌i (q̃i ) > 0}
B3

l = {i ∈ N |i ∈ B, f̂i ( p̃i ) < 0, f̂i (q̃i ) > 0, f̌i (q̃i ) < 0}
Br

l = {i ∈ N |i ∈ B, f̂i ( p̃i ) > 0, f̌i (q̃i ) < 0}.

Fig. 1. (a)–(g) Type M, Br
r , Bl

l , B3
3, Br

3, B3
l , and Br

l , respectively.

Herein, l and r stand for left and right; the superscript 
 and
subscript • in B
•, 
, • ∈ {l, r, 3} show the configurations for

upper function f̂i and lower function f̌i , respectively. More
precisely, if 
 = l (resp., r ), then f̂i has a unique zero at the
left (resp., right) arm of its graph; if 
 = 3, then f̂i has exactly
three zeros. Same interpretation applies to • in B
• and f̌i . The
configurations corresponding to each B
• are shown in Fig. 1.
In particular, for i ∈ M ∪ Br

r ∪ Bl
l , there exist points m̌i ,

m̂i with m̌i < m̂i such that f̂i (m̂i ) = f̌i (m̌i ) = 0. For
i ∈ B3

3, there exist points âi , b̂i , ĉi with âi < b̂i < ĉi such
that f̂i (âi ) = f̂i (b̂i) = f̂i (ĉi ) = 0 as well as points ǎi , b̌i , či

with ǎi < b̌i < či , such that f̌i (ǎi) = f̌i (b̌i ) = f̌i (či ) = 0, as
shown in Fig. 1(d).

The following theorems are the main results of this section.
We show that for each 1 ≤ k ≤ n, there exist parameters
with which (1) admits 3k equilibria. Let card(•) denote the
cardinality of set •.

Theorem 1: If M ∪ Br
r ∪ Bl

l ∪ B3
3 = N and

k = card(B3
3) ≥ 1, then there exist 3k equilibria in (1).

Proof: We consider 3k disjoint closed regions in R
n

�̃w = {
(x1, . . . , xn) ∈ R

n | xi ∈ �̃
wi
i

}
(4)

w = (w1, . . . , wn)

wi = “l”, “m”, “r”, for i ∈ B3
3

wi = “s”, for i ∈ M ∪ Br
r ∪ Bl

l

where �̃l
i = [ǎi , âi ], �̃m

i = [b̂i , b̌i ], �̃r
i = [či , ĉi ],

and �̃s
i = [m̌i , m̂i ] are compact intervals, as shown

in Figs. 1 and 2. Let us take �̃w as any one of these regions.
For any given (ζ1, . . . , ζn) ∈ �̃w, we solve for xi in

hi (xi ) = 0 (5)
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Fig. 2. (a) Graph of activation function gi in class A. (b) Configurations
of functions f̂i and f̌i for i ∈ B3

3 .

where hi (xi ) := −μi xi + (αii + βii )gi(xi ) + ∑n
j=1, j �=i

(αi j + βi j )g j (ζ j ) + Ii , i ∈ N . Note that each hi is a vertical
shift of fi in (3) and lies between f̂i and f̌i . Thus, for i ∈ B3

3,
one can always find three solutions to (5), which lie in regions
�̃l

i , �̃m
i , and �̃r

i , respectively. For i ∈ M∪Br
r ∪Bl

l , there exists
one solution to (5), which lies in region �̃s

i . Next, we consider
a mapping 	w : �̃w → �̃w defined by

	w(ζ1, . . . , ζn) = (x̃1, . . . , x̃n)

where x̃i is the solution of (5) lying in �̃
wi
i . The mapping 	w

as defined is continuous, since each gi is continuous. It follows
from the Brouwer’s fixed-point theorem that there exists one
fixed point x̄ = (x̄1, . . . , x̄n) of 	w in �̃w, which is also a zero
of the function F, where F is defined in (2). Consequently,
there exist 3k equilibria for (1) and each of the 3k disjoint
regions �̃w contains one of the equilibria.

We note that what was obtained in [30] is the existence of 3n

equilibria for the n-neuron system (1). Theorem 1 establishes
the existence of 3k equilibria for (1) via Brouwer’s fixed-
point theorem. Next, we further apply the contraction mapping
theorem to assert the existence of exact 3k equilibria for (1),
under additional conditions. Let Li := g′

i (σi ), i ∈ N .
Theorem 2: Assume that M ∪ Br

r ∪ Bl
l ∪ B3

3 = N with
k = card(B3

3) ≥ 1. For each i ∈ N , fix a θi ∈ (0, μi ) and
then define

L̄i :=
{

μi −θi
αii +βii

, if i ∈ M ∪ Br
r ∪ Bl

l

Li , if i ∈ B3
3.

(6)

If the parameters satisfy

θi >

n∑

j=1, j �=i

L̄ j |αi j + βi j | (7)

and

g′
i(ξ)

⎧
⎪⎨

⎪⎩

< μi −θi
αii +βii

, if ξ ∈ [m̌i , m̂i ], i ∈ M ∪ Br
r ∪ Bl

l

< μi −θi
αii +βii

, if ξ ∈ (−∞, âi ] ∪ [či ,∞), i ∈ B3
3

> μi +θi
αii +βii

, if ξ ∈ [b̂i , b̌i ], i ∈ B3
3

(8)

for all i ∈ N , then there exist exactly 3k equilibria in (1), and
each region �̃w, defined in (4), contains exactly one of these
3k equilibria.

Proof: Let �̃w, w = (w1, . . . , wn), be any one of the
3k regions defined in (4). We shall show that 	w defined in
Theorem 1 is a contraction map; there, hence, exists exactly
one equilibrium lying in �̃w. Assume that 	w(y) = y∗,
	w(x) = x∗, i.e., for each i = 1, . . . , n
⎧
⎪⎪⎨

⎪⎪⎩

−μi y∗
i + (αii + βii )gi(y∗

i ) +∑n
j=1, j �=i(αi j + βi j )g j (y j )

+Ii = 0
−μi x∗

i + (αii + βii )gi(x∗
i ) +∑n

j=1, j �=i(αi j + βi j )g j (x j )

+Ii = 0.

Then, subtracting one equation from the other, we obtain

(x∗
i − y∗

i )[μi − (αii + βii )g′
i(ξ

∗
i )]

−
n∑

j=1, j �=i

(αi j + βi j )g′
j (η

∗
j )[x j − y j ] = 0

where ξ∗
i is some number between x∗

i and y∗
i , and η∗

j is some
number between x j and y j . Let us divide the discussion into
four cases.

1) If wi = m, where i ∈ B3
3, then x∗

i , y∗
i , ξ∗

i ∈ [b̂i , b̌i ], and
g′

i(ξ
∗
i ) > (μi + θi)/(αii + βii ) by (8). Hence

|x∗
i − y∗

i |

=
∣∣∣∣∣∣

n∑

j=1, j �=i

(αi j + βi j )g′
j (η

∗
j )(x j − y j )

∣∣∣∣∣∣

/

|(αii + βii )g′
i(ξ

∗
i ) − μi |

≤
⎧
⎨

⎩

⎡

⎣
n∑

j=1, j �=i

L̄ j |αi j + βi j |
⎤

⎦ /θi

⎫
⎬

⎭ ‖x − y‖∞

where [∑n
j=1, j �=i L̄ j |αi j + βi j |]/θi < 1, owing to (7).

2) If i ∈ M ∪ Br
r ∪ Bl

l , then x∗
i , y∗

i , ξ∗
i ∈ [m̌i , m̂i ]. Thus,

0 ≤ g
′
i (ξ

∗
i ) < (μi −θi )/(αii +βii ), due to (8). It follows

that

|(αii + βii )g′
i(ξ

∗
i ) − μi | = μi − (αii + βii )g′

i (ξ
∗
i ) > θi .

Subsequently

|x∗
i − y∗

i |

≤
⎧
⎨

⎩

⎡

⎣
n∑

j=1, j �=i

L̄ j |αi j + βi j |
⎤

⎦
/

|(αii + βii )g′
i(ξ

∗
i ) − μi |

⎫
⎬

⎭

·‖x − y‖∞

<

⎧
⎨

⎩

⎡

⎣
n∑

j=1, j �=i

L̄ j |αi j + βi j |
⎤

⎦
/

θi

⎫
⎬

⎭ ‖x − y‖∞

where [∑n
j=1, j �=i L̄ j |αi j + βi j |]/θi < 1, owing to (7).
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The situation for wi = r or l, i ∈ B3
3, is similar.

Therefore, 	w is a contraction mapping and there exists a
unique fixed point x = (x1, . . . , xn) of 	w, lying in �̃w.
Restated, for each i = 1, . . . , n

−μi x i + αii gi (xi ) +
n∑

j=1, j �=i

αi j g j (x j ) +
n∑

j=1

βi j g j (x j ) + Ji

= 0. (9)

Thus, x is the unique equilibrium point of (1) lying in �̃w.
On the other hand, if x is an equilibrium point of (1), then
its components satisfy (2), and thus must lie in some �̃w.
System (1), therefore, admits exactly 3k equilibria.

Notably, (8) describes how the slope of gi is smaller or
larger than μi/(αii + βii ) on the indicated regions with the
help of θi . In fact, (7) prefers smaller |αi j + βi j |, i �= j .
Moreover, (7) favors larger θi ∈ (0, μi ), since each L̄ j in the
right-hand side of (7) is lowered if θ j is larger, as seen from
the definition of L̄ j .

The existence of equilibrium for (1) in Theorem 1 is the
most clear-cut situation, as for each i , the intersection scenario
with the horizontal axis for the upper function f̂i is identical
to the one for the lower function f̌i . We shall pursue more
complicated cases where the upper and lower functions have
disparate intersection configurations with the horizontal axis
in Section IV.

III. GLOBAL CONVERGENCE OF DYNAMICS IN (1)

In this section, we shall discuss the globally convergent
dynamics for (1), i.e., every solution of (1) converges to one
of the equilibria. This implicates that almost every orbit of (1)
converges to one of the stable equilibria. More precisely, the
orbits, which do not lie on the stable manifolds of the unsta-
ble equilibria, will converge to one of the stable equilibria.
To conclude globally convergent dynamics, we shall apply the
newly developed sequential contracting scheme. We describe
this scheme and formulation for (1) in Section III-A. We then
implement the scheme to the case of 3k equilibria for the
n-neuron system in Section III-B.

A. Sequential Contracting

An upper function and a lower function for each component
of the equations were formulated to locate the equilibria in
Section II. To study the dynamics, such a formulation is
insufficient and it is tempting to design a sequence of upper
and lower dynamics to capture the asymptotic behaviors of
the solutions. This gives rise to the sequential contracting
scheme. The idea is actually quite natural. We organize the
coupling terms in (1) so that the dynamics corresponding to
each component equation can be controlled by some scalar
equations. We start by constructing a preliminary upper equa-
tion and a lower equation for each component. Such upper
and lower dynamics can usually be constructed due to the
dissipative property of the coupled systems. The upper and
lower equations are designed to have their own dynamics
contracted to some compact intervals. Each component for
the original dynamics of (1) is then trapped in the interval

after certain time. We then construct finer upper and lower
dynamics, so that the original dynamics are attracted to even
more concentrated regions after a later time. We then formulate
a criterion for contraction under, which these nested intervals
collapse into points, as the iterative constructions of upper and
lower dynamics carry on continuously.

Notably, (1) is dissipative, as observed from the equations
that the summation terms in (1) are bounded. Such a property
was formally justified in [18]. Therefore, a solution
x(t) = x(t; t0, φ) of (1), starting from arbitrary
φ ∈ C([−τM , 0], R

n) at t = t0, exists on [t0,∞).
In the following discussion, we fix an initial condition φ.
Its evolution x(t) = (x1(t), . . . , xn(t)) is then a fixed function
defined on [t0,∞) and the i th component xi (t) satisfies

ẋi (t) = −μi xi (t) + αii gi (xi (t)) + βii gi (xi(t − τii )) + wi

(10)

for all t ≥ t0, where wi := ∑
j �=i{αi j g j (x j (t)) +

βi j g j (x j (t −τi j ))} + Ii . Herein, each wi , i ∈ N , is a function
of t , which is defined from the solution x(t); i.e., wi varies
with respect to solutions. For a fixed solution x(t), wi is indeed
a function of t , i.e., wi = wi (t), and (10) is like a scalar
equation for each i .

For later use, we define for each i ∈ N
wmax

i (∞) := lim
T →∞ wmax

i (T ),wmin
i (∞) := lim

T →∞ wmin
i (T )

where wmax
i (T ) := sup{wi (t) | t ≥ T } is nonincreasing in T

and wmin
i (T ) := inf{wi (t) | t ≥ T } is nondecreasing in T .

We define the following preliminary upper and lower bounds
for (10), respectively:

ĥi (ξ) := −μiξ + 2(|αii | + |βii |)ρi + wmax
i (t0) (11)

ȟi (ξ) := −μiξ − 2(|αii | + |βii |)ρi + wmin
i (t0) (12)

where ĥi and ȟi are linear decreasing functions with unique
zeros: Âh

i and Ǎh
i , where Âh

i := [2(|αii | + |βii |)ρi +
wmax

i (t0)]/μi and Ǎh
i := [−2(|αii | + |βii |)ρi + wmin

i (t0)]/μi ,
respectively. Notably, ĥi ( Ǎh

i ) = −ȟi ( Âh
i ) = 4(|αii |+|βii |)ρi+

wmax
i (t0) − wmin

i (t0) ≥ 0. Applying the arguments similar to
those for [33, Lemma 2.1] reveals that for each i ∈ N
ȟi (xi (t)) + (|αii | + |βii |)ρi

≤ ẋi (t) ≤ ĥi (xi (t)) − (|αii | + |βii |)ρi

for all t ≥ t0. Consequently, there exists a tφ (depending on

φ) such that xi (t) enters and remains in interval [ Ǎh
i , Âh

i ] for
all i and t ≥ tφ . Accordingly, we can construct the second
preliminary upper and lower bounds for (10)

f̂ (0)
i (ξ, T ) :=

{
γ̂i (ξ, T ) − βii Liτii ȟi

(
Âh

i

)
if βii ≥ 0

γ̂i (ξ, T ) − βii Liτii ĥi
(
Ǎh

i

)
if βii < 0

(13)

f̌ (0)
i (ξ, T ) :=

{
γ̌i (ξ, T ) − βii Liτii ĥi

(
Ǎh

i

)
if βii ≥ 0

γ̌i (ξ, T ) − βii Liτii ȟi
(
Âh

i

)
if βii < 0

(14)
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where

γ̂i (ξ, T ) := −μiξ + (αii + βii )gi(ξ) + wmax
i (T )

γ̌i (ξ, T ) := −μiξ + (αii + βii )gi(ξ) + wmin
i (T )

for some T ≥ t0. It is not difficult to see that condition (M1)
(in the Appendix) implies |αii | + |βii | > 0, and thus

ȟi (ξ) < f̌ (0)
i (ξ, t0) ≤ f̌ (0)

i (ξ, T )

≤ f̂ (0)
i (ξ, T ) ≤ f̂ (0)

i (ξ, t0) < ĥi (ξ) (15)

for all T ≥ t0 and ξ ∈ R. From (15), conditions (M1) and (M2)

(in the Appendix) imply that there exists a unique zero m̌(0)
i (T )

[resp., m̂(0)
i (T )] of f̌ (0)

i (·, T ) = 0 [resp., f̂ (0)
i (·, T ) = 0] for

each T ≥ T0, where T0 is defined in condition (M2). Moreover

Ǎh
i < m̌(0)

i (T0) ≤ m̌(0)
i (T ) ≤ m̂(0)

i (T ) ≤ m̂(0)
i (T0) < Âh

i .

By arguments similar to those for [33, Lemma 2.2], we can
show that for any T ≥ max{tφ + τii , T0}

f̌ (0)
i (xi (t), T ) + |βii |(|αii | + |βii |)ρi Liτii

≤ ẋi (t) ≤ f̂ (0)
i (xi (t), T ) − |βii |(|αii | + |βii |)ρi Liτii

for t ≥ T . Consequently, xi (t) enters and remains in interval
[m̌(0)

i (T ), m̂(0)
i (T )] contained in [ Ǎh

i , Âh
i ] after certain time.

Then, iteratively applying arguments based on constructing

finer upper f̂ (k)
i and lower bounds f̌ (k)

i for (10) allows us to
establish the convergence of xi (t) to some compact interval,
say Ji , as t → ∞. The formulation of such f̂ (k)

i and f̌ (k)
i

and the precise statement of this convergence (Proposition 2)
are arranged in the Appendix. Herein, we say that a real-
valued function y(t) converges to a compact interval J if
d(y(t), J ) := inf{|y(t) − ζ | : ζ ∈ J } → 0, as t → ∞. On the
other hand, another possible configuration of upper and
lower functions leads to the convergence of xi(t) to one of
three compact intervals, which is summarized in Proposition 3
(in the Appendix). As performed component by component
successively, this sequential contracting scheme converts the
convergence of solution x(t) to an equilibrium of (1) into
solving a corresponding linear system of algebraic equations
via the following proposition.

Proposition 1: Let x(t) = (x1(t), . . . , xn(t)) be a fixed
solution of (1). Assume that for every i ∈ N , there exists
a compact interval Ji of length di , such that xi(t) converges
to Ji and di satisfies

di ≤ [wmax
i (∞) − wmin

i (∞)
]/

ηi

for some ηi > 0, and there exist a compact interval J̃i and a
L̃i ≥ 0, such that Ji ⊆ J̃i and

g′
i (ξ) ≤ L̃i for all ξ ∈ J̃i .

Let M := [mij ]1≤i, j≤n with mii := ηi , mij := −(|αi j | +
|βi j |)L̃ j for i �= j . If the Gauss–Seidel iteration for solving
the linear system

Mv = 0 (16)

converges to zero, the unique solution of (16), or equivalently,
λ̃M < 1, then every di degenerates into zero, and the solution
x(t) of (1) converges to a singleton, where

λ̃M := max
1≤i≤n

{|λi | : λi : eigenvalue of (DM − LM)−1UM}

and M = DM − LM − UM with DM, −LM, and −UM the
diagonal, strictly lower triangular and strictly upper triangular
parts of M, respectively.

Proof: We first claim that for each i ∈ N , there exists a
sequence of compact intervals {J (k)

i }∞k=0 with J (k)
i ⊇ Ji , and

the length d(k)
i of J (k)

i satisfies

d(k)
i =

⎧
⎨

⎩

i−1∑

j=1

(|αi j | + |βi j |)L̃ j d
(k)
j

+
n∑

j=i+1

(|αi j | + |βi j |)L̃ j d
(k−1)
j

⎫
⎬

⎭

/
ηi (17)

for every k ∈ N, where J (0)
i = J̃i . Let us sketch the

arguments for the claim through induction. Assume that the
claim holds for k = k̃ − 1 ∈ N and all i ∈ N for some k̃ ≥ 2,
and it holds for k = k̃ and every i ∈ {1, . . . , � − 1} with
1 ≤ �−1 < n. That is, xi (t) converges to the compact interval

J (k̃)
i (resp., J (k̃−1)

i ) if i = 1, . . . , �−1 (resp., i = �+1, . . . , n).
Set

W̌ (k̃)
� (∞) := I� +

�−1∑

j=1

min
ξ,η∈J (k̃)

j ∩ J̃ j

{α�j g j (ξ) + β�j g j (η)}

+
n∑

j=�+1

min
ξ,η∈J (k̃−1)

j ∩ J̃ j

{α�j g j (ξ) + β�j g j (η)}

Ŵ (k̃)
� (∞) := I� +

�−1∑

j=1

max
ξ,η∈J (k̃)

j ∩ J̃ j

{α�j g j (ξ) + β�j g j (η)}

+
n∑

j=�+1

max
ξ,η∈J (k̃−1)

j ∩ J̃ j

{α�j g j (ξ) + β�j g j (η)}.

In respecting the term w� associated with the solution
(x1(t), . . . , xn(t)) defined in (10), and the definition of
wmin

� (∞) and wmax
� (∞), we obtain

W̌ (k̃)
� (∞) ≤ wmin

� (∞) ≤ wmax
� (∞) ≤ Ŵ (k̃)

� (∞)

noting that xi (t) converges to J (k̃)
i ∩ J̃i (resp., J (k̃−1)

i ∩ J̃i )
if i = 1, . . . , � − 1 (resp., i = � + 1, . . . , n). Thus, x�(t)
converges to J� with its length d� satisfying

d� ≤ [
wmax

� (∞) − wmin
� (∞)

]/
η�

≤ [
Ŵ (k̃)

� (∞) − W̌ (k̃)
� (∞)

]/
η�

≤
⎧
⎨

⎩

�−1∑

j=1

(|α�j | + |β�j |)L̃ j d
(k̃)
j

+
n∑

j=�+1

(|α�j | + |β�j |)L̃ j d
(k̃−1)
j

⎫
⎬

⎭

/
η� = d(k̃)

�
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where the last inequality follows from applying the mean valve

theorem to Ŵ (k̃)
� (∞) − W̌ (k̃)

� (∞), recalling g′
i (ξ) ≤ L̃i if

ξ ∈ J (k)
i ∩ J̃i and J (k)

i ∩ J̃i ⊆ J̃i , for all i ∈ N and
k ∈ N. These computations also explain the formulation of d(k)

i
in (17). Subsequently, x�(t) converges to a compact interval

J (k̃)
� that contains J� and whose length is exactly d(k̃)

� . That
is, the assertion holds for k = k̃ and i = � as well. We thus
justify the claim.

We observe that {(d(k)
1 , . . . , d(k)

n )}k∈N is exactly the
Gauss–Seidel iteration for solving the linear system (16).
From the previous arguments, it follows that (x1(t), . . . , xn(t))
converges to a singleton if the iteration {(d(k)

1 , . . . , d(k)
n )}k∈N

satisfies d(k)
i → 0 as k → ∞, for all i ∈ N . In addition,

λ̃M < 1 is a sufficient and necessary condition for such a
convergence of the Gauss–Seidel iteration for (16) [15].

The convergence to zero for Gauss–Seidel iteration in
Proposition 1 can be assured if M is strictly diagonal
dominant [37].

Lemma 2: Under the strictly diagonal dominance of
M: ηi >

∑
j �=i {(|αi j | + |βi j |)L̃ j } for all i ∈ N , the

Gauss–Seidel iteration converges to zero, the unique solution
of (16).

B. Global Convergence to 3k Equilibria for (1)

Next, we investigate the convergence of dynamics in (1)
with 3k equilibria. Notice that the formulation of ȟi , ĥi

in (11) and (12), and f̂ (0)
i (·, T ), f̌ (0)

i (·, T ) in (13) and (14),
depends on a given solution x(t). To formulate the convergence
condition for all solutions of (1), we need to employ the
following solution-independent upper and lower functions:

F̂i (ξ) = �̂i (ξ) + k̃+
i , F̌i (ξ) = �̌i (ξ) + k̃−

i (18)

where k̃+
i := ∑n

j=1, j �=i(|αi j | + |βi j |)ρ j + Ii ,
k̃−

i := −∑n
j=1, j �=i(|αi j | + |βi j |)ρ j + Ii , and

�̂i (ξ)

:=
{−μiξ + (αii + βii )gi (ξ) − βii Liτii Ȟi( ÂH

i ) if βii ≥ 0

−μiξ + (αii + βii )gi (ξ) − βii Liτii Ĥi( ǍH
i ) if βii < 0

�̌i (ξ)

:=
{

−μiξ + (αii + βii )gi (ξ) − βii Liτii Ĥi( ǍH
i ) if βii ≥ 0

−μiξ + (αii + βii )gi (ξ) − βii Liτii Ȟi( ÂH
i ) if βii < 0

and ÂH
i and ǍH

i are, respectively, the unique zeros of the
linear decreasing functions Ĥi and Ȟi defined as

Ĥi(ξ) := −μiξ + 2(|αii | + |βii |)ρi + k̃+
i

Ȟi(ξ) := −μiξ − 2(|αii | + |βii |)ρi + k̃−
i .

F̂i and F̌i are also vertical shifts of f̂i and f̌i and f̂ (0)
i (·, T ),

f̌ (0)
i (·, T ) defined in Sections II and III-A, respectively. It is

not difficult to verify

Ȟi(ξ) ≤ ȟi (ξ) ≤ ĥi (ξ) ≤ Ĥi(ξ) (19)

F̌i (ξ) ≤ f̌ (0)
i (ξ, T ) ≤ f̂ (0)

i (ξ, T ) ≤ F̂i (ξ) (20)

for all T ≥ t0 and ξ ∈ R. Moreover

F̌i (ξ) ≤ f̌i (ξ) ≤ f̂i (ξ) ≤ F̂i (ξ) (21)

for all ξ ∈ R, as Ĥi( ǍH
i ) ≥ 0 and Ȟi( ÂH

i ) ≤ 0.
When M ∪ Br

r ∪ Bl
l ∪ B3

3 = N holds, we further consider
the condition

⎧
⎨

⎩

F̌i ( p̃i ) > 0 if i ∈ Br
r

F̂i (q̃i ) < 0 if i ∈ Bl
l

F̂i ( p̃i ) < 0, F̌i (q̃i ) > 0 if i ∈ B3
3

(22)

where p̃i , q̃i are defined in Lemma 1. Under (22), there
exists a unique zero m̌F

i (resp., m̂F
i ) to F̌i (resp., F̂i ),

if i ∈ M ∪ Br
r ∪ Bl

l , and there exist exactly three zeros âF
i ,

b̂F
i , ĉF

i (resp., ǎF
i , b̌F

i , čF
i ) to F̂i (resp., F̌i ), if i ∈ B3

3, and
ǎF

i ≤ âF
i < p̃i < b̂F

i ≤ b̌F
i < q̃i < čF

i ≤ ĉF
i . Let

τ c
ii := (|αii | + |βii |)ρi

Li [4(|αii | + |βii |)ρi + 2
∑n

j=1, j �=i(|αi j | + |βi j |)ρ j ] .

To conclude the stability of 2k out of these 3k equilibria,
we further need the following functions:

Îi (ξ) := −μiξ + αii gi(ξ) +
n∑

j=1, j �=i

|αi j |ρ j +
n∑

j=1

|βi j |ρ j + Ii

Ǐi (ξ) := −μiξ + αii gi(ξ) −
n∑

j=1, �=i

|αi j |ρ j −
n∑

j=1

|βi j |ρ j + Ii

for i ∈ N . Notably

Ǐi (ξ) ≤ f̌i (ξ) < f̂i (ξ) ≤ Îi (ξ) (23)

for all ξ ∈ R. Moreover, if Li > μi/αii > 0, there
exist exactly two points p̄i and q̄i with p̄i < σi < q̄i

such that g′
i( p̄i ) = g′

i (q̄i) = μi/αii . If in addition that
Ǐi (q̄i) > 0 and Îi ( p̄i) < 0, then there exist exactly three zeros

â I
i , b̂ I

i , and ĉ I
i (resp., ǎ I

i , b̌ I
i , and č I

i ) for Îi (resp., Ǐi ), where

ǎ I
i ≤ â I

i < p̄i < b̂ I
i ≤ b̌ I

i < q̄i < č I
i ≤ ĉ I

i .
We assume B3

3 �= ∅ and consider the following condition.
Condition (I): Li > μi/αii > 0, Ǐi (q̄i ) > 0, and Îi ( p̄i) < 0,

for i ∈ B3
3.

Assuming M∪ Br
r ∪ Bl

l ∪B3
3 = N with card(B3

3) = k ≥ 1,
we define the following 2k regions:

�̄w = {(x1, . . . , xn) ∈ R
n | xi ∈ �̄

wi
i } (24)

w = (w1, . . . , wn)

wi = “l”, “r”, for i ∈ B3
3

wi = “s”, for i ∈ M ∪ Br
r ∪ Bl

l

where �̄l
i = (−∞, b̂ I

i ), �̄r
i = (b̌ I

i ,∞), and �̄s
i = R, under

condition (I). Notably, �̃w ⊆ �̄w and �̃w∩�̄w′ = ∅ if w �= w′
due to (23). Denote by x̄w the equilibrium lying in �̄w. We can
then establish the global convergence of dynamics for (1) and
show that each equilibrium x̄w is attracting in the sense that
every solution evolved from initial value in �̄w converges
to x̄w.

Theorem 3: Assume that M ∪ Br
r ∪ Bl

l ∪ B3
3 = N ,

(7) and (22) hold, and for each i ∈ N
|βii |τii < τ c

ii (25)
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and

g′
i (ξ)

⎧
⎪⎨

⎪⎩

< μi −θi
αii +βii

, if ξ ∈ [m̌F
i , m̂F

i

]
, i ∈ M ∪ Br

r ∪ Bl
l

< μi −θi
αii +βii

, if ξ ∈ (− ∞, âF
i

] ∪ [čF
i ,∞), i ∈ B3

3

> μi +θi
αii +βii

, if ξ ∈ [b̂F
i , b̌F

i

]
, i ∈ B3

3

(26)

for some θi ∈ (0, μi ). Then, (1) achieves global convergence
to the 3k equilibria provided that the Gauss–Seidel iteration
for the linear algebraic system (16) converges to zero, the
unique solution, where mii = (1 − 2|βii |Liτii )θi for i ∈ N ,
mij = −(|αi j | + |βi j |)L̄ j for i, j ∈ N , i �= j , and L̄ j is
defined in (6). If condition (I) holds in addition, then the 2k

out of these 3k equilibria are attracting; more precisely, every
solution x(t) evolved from an initial value in �̄w converges
to x̄w, as t → ∞, where �̄w is defined in (24).

Proof: Based on (21), it can be verified
that (26) implies (8). Consequently, (1) admits exactly 3k

equilibria under the conditions imposed by Theorem 2.
Next, let us prove the convergence of dynamics. Let
(x1(t), . . . , xn(t)) be an arbitrary solution of (1). Then,
each component ẋi (t) can be written in the form (10).
If i ∈ M ∪ Br

r ∪ Bl
l , then there exists a unique zero

m̌ f
i (resp., m̂ f

i ) to f̌ (0)
i (·, t0) [resp., f̂ (0)

i (·, t0)] where
[m̌ f

i , m̂ f
i ] ⊆ [m̌F

i , m̂F
i ], by (20) and the first two inequalities

in (22). If i ∈ B3
3, then there exist exactly three zeros â f

i , b̂ f
i ,

and ĉ f
i (resp., ǎ f

i , b̌ f
i , and č f

i ) to f̂ (0)
i (·, t0) [resp., f̌ (0)

i (·, t0)]
by the last inequality in (22); in addition, [ǎ f

i , â f
i ] ⊆ [ǎF

i , âF
i ],

[b̂ f
i , b̌ f

i ] ⊆ [b̂F
i , b̌F

i ], and [č f
i , ĉ f

i ] ⊆ [čF
i , ĉF

i ]. Then, it
is not difficult to verify that component xi(t) satisfies
(M1)–(M3) if i ∈ M ∪ Br

r ∪ Bl
l , and satisfies (B1)–(B3)

for i ∈ B3
3, under (22), (25), and (26) (see the Appendix).

By Propositions 2 and 3, we obtain the convergence of xi (t)
to an interval Ji of length di for every i ∈ N , where di

satisfies

di ≤ [wmax
i (∞) − wmin

i (∞)
]
/[(1 − 2|βii |Liτii )θi ]. (27)

Notably, Ji ⊆ [m̌F
i , m̂F

i ] if i ∈ M ∪ Br
r ∪ Bl

l , and
Ji ⊆ [ǎF

i , âF
i ] ∪ [b̂F

i , b̌F
i ] ∪ [čF

i , ĉF
i ] ⊆ [ǎF

j , ĉF
j ] if i ∈ B3

3.

If i ∈ B3
3, which of the intervals [ǎF

i , âF
i ], [b̂F

i , b̌F
i ], [čF

i , ĉF
i ]

Ji is actually contained in depends on the initial condition;
the detailed arguments are similar to [33, Proposition 4].
Moreover, g′

j (ξ) ≤ L̄ j , where

L̄ j =
{

μ j −θ j
α j j +β j j

if j ∈ M ∪ Br
r ∪ Bl

l , ξ ∈ [m̌F
j , m̂F

j

]

L j if j ∈ B3
3, ξ ∈ [ǎF

j , ĉF
j

]
.

By Proposition 1, it follows that (x1(t), . . . , xn(t)) converges
to a singleton if the Gauss–Seidel iteration for (16) converges
to zero, the unique solution of (16), where mii = (1 − 2|βii |
Liτii )θi if i ∈ N and mij = −(|αi j | + |βi j |)L̄ j if i, j ∈ N
and i �= j .

Below, let us show that �̄w is positively invariant under
the solution flow of (1). Let (x1(t), . . . , xn(t)) be a solution
evolved from an initial condition lying �̄w. From (1),
we obtain

Ǐi (xi(t)) ≤ ẋi (t) ≤ Îi (xi(t)). (28)

From (28) and the configurations of Ǐi and Îi , for i ∈ B3
3,

we see that ẋi (t) < 0, should xi(t) stay in (â I
i , b̂ I

i )∪ (ĉ I
i ,∞),

and ẋi (t) > 0, should xi (t) stay in (−∞, ǎ I
i ) ∪ (b̌ I

i , č I
i ) under

condition (I). Consequently, for i ∈ B3
3, xi (t) remains in

(−∞, b̂ I
i ) [resp., (b̌ I

i ,∞)] and actually converges to [ǎ I
i , â I

i ]
(resp., [č I

i , ĉ I
i ]) if wi = l (resp., r ). We hence justify the pos-

itive invariance of �̄w. Subsequently, every solution evolved
from an initial value in �̄w converges to x̄w, due to the global
convergence of (1).

Corollary 1: If M is strictly diagonal-dominant,
i.e., (1 − 2|βii |Liτii )θi >

∑
j �=i{(|αi j | + |βi j |)L̄ j }, for

all i ∈ N , then the Gauss–Seidel iteration converges to
zero, and the assertions of Theorem 3 hold under the same
assumptions.

Remark 1: 1) In the proof of Theorem 3, it was shown
that every solution converges to a single point as t → ∞.
This point is certainly an equilibrium of (1). 2) Theorem 3
concludes that the 2k equilibria out of these 3k equilibria are
attracting in (1). By applying the arguments in [30, Th. 3.4],
we can further prove that these 2k equilibria are asymptotically
stable and the other (3k − 2k) equilibria are unstable without
additional assumptions.

We stress that to establish analytic theory to conclude the
global dynamics for (1), several additional conditions have
been imposed in Theorem 3. These are certainly sufficient
conditions that are formulated according to the mathemati-
cal methodologies. It is likely that the convergent dynamics
already holds under the assumption of Theorem 1.

IV. OTHER CASES OF MULTISTABILITY

In this section, we elaborate on the other cases of multiple
equilibria in (1). These cases are more complicated than the
one in Section II. We illustrate the idea for n = 2.

System (1) with n = 2 reads as

dx1(t)

dt
= −μ1x1(t) + α11g1(x1(t)) + α12g2(x2(t))

+ β11g1(x1(t − τ11)) + β12g2(x2(t − τ12)) + I1

(29)
dx2(t)

dt
= −μ2x2(t) + α21g1(x1(t)) + α22g2(x2(t))

+ β21g1(x1(t − τ21)) + β22g2(x2(t − τ22)) + I2.

(30)

The upper and lower functions are now

f̂i (ξ) = −μiξ + (αii + βii )gi (ξ) + |αi j + βi j |ρ j + Ii

f̌i (ξ) = −μiξ + (αii + βii )gi (ξ) − |αi j + βi j |ρ j + Ii

where i, j ∈ {1, 2} and j �= i . For this two-neuron system,
there are four basic types: 1) (M,M); 2) (M,B); 3) (B,M);
and 4) (B,B), which correspond to 1, 2 ∈ M, 1 ∈ M and
2 ∈ B, 1 ∈ B and 2 ∈ M, and 1, 2 ∈ B, respectively, according
to the notation in Section II. We further denote the following
subtypes of these four types.

Notation 1: Denote subtype (m
m )(m

m ) if 1, 2 ∈ M, (m
m )( 


• )
if 1 ∈ M and 2 ∈ B
•, ( 


• )(m
m ) if 1 ∈ B
• and 2 ∈ M, and

( 

• )( 
′

•′ ) if 1 ∈ B
• and 2 ∈ B
′
•′ .
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TABLE I

SUBTYPES IN (M,M), (M,B), (B,M), AND (B,B)

In these notations, the first (second) column corresponds to the
configurations of upper and lower functions for the first neuron
i = 1 (second neuron i = 2). The notation B
• is as defined
in Section II. We list these 20 subtypes Tk , k = 1, . . . , 20,
in Table I. The cases of T1, T2, T3, T6, T7, T10, T11, and T14
have been discussed in Section II.

We need the following notation to further describe the
geometric configurations of the upper and lower functions.

Notation 2:

1) For an interval I = [�, ς ], we say that I > 0 (<
0) if � > 0 (ς < 0). Denote cI := [c�, cς ], if
c ≥ 0, cI := [cς, c�], if c < 0; β + I := [β + �,
β + ς ], for a real number β; gi(I) := [gi (�), gi (ς)] for
increasing function gi .

2) For intervals Ik = [�k, ςk], k = 1, 2, I1+I2 := [�1+�2,
ς1 + ς2], an interval.

3) For a given η ∈ R, define functions f η
i (ξ) := −μiξ +

(αii +βii )gi(ξ)+(αi j +βi j )g j (η)+Ii , where i, j ∈ {1, 2}
and j �= i .

4) For each ξ , define intervals Ki (ξ; I) := −μiξ +
(αii +βii )gi(ξ)+(αi j +βi j )g j (I)+Ii = { f η

i (ξ) : η ∈ I},
where i, j ∈ {1, 2}, j �= i . Regarding ξ as a variable,
denote by Ki (ξ; [�, ς ]) an interval-valued function of ξ .

Note that the graph of Ki (ξ; [�, ς ]) is a strip that lies
between the graphs of functions f �

i (ξ) and f ς
i (ξ).

Herein, we demonstrate the analysis for the existence of
equilibria in three cases: 1) ( r

r )( r
3 ) ∈ T12; 2) ( 3

3 )( r
3 ) ∈ T15; and

3) ( 3
3 )( r

l ) ∈ T16. First, let us take the case ( r
r )( r

3 ) to introduce
further notation. In this case, we have f̌1(m̌1) = f̂1(m̂1) = 0
with m̌1 < m̂1. Denote S1 := [m̌1, m̂1], an interval.
If K2( p̃2; S1) < 0, the strip between the graphs of functions
f m̌1
2 and f m̂1

2 intersects the horizontal axis by three intervals.
Here, we take α21 + β21 > 0 to introduce the following
notation and the case of opposite sign can be treated similarly.

Fig. 3. Configuration under α21 + β21 > 0. (a) Graphs of f̂1(ξ) and f̌1(ξ).

(b) K2( p̃2; S1) < 0: strip K2(ξ; S1) bounded by the graphs of f m̂1
2 and

f m̌1
2 intersects ξ -axis by three intervals. (c) K2( p̃2; S1) > 0: strip K2(ξ; S1)

intersects ξ -axis by one interval.

Each of functions f m̌1
2 and f m̂1

2 has three zeros,
say f m̌1

2 (ǎ(1)
2 ) = f m̌1

2 (b̌(1)
2 ) = f m̌1

2 (č(1)
2 ) = 0, and

f m̂1
2 (â(1)

2 ) = f m̂1
2 (b̂(1)

2 ) = f m̂1
2 (ĉ(1)

2 ) = 0 with

ǎ(1)
2 < â(1)

2 < b̂(1)
2 < b̌(1)

2 < č(1)
2 < ĉ(1)

2 [Fig. 3(a) and (b)].

Denote the intervals AS1
2 := [ǎ(1)

2 , â(1)
2 ], B S1

2 := [b̂(1)
2 , b̌(1)

2 ],
and C S1

2 := [č(1)
2 , ĉ(1)

2 ]. Let us explain the notation: AS1
2 is

obtained by the intersections of the left arms of f m̌1
2 and f m̂1

2
with the horizontal axis; in addition, the values of F2(x1, x2)

lie between f m̌1
2 (x2) and f m̂1

2 (x2), when x1 is restricted to S1.
Similar interpretation applies to B S1

2 and C S1
2 .

If K2( p̃2; S1) > 0, then each of functions f m̌1
2 (ξ) and

f m̂1
2 (ξ) has one zero, say f m̌1

2 (m̌(1)
2 ) = 0 and f m̂1

2 (m̂(1)
2 ) = 0

with m̌(1)
2 < m̂(1)

2 [Fig. 3(c)]. Denote the interval
SS1

2 = [m̌(1)
2 , m̂(1)

2 ]. In this case, the strip between the graphs
of f m̌1

2 and f m̂1
2 intersects the horizontal axis by one interval.

Theorem 4: Consider (29) and (30) with the case ( r
r )( r

3 ).
There exists one equilibrium if K2( p̃2; S1) > 0, and three
equilibria if K2( p̃2; S1) < 0.

Proof: For the case K2( p̃2; S1) < 0, we consider the
following three regions:

�w := {
(x1, x2) ∈ R

2|xi ∈ �
wi
i

}

w = (w1, w2),w1 = s, w2 = l, m, r

where �s
1 = S1, �l

2 = AS1
2 , �m

2 = B S1
2 , and �r

2 = C S1
2 . Let

�w be any one of these regions. For any given (ζ1, ζ2) ∈ �w,
we solve for xi in

−μi xi + (αii + βii )gi(xi ) + (αi j + βi j )g j (ζ j ) + Ii = 0 (31)

for i, j ∈ {1, 2} and j �= i . Note that f̌1(ξ) ≤ f η
1 (ξ) ≤ f̂1(ξ)

for all η ∈ �w2
2 and f m̌1

2 (ξ) ≤ f η
2 (ξ) ≤ f m̂1

2 (ξ) [resp.,
f m̂1
2 (ξ) ≤ f η

2 (ξ) ≤ f m̌1
2 (ξ)] for all η ∈ S1 if α21 + β21 > 0

(resp., α21 + β21 < 0). Accordingly, one can always find
three solutions to (31), which lie in regions �l

i , �m
i , and

�r
i , respectively. We define a mapping 	w : �w → �w

by 	w(ζ1, ζ2) = (x̃1, x̃2) where x̃i is the solution of (31).
The mapping 	w as defined is continuous, as in the proof of
Theorem 1. It follows from the Brouwer’s fixed-point theorem
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TABLE II

CRITERIA FOR VARIOUS NUMBERS OF EQUILIBRIUM

POINTS FOR THE CASE ( 3
3 )( r

3 )

TABLE III

CRITERIA FOR VARIOUS NUMBERS OF EQUILIBRIUM

POINTS FOR THE CASE ( 3
3 )( r

l )

that there exists a fixed point x̄ = (x̄1, x̄2) of 	w in �w,
which is also a zero of F in (2). Consequently, there exist
three equilibria for (29) and each region �w contains one
equilibrium.

If K2( p̃2; S1) > 0, then by constructing a continuous
mapping on the region �w := S1 × SS1

2 , where
SS1

2 := [m̌(1)
2 , m̂(1)

2 ] and f̌ m̌1
2 (m̌(1)

2 ) = f̂ m̂1
2 (m̂(1)

2 ) = 0
[resp., f̌ m̂1

2 (m̌(1)
2 ) = f̂ m̌2

2 (m̂(1)
2 ) = 0] if α21 + β21 > 0

(resp., < 0), and by similar arguments, we conclude that there
exists an equilibrium for (29), which lies in the region �w.

Denote A1 := [ǎ1, â1], B1 := [b̂1, b̌1], and C1 := [č1, ĉ1].
By similar arguments, we can obtain the following existence
of multiple equilibria.

Theorem 5: Consider the case ( 3
3 )( r

3 ) or ( 3
3 )( r

l ). Then, there
exist parameters such that (29) and (30) have three, five, seven,
or nine equilibria. The criterion for each of these existence is
listed in Tables II and III, respectively.

Proof: We only show the case ( 3
3 )( r

3 ). The other cases
are similar.

If α21 + β21 > 0 and K2( p̃2; A1) > 0 or if α21 + β21 < 0
and K2( p̃2; C1) > 0, then K2(ξ; •) intersects the ξ -axis by
one interval, say S•

2 , for • = A1, B1, and C1. Thus, there
exist three regions: A1 × S A1

2 , B1 × SB1
2 , and C1 × SC1

2 , and
each can be regarded as region �w in the proof of Theorem 4;
hence, there are three equilibria.

If α21 + β21 > 0, K2( p̃2; A1) < 0, and K2( p̃2; B1) > 0,
then K2(ξ; A1) intersects the ξ -axis by three intervals,
say AA1

2 , B A1
2 , C A1

2 , and K2(ξ; •) intersects the ξ -axis by

one interval, say S•
2 , for • = B1, C1. Then, there exist

five regions A1 × AA1
2 , A1 × B A1

2 , A1 × C A1
2 , B1 × SB1

2 , and
C1 × SC1

2 and hence five equilibria. Same assertion holds if
α21 + β21 < 0, K2( p̃2; C1) < 0, and K2( p̃2; B1) > 0.

If α21 + β21 > 0, K2( p̃2; B1) < 0, and K2( p̃2; C1) > 0 or
α21 + β21 < 0, K2( p̃2; B1) < 0, and K2( p̃2; A1) > 0, there
are seven regions to be considered as previous cases and hence
seven equilibria.

If α21 + β21 > 0, K2( p̃2; C1) < 0 or α21 + β21 < 0, and
K2( p̃2; A1) < 0, there are nine regions to be considered and
hence nine equilibria.

We can apply sequential contracting formulation similar to
Theorem 3 to obtain global convergence of dynamics for the
cases of multiple equilibria in Theorems 4 and 5. As the
above analysis is performed componentwise, it certainly can
be extended to the general n-neuron system (1).

V. PIECEWISE-LINEAR ACTIVATION FUNCTIONS

It is straightforward to extend the discussions
in Sections II–IV to (1) with piecewise-linear activation
functions

gi (ξ) =
⎧
⎨

⎩

ui if − ∞ < ξ < p̄i

ui + vi −ui
q̄i− p̄i

(ξ − p̄i) if p̄i ≤ ξ ≤ q̄i

vi if q̄i < ξ < ∞.

(32)

This class of functions includes the standard activation
function in cellular neural networks

gi(ξ) = 1

2
(|ξ + 1| − |ξ − 1|), i ∈ N .

In this case, we adapt the setting M and B to

M :=
{

i ∈ N | vi − ui

q̄i − p̄i
≤ μi

αii + βii

}

B :=
{

i ∈ N | 0 <
μi

αii + βii
<

vi − ui

q̄i − p̄i

}
.

Further classification according to the intersections of f̂i and
f̌i with the horizontal axis, as those shown in Fig. 1, can be
formulated with p̃i and q̃i replaced by p̄i and q̄i , respectively.

All the results in Sections II–IV can thus be extended
to (1) with such piecewise-linear activation functions. The
extension also holds if the middle part of gi for p̄i ≤ ξ ≤ q̄i

in (32) is replaced by an increasing function connecting the
two saturation segments.

VI. NUMERICAL ILLUSTRATIONS

In this section, we present two examples for (1) with n = 2
or n = 3 to illustrate the theorems in Sections II–IV. We take
the activation function as gi(ξ) = tanh(ξ), and thus σi = 0,
ρi = 1, Li = 1 for i = 1, 2, 3.

Example 1: This example illustrates Theorem 5 for the case
n = 2 and ( 3

3 )( r
3 ). We consider the parameters

μ1 = 1, α11 = 1.5, α12 = 0.07, β11 = 0.1, β12 = 0.08

μ2 = 1, α21 = 0.1, α22 = 1.4, β21 = 0.1, β22 = 0.1

I1 = −0.05, I2 = 0.32

τ11 = τ22 = 0.05, τ12 = τ21 = 10.
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Fig. 4. Numerical simulation for Example 1.

Herein, α12 + β12 = 0.15 > 0, α21 + β21 = 0.2 > 0.
Moreover, p̃1 = −0.7127085, q̃1 = 0.7127085, p̃2 =
−0.6584789, q̃2 = 0.6584789, k+

1 = 0.1, k−
1 = −0.2,

k+
2 = 0.52, and k−

2 = 0.12. Let us examine the
condition in Theorem 5. We compute to find intervals
A1 := [ǎ1, â1] = [−1.69581395,−1.26304012] and
B1 := [b̂1, b̌1] = [−0.17106488, 0.37914872]. Condition
K2( p̃2; A1) < 0 < K2( p̃2; B1) in Table II can be directly
justified

K2( p̃2; A1) = [−0.0745232,−0.0579265] < 0

K2( p̃2; B1) = [0.0785704, 0.1848471] > 0.

The parameters chosen here also satisfy the convergence
theorem that is not included in this paper. It can be observed
in Fig. 4 that almost all trajectories converge to three equilibria
marked in red (the other two equilibria are marked in green).
These five equilibria can be computed numerically as

(1.5582, 1.9426), (−0.15341, 1.691), (−1.2876, 1.5082),

(−1.6522,−1.0216), (−1.5578,−0.30005).

Example 2: This example illustrates Theorems 2 and 3
for (1) with n = 3. We consider the parameters

(μi ) =
⎛

⎝
1
1
1

⎞

⎠ , (αi j ) =
⎛

⎝
1.8 0.05 0

0.05 1.9 0
0 0.05 0.6

⎞

⎠

(Ii ) =
⎛

⎝
0.05

0
0.15

⎞

⎠ , (βi j ) =
⎛

⎝
0.2 0 0.05
0 0.1 0.05

0.05 0 0.1

⎞

⎠ .

It is straightforward to see i = 1, 2 ∈ B3
3 and i = 3 ∈ M,

and thus card(B3
3) = 2. In addition, we set τii = 0.1, τi j = 12

for i, j = 1, 2, 3, i �= j . We compute to find p̃1 = p̃2 =
−0.8813736, q̃1 = q̃2 = 0.8813736, k+

1 = 0.15, k−
1 = −0.05,

k+
2 = 0.1, k−

2 = −0.1, k+
3 = 0.25, and k−

3 = 0.05. First, let us
examine the conditions in Theorem 2. For (7), for i = 1 ∈ B3

3,
we take θ1 = 0.3 ∈ (0, 1); then

θ1 = 0.3 > L̄2|α12 + β12| + L̄3|α13 + β13| = 0.107.

For i = 2 ∈ B3
3, we take θ2 = 0.4 ∈ (0, 1); then

θ2 = 0.4 > L̄1|α21 + β21| + L̄3|α23 + β23| = 0.107.

For i = 3 ∈ M, we take θ3 = 0.2 ∈ (0, 1); then

θ3 = 0.2 > L̄1|α31 + β31| + L̄2|α32 + β32| = 0.1.

For (8), for i = 1 ∈ B3
3, we take θ1 = 0.3 ∈ (0, 1); then for

ξ ∈ (−∞, â1] ∪ [č1,∞)

max g′
1(ξ) = 0.25098 < 0.35 = μ1 − θ1

α11 + β11

and for ξ ∈ [b̂1, b̌1]
min g′

1(ξ) = 0.97723 > 0.65 = μ1 + θ1

α11 + β11
.

For i = 2 ∈ B3
3, we take θ2 = 0.4 ∈ (0, 1); then

max g′
2(ξ) = 0.23747 < 0.3 = μ2 − θ2

α22 + β22

for ξ ∈ (−∞, â2] ∪ [č2,∞), and

min g′
2(ξ) = 0.98996 > 0.7 = μ2 + θ2

α22 + β22

for ξ ∈ [b̂2, b̌2]. For i = 3 ∈ M, we take θ3 = 0.2 ∈ (0, 1);
then for ξ ∈ [m̌3, m̂3]

max g′
3(ξ) = 0.97402 < 1.14286 = μ3 − θ3

α33 + β33
.

Next, let us examine the conditions in Theorem 3. For (22),
for i = 1 ∈ B3

3, we have

F̂1( p̃1) = −0.2188399 < 0, F̌1(q̃1) = 0.3188399 > 0.

For i = 2 ∈ B3
3, we have

F̂2( p̃2) = −0.3508400 < 0, F̌2(q̃2) = 0.3508400 > 0.

For (25)

β11τ11 = 0.02 < τ c
11 = 0.2439024

β22τ22 = 0.01 < τ c
11 = 0.2439024

β33τ33 = 0.01 < τ c
11 = 0.2333333.

We need the following quantities to examine (26):
âF

1 = −1.4941831, b̂F
1 = −0.3387856, ĉF

1 = 2.2719172

ǎF
1 = −2.1616717, b̌F

1 = 0.2210641, čF
1 = 1.6413113

âF
2 = −1.6850199, b̂F

2 = −0.1862482, ĉF
2 = 2.1258384

ǎF
2 = −2.1258384, b̌F

2 = 0.1862482, čF
2 = 1.6850199

m̂F
3 = 0.7054875, m̌F

3 = 0.0664389.

For (26), for i = 1 ∈ B3
3, we take θ1 = 0.3 ∈ (0, 1); then for

ξ ∈ (−∞, âF
1 ] ∪ [čF

1 ,∞)

max g′
1(ξ) = 0.30935 < 0.35 = μ1 − θ1

α11 + β11

and for ξ ∈ [b̂F
1 , b̌F

1 ]

min g′
1(ξ) = 0.89704 > 0.65 = μ1 + θ1

α11 + β11
.
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Fig. 5. Numerical simulation for Example 2.

For i = 2 ∈ B3
3, we take θ2 = 0.4 ∈ (0, 1); then

max g′
2(ξ) = 0.26046 < 0.3 = μ2 − θ2

α22 + β22

for ξ ∈ (−∞, âF
2 ] ∪ [čF

2 ,∞), and for ξ ∈ [b̂F
2 , b̌F

2 ]

min g′
2(ξ) = 0.96648 > 0.7 = μ2 + θ2

α22 + β22
.

For i = 3 ∈ M, we take θ3 = 0.2 ∈ (0, 1); then

max g′
3(ξ) = 0.99860 < 1.14286 = μ3 − θ3

α33 + β33

for ξ ∈ [m̌F
3 , m̂F

3 ].
A direct computation yields

M =
⎛

⎝
0.288 −0.05 −0.057
−0.05 0.392 −0.057
−0.05 −0.05 0.19544

⎞

⎠

which is strictly diagonal-dominant. Fig. 5 shows that almost
all trajectories converge to four of the nine equilibria, as
concluded by Corollary 1. Numerical computation shows that
these nine equilibria are

(2.0630, 2.0056, 0.6439), (1.9989,−0.0731, 0.5392)

(−0.1236, 1.9368, 0.5334), (−1.8331, 0.0320, 0.3220)

(−1.7684, 1.8830, 0.4430), (1.9427,−1.8312, 0.4401)

(−0.0696,−0.0167, 0.4286), (−0.0174,−1.8977, 0.3145)

(−1.9022,−1.9615, 0.1762).

VII. CONCLUSION

We have developed an approach that combines the geomet-
ric structure embedded in the equations with Brouwer’s fixed-
point theorem or contracting mapping principle to conclude
the existence of multiple equilibria in the general delay neural
network (1). We further employed a new methodology, named
sequential contracting, to investigate the global dynamics and
convergence of solutions to one of the equilibrium points. The
approach unfolds from constructing suitable lower and upper
equations iteratively for (1). Effective designs of lower and
upper dynamics can then capture the asymptotic behaviors of
the coupled systems. Such a formulation has the advantage that
the nonlinear terms in the equations are not overmanipulated

by linearization or other treatments, and hence exploits the
intrinsic nonlinear nature of the system. This methodology
and analysis are completely different from the commonly
or previously adopted approaches, such as Lyapunov func-
tion technique and matrix inequality, for concluding global
dynamics. With the present new methodology, we are able to
establish new multistability scenarios for neural networks with
delays and with smooth sigmoidal or piecewise-linear activa-
tion functions. Our approach can be applied to investigate the
asymptotic behaviors in other neural networks and nonlinear
systems. In addition to multistability for neural networks, the
idea of sequential contracting has been successfully applied to
study the asymptotic phases in an integro-differential equation
modeling T-cell differentiation [10], synchronous behaviors in
a gene regulatory model [17], and synchronization for coupled
cells [32].

APPENDIX

Sequences of upper and lower functions used in Section III

f̂ (k)
i (ξ, T )

:=
{

γ̂i (ξ, T ) − βii Liτii f̌ (k−1)
i

(
m̂(k−1)

i (T ), T
)

if βii ≥ 0

γ̂i (ξ, T ) − βii Liτii f̂ (k−1)
i

(
m̌(k−1)

i (T ), T
)

if βii < 0

f̌ (k)
i (ξ, T )

:=
{

γ̌i (ξ, T ) − βii Liτii f̂ (k−1)
i

(
m̌(k−1)

i (T ), T
)

if βii ≥ 0

γ̌ (ξ, T ) − βii Liτii f̌ (k−1)
i

(
m̂(k−1)

i (T ), T
)

if βii < 0

for T ≥ T0, k ∈ N, where m̂(k)
i (T ) [resp., m̌(k)

i (T )] is the
unique solution of f̂ (k)

i (ξ, T ) = 0 [resp., f̌i (ξ, T ) = 0]. They
are vertical shifts of f̌ (0)

i (ξ, T ) and f̂ (0)
i (ξ, T ).

Three conditions for monostable scenario of upper and
lower functions are as follows.

Condition (M1): |βii |τii < (|αii | + |βii |)ρi/{Li [4(|αii | +
|βii |)ρi + wmax

i (t0) − wmin
i (t0)]}.

Condition (M2): There exists a T0 ≥ t0 such that f̂ (0)
i (·, T0)

and f̌ (0)
i (·, T0) have unique zeros, m̂(0)

i (T0) and m̌(0)
i (T0),

respectively.
Condition (M3): g′

i (ξ) < (μi − θi )/(αii + βii ) for all
ξ ∈ [m̌(0)

i (T0), m̂(0)
i (T0)] for some θi ∈ (0, μi ).

Under conditions (M1)–(M3), the configuration of the upper
and lower functions forces xi (t) to converge to an interval
whose length can be estimated.

Proposition 2: Assume that conditions (M1)–(M3) hold for
some i ∈ N . Then, xi (t) satisfying (10) converges to

[
mi , mi

]
,

where

mi − mi ≤ [wmax
i (∞) − wmin

i (∞)
]/[(1 − 2|βii |Liτii )θi ].

Three conditions for bistable scenario of upper and lower
functions are as follows.

Condition (B1): Li > μi/(αii +βii ) > 0, |βii |τii < (|αii |+
|βii |)ρi/{Li [4(|αii | + |βii |)ρi + wmax

i (t0) − wmin
i (t0)]}.

Notably, condition (B1) implies Li > μ/(αii + βii ). There
hence exist exactly two points p̃i and q̃i with p̃i < σi < q̃i ,
satisfying

g′
i ( p̃i) = g′(q̃i ) = μi/(αii + βii ).
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Condition (B2): There exists a T0 ≥ t0 such that
f̌ (0)
i (q̃i , T0) > 0 and f̂ (0)

i ( p̃i , T0) < 0.
Under condition (B2), there exist exactly three zeros

âi , b̂i and ĉi (resp., ǎi , b̌i , and či ) of f̂ (0)
i (·, T0) = 0

[resp., f̌ (0)
i (·, T0) = 0], where ǎi ≤ âi < p̃i < b̂i ≤ b̌i <

q̃i < či ≤ ĉi . Let θi ∈ (0, μi ) be a fixed number. The third
condition is concerned with the slope of function gi .

Condition (B3):
g′

i (ξ)

{
> (μi + θi )/(αii + βii ) if ξ ∈ [b̂i , b̌i ],
< (μi − θi )/(αii + βii ) if ξ ∈ (−∞, âi ] ∪ [či ,∞).

Under conditions (B1)–(B3), the configuration of the upper
and lower functions forces xi (t) to converge to one of the
three intervals whose lengths can be estimated.

Proposition 3: Assume that conditions (B1)–(B3) hold for
some i ∈ N and some θi ∈ (0, μi ). Then xi (t) satisfying
(10) converges to one of the three disjoint intervals: [ai , ai ],
[bi , bi ], and [ci , ci ], where

0 ≤ ai − ai , bi − bi , ci − ci

≤ [
wmax

i (∞) − wmin
i (∞)

]/[(1 − 2|βii |Liτii )θi ].
Propositions 2 and 3 can be verified by applying the

arguments parallel to those for [33, Proposition 4]. More
precisely, the arguments for Proposition 2 is actually parallel
to the subcase R (or L) considered therein.
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