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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES OF
MONOSTABLE DYNAMICS ON LATTICES∗

XINFU CHEN† , SHENG-CHEN FU‡ , AND JONG-SHENQ GUO§

Abstract. Established here is the uniquenes of solutions for the traveling wave problem cU ′(x) =
U(x+1)+U(x−1)−2U(x)+f(U(x)), x ∈ R, under the monostable nonlinearity: f ∈ C1([0, 1]), f(0) =
f(1) = 0 < f(s) ∀ s ∈ (0, 1). Asymptotic expansions for U(x) as x → ±∞, accurate enough to capture
the translation differences, are also derived and rigorously verified. These results complement earlier
existence and partial uniqueness/stability results in the literature. New tools are also developed to
deal with the degenerate case f ′(0)f ′(1) = 0, about which is the main concern of this article.
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1. Introduction. Consider a system of countably many ordinary differential
equations, for {un(·)}n∈Z,

(1.1) u̇n(t) = un+1(t) − 2un(t) + un−1(t) + f(un(t)), n ∈ Z, t > 0,

where f is a nonlinear forcing term satisfying f(0) = f(1) = 0. This system can be
embedded into a larger one, for an unknown {u(x, ·)}x∈R,

ut(x, t) = u(x + 1, t) − 2u(x, t) + u(x− 1, t) + f(u(x, t)), x ∈ R, t > 0.(1.2)

A solution of (1.2) or (1.1) is called a traveling wave with speed c if there exists
a function U defined on R such that u(x, t) = U(x + ct) or un(t) = U(n + ct). Here
U is referred to as the wave profile. Of interest are solutions taking values in [0, 1],
specifically, traveling waves connecting the steady states 0 and 1, i.e., traveling wave
solutions (c, U) ∈ R × C1(R) of the traveling wave problem{

cU ′(·) = U(· + 1) + U(· − 1) − 2U(·) + f(U(·)) on R,
U(−∞) = 0, U(∞) = 1, 0 � U � 1 on R.

(1.3)

Equation (1.1) can be found in many biological models (e.g., [9, 20, 22]). Also,
it can be regarded as a spatial-discrete version of the parabolic partial differential
equation

ut = uxx + f(u).(1.4)
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234 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

The existence, uniqueness, and stability of traveling waves of (1.1) have been exten-
sively studied recently under various assumptions on f ; see, for example, [1, 5, 6,
7, 10, 12, 24, 25, 26, 27]. The commonly used assumption includes the condition of
nondegeneracy f ′(0)f ′(1) �= 0. For bistable dynamics, i.e., f ′(0) < 0 and f ′(1) < 0,
the results on traveling waves are quite complete; see, for example, [1, 7, 25, 26] and
the references therein. This paper concerns only the monostable dynamics, i.e., f
satisfies

(A) f ∈ C1([0, 1]), f(0) = f(1) = 0 < f(s) ∀ s ∈ (0, 1).

Under the nondegeneracy and the condition that f(s) � f ′(0)s for all s ∈ [0, 1],
Zinner, Harris, and Hudson established the existence of traveling waves [27]; see also
the later developments of Fu, Guo, and Shieh [10] and Chen and Guo [5]. The
uniqueness issue was not satisfactorily resolved until a recent paper of Chen and Guo
[6]. For easy reference, we quote here the following existence and uniqueness result
from [6].

Proposition 1. Assume (A).
(i) There exists cmin > 0 such that (1.3) admits a solution if and only if c � cmin.
(ii) Given c � cmin, there is a speed c wave profile satisfying U ′ > 0 on R.
(iii) Given c > 0, (1.3) admits a solution if there is a supersolution of speed c.
(iv) When f ′(0)f ′(1) �= 0, wave profiles are unique up to a translation. In addi-

tion,

lim
x→−∞

U ′(x)

U(x)
= λ, lim

x→∞

U ′(x)

U(x) − 1
= μ,(1.5)

where λ is a positive real root of the characteristic equation

c λ = eλ + e−λ − 2 + f ′(0)(1.6)

and μ is the negative real root of the characteristic equation

c μ = eμ + e−μ − 2 + f ′(1).(1.7)

In addition, when c > cmin, λ is the smaller real root of the characteristic equation
(1.6).

Here by a supersolution of wave speed c it means a nonconstant Lipschitz contin-
uous function Φ from R to [0, 1] satisfying

cΦ′(x) � Φ(x + 1) + Φ(x− 1) − 2Φ(x) + f(Φ(x)) a.e. x ∈ R.

Note that for any real numbers m and k, the function z ∈ R → ez+e−z+mz+k is
strictly convex, so the characteristic equation has at most two real roots. Since f ′(1) �
0 and c > 0, there is a unique nonpositive real root μ to c μ = eμ + e−μ − 2 + f ′(1).
For the characteristic equation at 0, we define

c∗ = min
z>0

ez + e−z − 2 + f ′(0)

z

{
> 0 if f ′(0) > 0,
= 0 if f ′(0) = 0.

(1.8)

Suppose f ′(0) > 0. There are two real roots to cλ = eλ + e−λ − 2 + f ′(0) when
c > c∗; both are positive. When c = c∗, there is a unique real root, positive and of
multiplicity two. When c < c∗, there are no real roots, so the assertion of Proposition 1
implicitly implies that cmin � c∗. In addition, suppose f(s) � f ′(0)s for all s ∈ [0, 1].
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 235

Then it is easy to verify that Φ(x) := min{eλx, 1} is a supersolution of speed c if
cλ = eλ + e−λ − 2 + f ′(0). This implies that cmin = c∗. When f ′(0) = 0, we see that
c∗ = 0 and λ = 0 is a root to the characteristic equation at 0. Nevertheless, since
cmin > 0, we see an example that cmin > c∗.

It is important to observe that a (monotonic) wave profile Umin of the minimum
speed is a supersolution of any wave speed c > cmin. Since among all wave profiles of
all admissible speeds Umin decays with the largest exponential rate as x → −∞, it is
not always true that near −∞ a supersolution is bigger than a true solution under a
certain translation. Thus, Proposition 1(iii) is highly nontrivial; its proof in [6] was
based on an original idea of the authors of [27], with a simplification that avoids the
use of degree theory.

The purpose of this paper is to remove the nondegeneracy condition f ′(0)f ′(1) �= 0
made in Proposition 1(iv); that is, we are mainly concerned with the degenerate case
f ′(0)f ′(1) = 0. We shall also introduce a number of new techniques. In terms of the
differential equation (1.4), existence, uniqueness, and asymptotic stability of traveling
waves have been established (cf. [13, 14, 17, 21]). Here we would like to extend the
analogous result for (1.4) to (1.1). We summarize our results for the traveling wave
problem (1.3) as follows.

Theorem 1. Assume (A). Wave profiles of a given speed are unique up to a
translation.

Theorem 2. Assume (A). Any wave profile is monotonic; i.e., U ′ > 0 on R.
Theorem 3. Assume (A). Any solution (c, U) of (1.3) satisfies (1.5) and

lim
x→−∞

U ′′(x)

U ′(x)
= λ, lim

x→−∞

f(U(x))

U ′(x)
=

{
c if λ = 0,
f ′(0)/λ otherwise,

lim
x→∞

U ′′(x)

U ′(x)
= μ, lim

x→∞

f(U(x))

U ′(x)
=

{
c if μ = 0,
f ′(1)/μ otherwise,

where λ is a nonnegative real root of the characteristic equation (1.6) and μ is the
nonpositive real root of (1.7).

In addition, λ is the smaller root when c > cmin and the larger root when c = cmin.
Note that the root μ � 0 to (1.7) is unique. In particular, μ = 0 when f ′(1) = 0.

Also, λ = 0 when f ′(0) = 0 and c > cmin; otherwise, λ > 0. Note also that when
cmin > c∗, the characteristic equation (1.6) always has two positive real roots. To our
knowledge, it is new in the literature that, as a principle, λ is the larger root of the
characteristic equation (1.6) when c = cmin > c∗, where c∗ is as in (1.8).

In [6], the following general system is considered

ut(x, t) = g(u(x + 1, t)) − 2g(u(x, t)) + g(u(x− 1, t)) + f(u(x, t)),

where g(·) is increasing. Under a variable change v = [g(u) − g(0)]/[g(1) − g(0)], the
system can be rewritten as

h(v(x, t))vt(x, t) = v(x + 1, t) + v(x− 1, t) − 2v(x, t) + f̃(v(x, t)).

Under assumptions that h ∈ C1 and h > 0 on [0, 1], all the analysis and results
presented in this paper apply to such an extended version.

In one of his celebrated pioneer works in 1982, Weinberger [23] studied the long
time (as n → ∞) behavior and the existence of planar traveling waves for fully discrete
Fisher’s-type models of the form, for un := {un

j }j∈H ,

un+1 − un = Q[un], n = 0, 1, 2, . . . ,
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236 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

where Q is a translation invariant (e.g., autonomous) nonlinear operator and typical
examples of H are H = R

m and H = Z
m (m � 1). In particular, for each unit vector

ξ there exists a constant c∗(ξ) (the minimal wave speed) such that c∗(ξ) is the asymp-
totic propagation speed for arbitrarily initial disturbance. After deriving a lower and
an upper bound for c∗(ξ), the author established the existence of planar traveling
wave with speed c for any c ≥ c∗(ξ), and nonexistence for c < c∗(ξ). While Wein-
berger established striking results for an extremely general fully discrete monostable
dynamics, here by contrast, we focus our attention only on a one-dimensional semidis-
crete (i.e., continuous in time) version (1.1) or (1.2). Our main concerns in this paper
are (1) the uniqueness and asymptotic behavior (as x → ∞) of the traveling waves,
and (2) the highly nontrivial extension of the current knowledge on nondegenerate
monostable dynamics to its degenerate case, i.e., to the case f ′(0)f ′(1) = 0. That
is to say, our work extends that of Weingerber’s pioneer systematic analysis in two
directions: firstly from the fully discrete version to semidiscrete version and, secondly,
from nondegenerate steady states to general degenerate and/or nondegenerate steady
states.

In the higher space dimensional case, the dynamics

ut(x, t) =

m∑
i,j=1

aij
∂2u(x, t)

∂xi∂xj
+ f(u(x, t)), x ∈ R

m, t > 0,

where (aij)m×m is a positive definite matrix, exhibits a variety of interesting wave phe-
nomena; see, for example, Hamel and Nadirashvili [11], Berestycki and Larrouturou
[3], and the references therein. A two-dimensional analogue of (1.1) takes the form

u̇ij = a[ui+1,j + ui−1,j ] + b[ui,j+1 + ui,j−1] + F (uij), i, j ∈ Z,

where a, b are positive constants. Here a planar traveling wave refers to a solution of
the form uij(t) = U(i cos θ + j sin θ + ct) for all i, j ∈ Z and t ∈ R, where (cos θ, sin θ)
is the wave direction and c = c(θ) is the wave speed. Note that U ∈ C1(R) satisfies

cU ′(ξ) = a[U(ξ + cos θ) + U(ξ − cos θ)] + b[U(ξ + sin θ) + U(ξ − sin θ)] + F (U(ξ)).

In this direction, we refer the reader to Chen [4], Chow, Mallet-Paret and Shen [7, 8]
and Mallet-Paret [15, 16] for the bistable case and Shen [18, 19] for the bistable time
almost periodic case. Clearly, our traveling wave problem is only the special case of
|θ| = π

4 . We expect that our results and methods can be extended in a great extent
to this new problem.

We remark that limit, as a ↘ 0, of the bistable nonlinearity f(u) = u(1 −
u)(u − a) is the degenerate monostable nonlinearity f(u) = u2(1 − u). The limiting
process is continuous in the sense that the unique (modulo the translation invariance)
traveling wave for the bistable nonlinearity approaches the unique minimum wave
speed traveling wave for the degenerate monostable nonlinearity. The limiting process
is not continuous in the sense that for the bistable case there is only one traveling wave,
whereas for the monostable case, there are infinitely many traveling waves. We would
like to point out that many tools that work for the bistable case do not work here
for the monostable case; for example, in general the tools used for the construction of
supersolutions in the bistable case do not work for the monostable case. Exaggerating
a little bit, one may say that the bistable dynamics and monostable dynamics are
different, and so are many of the mathematical tools to study them.
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 237

Now we briefly discuss our analysis towards our main results. The proof of unique-
ness (Theorem 1) relies on the monotonicity (Theorem 2) and the detailed asymptotic
behavior (Theorem 3) of wave profiles. Two new techniques are specifically developed
here to study the uniqueness of traveling waves of monostable dynamics. One of them,
which we call magnification and is originated from [6], is to magnify appropriately the
difference between two wave profiles U and V by (for the purpose of demonstration
only, considering the case c > cmin)

W (ξ, x) =

∫ U(x+ξ)

V (x)

ds

f(s)
.

Such a magnification has a special property limx→−∞ Wx(ξ, x) = 0 for any ξ ∈ R and
a general property inf(ξ,x)∈R2 Wξ(ξ, x) > 0. From a basic comparison (for monotonic
profiles) which says that if U > V on [a−1, a)∪(b, b+1], then U > V on [a, b], these two
properties prohibit W from any oscillations with nonvanishing magnitude as x → −∞;
namely, there exists limx→−∞ W (ξ, x) (which may be infinite). Consequently, any
two wave profiles are ordered near −∞; see section 4 for more details. An additional
advantage of this magnification is that limx→−∞ W (ξ, x) exists even if V is merely
a sub- or a supersolution. This fact will be used in section 5 to find asymptotic
expansions of wave profiles.

The other technique, which we call compression, is developed to include the treat-
ment of the degenerate case f ′(1) = 0. Traditionally near ∞ one uses min{U + ε, 1}
as a supersolution which works for both monostable and bistable dynamics but needs
the assumption that f ′ � 0 on [1− δ, 1] for some δ > 0. To deal with the general case,
we use the following compression to obtain (local) supersolutions:

Z(�, x) = U([1 + �]x), x 
 1, � ∈ (0, 1].

The asymptotic behavior of wave profiles implies that Z approaches 1 as x → ∞ at
a rate faster than any wave profile. With a limiting � ↘ 0 process, we can show that
near ∞, one wave profile is always bigger than a certain translation of any other wave
profile.

The asymptotic behavior (1.5) follows from an analysis similar to that in [6].
After a thorough reinvestigation of the method used in [6], we found that the method
in [6] can be rephrased into the following quite fundamental theory.

Theorem 4. Let c > 0 be a constant and B(·) be a continuous function having
finite B(±∞) := limx→±∞ B(x). Let z(·) be a measurable function satisfying

c z(x) = e
∫ x+1
x

z(s)ds + e−
∫ x
x−1

z(s)ds + B(x) ∀x ∈ R.(1.9)

Then z is uniformly continuous and bounded. In addition, ω± = limx→±∞ z(x) exist
and are real roots of the characteristic equation c ω = eω + e−ω + B(±∞).

Note that each of z = U ′/U,U ′/(U − 1) and U ′′/U ′ satisfies an equation of the
form (1.9). This theory provides a powerful tool to study the asymptotic behavior, as
x → ±∞, of positive solutions of a variety of semilinear finite difference-differential
equations. In particular, once the monotonicity U ′ > 0 is shown, z = U ′′/U ′ is then
well defined and all the limits stated in Theorem 3 follow immediately from the theory.

Now the focus is shifted to show the monotonicity of U . In the nondegenerate
case, μ < 0 < λ, so that (1.5) and a comparison between U(x + h) and U(x) on a
compact interval imply that U ′ > 0 on R. In the degenerate case, λμ = 0, so (1.5) is
not sufficient for such an argument. We shall develop a blow-up technique, showing
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238 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

that U ′ > 0 on a sequence of intervals {[ξi − 1, ξi + 1]} of two-unit length, where
limi→±∞ ξi = ±∞. Then we develop a modified sliding method which enables us to
compare U(x + h) and U(x) on any finite interval [ξi − 1, ξj + 1] (i < j) to prove the
monotonicity result.

For a solution of (1.2) or (1.4) with initial value u(x, 0), its long time behavior
(e.g. approaching a traveling wave) depends on the asymptotic behavior of u(x, 0) as
x → −∞, i.e., tails of which wave profile U(x) that u(·, 0) resembles; see, for example,
[2, 5] and the references therein. For this purpose, we shall also provide asymptotic
expansions, accurate enough to capture the translation difference of wave profiles near
±∞. In particular, under the condition that f(u) = f ′(0)u+O(u1+α) for some α > 0
and all small u, we show the following:

(i) If c = cmin and the larger root λ of (1.6) is not a double root, then for some
x0 ∈ R,

lim
x→−∞

e−λxU(x + x0) = 1.(1.10)

(ii) If c = cmin and λ is a double root, then for some x0 ∈ R,

either lim
x→−∞

U(x + x0)

|x|eλx = 1 or lim
x→−∞

U(x + x0)

eλx
= 1.(1.11)

(iii) If c > cmin and f ′(0) > 0, then (1.10) holds for some x0 ∈ R with λ the
smaller root of (1.6).

Note that λ > 0 in all these cases, so, as we expected from (1.5), U(x) decays to
zero exponentially fast as x → −∞. Earlier results (e.g., [5, 10, 12, 27]) on this matter
depend on the construction of global sub- and supersolution pairs that sandwich a
wave profile. Such a construction is possible for all large wave speeds for general f
and for all nonminimum wave speeds when f(s) � f ′(0)s for all s ∈ [0, 1]. We remark
that the stability (which implies uniqueness) result in [5] was established under the
assumption (1.10). By proving (1.10), the result in [5] then implies that any solution
of (1.2) approaches, as t → ∞, a traveling wave of speed c (> cmin) if u(·, 0) takes
values on [0, 1] and

lim
x→−∞

e−λxu(x, 0) = 1, lim inf
x→∞

u(x, 0) > 0.

On the other hand, λ = 0 when f ′(0) = 0 and c > cmin, so from (1.5), an
exponential decay is impossible and an algebraic decay is to be expected (cf. [13, 14,
17, 21] for (1.4)). Indeed, under certain additional assumptions (cf. (B1) in section
5) we show the following:

If c > cmin and f ′(0) = 0, then for some x0 ∈ R,

lim
x→−∞

{∫ U(x)

1/2

ds

f(s)[1 + f ′(s)/c2]
− x + x0

c

}
= 0.(1.12)

For example, when f(u) = κu2(1 − u)p (κ > 0, p ≥ 1), the above limit yields

U(x) =
c

κ[|x| − x0 + o(1)] + (pc− 2κ/c) ln |x| as x → −∞.

The asymptotic expansion of U(x) as x → ∞ can be treated similarly. Indeed,

lim
x→∞

{∫ U(x)

1/2

ds

f(s)[1 + f ′(s)/c2]
− x + x0

ν

}
= 0,
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 239

for some x0 ∈ R, where ν = c if f ′(1) = 0 and ν = f ′(1)/μ if f ′(1) < 0. Since this
limiting behavior has nothing to do with the condition needed on the initial data for
the long time behavior of solutions of (1.2), we choose to omit the details here.

This paper is organized as follows. In section 2, we derive the asymptotic behavior
of wave profiles near ±∞ and prove Theorem 3. We prove the monotonicity of wave
profiles (Theorem 2) in section 3, by using the method of sliding and a new blow-
up technique. In section 4, the uniqueness of traveling waves is established. Finally
in section 5, we construct suitable local super/subsolutions to verify our asymptotic
expansions of wave profiles near x = ±∞.

2. Asymptotic behavior of wave profiles near x = ±∞. In the following,
the assumption (A) is always assumed.

2.1. The idea in [6]. The most important technique developed in [6] can be
presented as follows. Suppose that the following quantities

ρ(x) :=
U ′(x)

U(x)
, σ(x) :=

U ′(x)

U(x) − 1
, χ(x) :=

U ′′(x)

U ′(x)

are well defined. This is the case, if U > 0, U < 1, and U ′ > 0 for ρ, σ, and χ,
respectively. Then each of them satisfies an equation of the form (1.9), where B(·) is
a continuous function having limx→±∞ B(x) =: B(±∞). For any positive constant
m, we set

v(x) = emx+
∫ x
0

z(s)ds.

Then

c v′(x) = [cm + B(x)]v(x) + e−mv(x + 1) + emv(x− 1).

Assume that c > 0. We take a specific m = ‖B(x)‖L∞(R)/c. Then v′(x) ≥ 0.
Consequently,

c v(x) − c v(x− 1/2) >

∫ x

x−1/2

e−mv(s + 1)ds >
1

2
v(x + 1/2)e−m.

This implies that v(x) > v(x + 1/2)/(2cem) > v(x + 1)/(2cem)2. Therefore,

e
∫ x+1
x

z(s)ds =
v(x + 1)e−m

v(x)
� 4c2em, e−

∫ x
x−1

z(s)ds =
emv(x− 1)

v(x)
� em,

and so

−m < z(x) < m + 4cem + em/c ∀x ∈ R, m := ‖B‖L∞(R)/c.(2.1)

The uniform boundedness of z implies that z is uniformly continuous. Hence, for any
unbounded sequence {xi}, {z(xi + ·)} is a bounded and equicontinuous family. Along
a subsequence, it converges to a limit r, uniformly in any compact subset of R. In
addition, r satisfies the fundamental equation

c r(x) = e
∫ x+1
x

r(s) ds + e
∫ x−1
x

r(s) ds + b ∀x ∈ R,(2.2)

where b = B(∞) if limi→∞ xi = ∞ and b = B(−∞) if limi→∞ xi = −∞. For the
fundamental equation, Chen and Guo established in [6] the following key result.
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240 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

Proposition 2. Let c > 0, b ∈ R and P (ω) = cω− eω − e−ω − b. Consider (2.2).
(i) When P (ω) = 0 has no real root, there is no solution.
(ii) When P (ω) = 0 has only one real root λ, r ≡ λ is the only solution.
(iii) When P (ω) = 0 has two real roots {λ,Λ} (λ < Λ), every solution can be

written as

r(x) =
u′(x)

u(x)
, u(x) = θeλx + (1 − θ)eΛx, θ ∈ [0, 1].

In particular, any nonconstant solution satisfies r′ > 0, r(−∞) = λ, and r(∞) = Λ.
Proof of Theorem 4. We need consider only the case when the characteristic

equation has two real roots. For this, let λ and Λ be the roots where λ < Λ. Sup-
pose limx→−∞ z(x) does not exist. Then there exist ω �∈ {λ,Λ} and a sequence {xi}
satisfying limi→−∞ xi = −∞, z(xi) = ω and z′(xi) � 0 for all i. Since {z(xi + ·)}
is uniformly bounded and equi-continuous, a subsequence converges to a limit r which
solves (2.2) with b = B(−∞). In addition, by the definition of r, we have r(0) = ω
and r′(0) � 0. But from Proposition 2, there are no such kind of solutions. Hence,
limx→−∞ z(x) exists and is one of the two roots to the characteristic equation. Simi-
larly, one can show that limx→∞ z(x) exists.

Remark 1.

(i) By working on the function ẑ(x) := −z(−x) the assertion of the theorem
remains unchanged when c < 0.

(ii) Theorem 4 extends to a more general equation

z(x) = a1(x)e
∫ x+1
x

z(s)ds + a2(x)e−
∫ x
x−1

z(s)ds + B(x),

where a1 and a2 are continuous positive functions having limits

a± := lim
x→±∞

a1(x) = lim
x→±∞

a2(x) > 0.

(iii) Theorem 4 also extends to the case when z is a continuous function defined
on [−1,∞) (or (−∞, 1]) and satisfies (1.9) on [0,∞) (or (−∞, 0]). The conclusion
is that limx→∞ z(x) (or limx→−∞ z(x)) exists and is the root of the characteristic
equation.

2.2. The asymptotic behavior. Now we establish the limits stated in Theo-
rem 3.

We begin with the limits in (1.5). First we show that U > 0. Suppose on the
contrary there exists y ∈ R such that U(y) = 0. Then it is a global minimum so that
U ′(y) = 0 and from the equation in (1.3), U(y+ 1) +U(y− 1) = 0 which implies that
U(y±1) = 0. An induction gives U(y+k) = 0 for all k ∈ Z, contradicting U(∞) = 1.
Thus, U > 0. Similarly, U < 1. Once we know 0 < U < 1, we can define

ρ(x) :=
U ′(x)

U(x)
⇒

∫ x+1

x

ρ(z)dz = ln
U(x + 1)

U(x)
,

σ(x) :=
U ′(x)

U(x) − 1
⇒

∫ x+1

x

σ(z)dz = ln
U(x + 1) − 1

U(x) − 1
.

Dividing the ode in (1.3) by U and U − 1, respectively, we obtain

cρ(x) = e
∫ x+1
x

ρ(z)dz + e
∫ x−1
x

ρ(z)dz − 2 + B1(x),

cσ(x) = e
∫ x+1
x

σ(s) ds + e
∫ x−1
x

σ(s) ds − 2 + B2(x),
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 241

where B1(x) = f(U(x))/U(x) and B2(x) = f(U(x))/[U(x) − 1]. Since U(−∞) = 0
and U(∞) = 1, we see that B1(−∞) = f ′(0), B1(∞) = 0, B2(−∞) = 0, and
B2(∞) = f ′(1). The limits in (1.5) thus follow from Theorem 4.

Next, we establish the remaining limits stated in Theorem 3. Here we shall use
the fact U ′ > 0, to be proven in the next section. Differentiating the ode in (1.3) with
respect to x we have

cU ′′(x) = U ′(x + 1) + U ′(x− 1) + [f ′(U(x)) − 2]U ′(x).

Define

χ(x) :=
U ′′(x)

U ′(x)
⇒

∫ x+1

x

χ(z)dz = ln
U ′(x + 1)

U ′(x)
.

Then

c χ(x) = e
∫ x+1
x

χ(z)dz + e−
∫ x
x−1

χ(z)dz + f ′(U(x)) − 2 ∀x ∈ R.

The stated limits for χ in Theorem 3 thus follow from Theorem 4 and l’Hôpital’s rule.

Finally, the limits of f(U(x))/U ′(x) as x → ±∞ are obtained by using the limits
of χ and the identity

f(U(x))

U ′(x)
= c− [U(x + 1) − U(x)] − [U(x) − U(x− 1)]

U ′(x)

= c−
∫ 1

0

{
e
∫ x+z
x

χ(s)ds − e−
∫ x
x−z

χ(s)ds
}
dz.

In the next two subsections, we show the additional part of Theorem 3; namely,
we show that λ is the smaller real root to the characteristic equation (1.6) when
c > cmin and the larger root when c = cmin.

2.3. The characteristic values of nonminimum speed waves.

Lemma 2.1. If (c, U) is a traveling wave of speed c > cmin, then the charac-
teristic equation cλ = eλ + e−λ − 2 + f ′(0) has two different real roots and λ :=
limx→−∞ U ′(x)/U(x) is the smaller root. In the particular instance when f ′(0) = 0,
limx→−∞ U ′(x)/U(x) = 0.

Proof. Recall from Theorem 2 of [6] that cmin � c∗, where

c∗ := min
z>0

ez + e−z − 2 + f ′(0)

z
.

Hence cminz = ez + e−z − 2 + f ′(0) always has a root. This implies that c z =
ez + e−z − 2 + f ′(0) has exactly two roots, which we denote by λ(c) and Λ(c) with
λ(c) < Λ(c), for c > cmin.

Suppose on the contrary that limx→−∞ U ′(x)/U(x) = Λ(c). Let ĉ ∈ (cmin, c) and
(ĉ, Û) be a traveling wave of speed ĉ. By (1.5), limx→−∞ Û ′(x)/Û(x) � Λ(ĉ). Then

lim
x→−∞

d

dx

(
ln

Û(x)

U(x)

)
= lim

x→−∞

{ Û ′(x)

Û(x)
− U ′(x)

U(x)

}
� Λ(ĉ) − Λ(c) < 0
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242 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

by the strictly monotonicity of Λ(c) in c. Thus, limx→−∞ ln[Û(x)/U(x)] = ∞ and
there exists M > 0 such that Û(x) > U(x) for all x � −M . Similarly,

lim
x→∞

d

dx

{∫ Û(x)

U(x)

ds

f(s)

}
= lim

x→∞

{
Û ′(x)

f(Û(x))
− U ′(x)

f(U(x))

}

=

{
1/ĉ− 1/c if f ′(1) = 0,
[μ(ĉ) − μ(c)]/f ′(1) if f ′(1) < 0.

This quantity is positive when f ′(1) = 0; so is the case when f ′(1) < 0 since the
negative root μ = μ(c) of cμ = eμ + e−μ − 2 + f ′(1) satisfies μ(ĉ) < μ(c). Thus there
exists M1 > 0 such that Û(x) > U(x) for all x � M1. In conclusion, Û(· + M1) >
U(· −M).

Now both u1(x, t) := Û(x+M1 + ĉt) and u2(x, t) := U(x−M + ct) are solutions
of (1.2). Since u1(·, 0) � u2(·, 0), the comparison principle for (1.2) implies u1(·, t) �
u2(·, t) for all t > 0, which is impossible since c > ĉ. Thus, limx→−∞ U ′(x)/U(x) =
λ(c).

The asymptotic behavior of U stated in Theorem 3 immediately gives the following
corollary.

Corollary 2.2. Suppose (c1, U1) and (c2, U2) are two traveling waves where
c1 < c2. Then there exist a, b ∈ R such that

U1 < U2 in (−∞, a), U1 > U2 in (b,∞).

We remark that in the case of the differential equation cU ′ = U ′′ + f(U) one
can take a = b to conclude that a smaller speed wave profile is steeper than a larger
speed wave profile; namely, on the phase plane (U,U ′), if one writes U ′ = P (c, U),
then P (c1, s) > P (c2, s) for all s ∈ (0, 1) and c2 > c1 � cmin. For (1.3), we believe
that this should also be the case.

2.4. The characteristic value of minimum speed waves.
Lemma 2.3. If (cmin, U) is a wave of minimum speed, then Λ := limx→−∞ U ′(x)/

U(x) is the larger root (if there are two) of the characteristic equation cminz = ez +
e−z − 2 + f ′(0).

Proof. Notice that when cmin = c∗ (defined in (1.8)), the characteristic equation
has only one real root, so there is nothing to prove in this case. Hence we consider
the case when cmin > c∗. We denote the smaller real root by λ and the larger root
by Λ. We use a contradiction argument by assuming that limx→−∞ U ′(x)/U(x) = λ.
As we shall see, this will allow us to construct a supersolution Φ of wave speed c for
some c < cmin by joining an exponential function ψ defined on (−∞, 0] and another
function φ defined on [0,∞) obtained from the wave profile U of speed cmin. We
divide this construction into the following steps.

First, set ω = (λ+ Λ)/2 and δ := cmin ω− eω − e−ω + 2− f ′(0). Then δ > 0 since
the function P (z) := cmin z − ez − e−z + 2 − f ′(0) is concave and vanishes at λ and
Λ. Also by translation, we can assume that U(0) is so small that

sup
0<s�U(0)eω

∣∣∣∣f(s)

s
− f ′(0)

∣∣∣∣ < δ

2
, sup

x�1

U ′(x)

U(x)
< ω .

Set ψ(x) = U(0)eωx. For every c ∈ [cmin − δ/(2ω), cmin],

Lψ(x) := c ψ′(x) − ψ(x + 1) − ψ(x− 1) + 2ψ(x) − f(ψ(x))

= ψ(x)

{
c ω − eω − e−ω + 2 − f(ψ(x))

ψ(x)

}
> 0 ∀ x ≤ 1.
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 243

Next, we construct φ(c, ·), to be used as the supersolution defined on [0,∞).
For each c ∈ (0, cmin], consider the equation φ = Tcφ on R, where

Tcφ :=

{
e−mx/c{U(0) + c

∫ x

0
emz/cW [m,φ](z)dz} if x � 0,

U(x) if x < 0,

W [m,φ](z) := φ(z + 1) + φ(z − 1) + [m− 2]φ(z) + f(φ(z)).

Following [6], a solution can be obtained as follows. Define {φn}∞n=0 by

φ0(c, ·) ≡ 1, φn+1(c, ·) := Tcφn(c, ·) ∀n ∈ N.

Note that Tc is a monotonic operator: ψ1 � ψ2 ⇒ Tcψ1 � Tcψ2. It follows that
φn+1 � φn � 1. In addition, since

c (emx/cU)′ − emx/cW [m,U ] = (c− cmin)U ′eμx/c � 0,

integrating this inequality over [0, x] gives U � TcU . This implies that φn � U for
all n. Consequently, φ(c, ·) := limn→∞ φn exists and is a solution to φ = Tcφ. It is
easy to see that U � φ < 1 on [0,∞), φ(c, 0) = U(0), and

c φ′(c, x) = φ(c, x + 1) + φ(c, x− 1) − 2φ(c, x) + f(φ(c, x)) ∀x > 0.

This equation implies, for 0 < c1 < c2 � cmin, that φ(c2, ·) � Tc1φ(c2, ·), so that
φn(c1, ·) � φ(c2, ·) for all n and φ(c1, ·) > φ(c2, ·) on (0,∞). Following an idea in [6]
or the technique for the uniqueness of U presented in this paper (section 4), one can
further show that φ(c, ·) is unique. The uniqueness implies that φ(c, ·) is continuous
in c and φ(cmin, ·) ≡ U . Therefore, limc→cmin φ(c, ·) = U in C1([0,∞)). This further
implies that

lim
c→cmin

φ′(c, x)

φ(c, x)
=

U ′(x)

U(x)
uniformly for x ∈ [0, 1].

Finally, let c ∈ [cmin − δ/(2ω), cmin) be such that

max
x∈[0,1]

φ′(c, x)

φ(c, x)
< ω.

We define

Φ(x) =

{
ψ(x) if x � 0,
φ(c, x) if x > 0.

Since ψ(0) = U(0) = φ(c, 0) and

ψ′(x)

ψ(x)
= ω >

φ′(c, x)

φ(c, x)
∀x ∈ (−∞, 0) ∪ (0, 1],

φ < ψ in (0, 1] and ψ < φ ≡ U in (−∞, 0). That is,

Φ = min{φ , ψ} on (−∞, 1].

Consequently, considering separately x ∈ (−∞, 0), (0, 1] and (1,∞), we see that

cΦ′(x) � Φ(x + 1) + Φ(x− 1) − 2Φ(x) + f(Φ(x)) ∀ x ∈ (−∞, 0) ∪ (0,∞);

that is, Φ is a supersolution of wave speed c.
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244 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

Thus, by Proposition 1(iii), there is a traveling wave of speed c for some c < cmin,
contradicting the minimality of cmin. This proves the lemma.

Remark 2. If f ′(·) � 0 on [1 − δ, 1] for some δ > 0, then a constructive proof of
Lemma 2.3 can be obtained by taking

Φ(x) = [U(0) + ε]eωx ∀x � 0, Φ(x) = U(x + ε− εe−kx) + ε ∀ x > 0,

where 0 < ε � ε � U(0) � 1 � k. We leave the verification to the interested
reader.

3. Monotonicity of wave profiles. This section is dedicated to the proof of
the monotonicity of any wave profile U . We point out here that the limits in (1.5) are
established without the knowledge of the monotonicity of U so that we can use them
here.

3.1. The method of sliding. This traditional method is to compare U(· + τ)
and U(·) by decreasing τ continuously from a large value down to zero, namely, to
show that

inf {τ > 0 | U(· + τ) > U(·) onR} = 0.(3.1)

This implies U ′ � 0, and from an integral equation, U ′ > 0 on R. If we know U ′ > 0
near x = ±∞ (e.g., by (1.5) for the case μ < 0 < λ), then (3.1) follows easily from
a comparison principle (cf. [6]). When f ′(0) = 0, it is very difficult to show directly
that U ′ > 0 in a vicinity of x = −∞. Similar difficulty occurs near x = ∞ when
f ′(1) = 0. To overcome this difficulty, we use a modification of the method, stated in
the third part of the following lemma.

Lemma 3.1.

(i) If [a, b] is an interval on which U ′ � 0, then b− a < 1.
(ii) If U ′ > 0 on [ξ, ξ + 1], then U(ξ) < U(x) for all x > ξ.
(iii) If U ′ > 0 on [ξ− 1, ξ + 1]∪ [η− 1, η + 1], where ξ < η, then U ′ > 0 on [ξ, η].
Proof.
(i) Let [a, b] be an interval on which U ′ � 0. We want to show that b − a < 1.

Suppose otherwise b− a � 1. Let x̂ ∈ [b,∞) be a point such that U(x̂) � U(x) for all
x � b. Then x̂ is a global minimum of U restricted on [a,∞), since U ′ � 0 on [a, b].
This leads to the following contradiction:

0 = cU ′(x̂) = U(x̂ + 1) + U(x̂− 1) − 2U(x̂) + f(U(x̂)) � f(U(x̂)) > 0.

(ii) Assume that U ′ > 0 on [ξ, ξ + 1]. Let x̂ � ξ + 1 be a point such that
U(x̂) � U(x) for all x � ξ+1. Then U(ξ) < U(x̂) since otherwise x̂ � ξ+1 is a point
of global minimum of U on [ξ,∞) and the same contradiction as above arises. Thus
U(ξ) < U(x) for all x > ξ.

(iii) Assume that U ′ > 0 on [ξ − 1, ξ + 1] ∪ [η − 1, η + 1], where ξ < η. By the
second assertion, U(η) > U(ξ) so that we can define

τ∗ := inf { τ ∈ (0, η − ξ] | U(·) < U(· + τ) on[ξ, η − τ ]}.

Clearly, τ∗ ∈ [0, η − ξ). We claim that τ∗ = 0. Suppose on the contrary that τ∗ > 0.
Then there exists x̂ ∈ [ξ, η − τ∗] such that

U(x̂ + τ∗) − U(x̂) = 0 � U(x + τ∗) − U(x) ∀ x ∈ [ξ, η − τ∗].
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 245

For x ∈ [ξ − 1, ξ]: (1) if x + τ∗ ≤ ξ, then U(x + τ∗) − U(x) > 0 since U ′ > 0
on [ξ − 1, ξ]; (2) if x + τ∗ > ξ, by the second assertion, U(x + τ∗) > U(ξ) ≥ U(x).
Thus U(x + τ∗) > U(x) for all x ∈ [ξ − 1, ξ]. Similarly, U(x + τ∗) > U(x) for all
x ∈ [η − τ∗, η − τ∗ + 1]. Hence,

U(x̂ + τ∗) − U(x̂) = 0 � U(x + τ∗) − U(x) ∀x ∈ [ξ − 1, η − τ∗ + 1].

Consequently, U ′(x̂ + τ∗) = U ′(x̂). Using the equation for U , we conclude that

U(x̂ + τ∗ + 1) + U(x̂ + τ∗ − 1) = U(x̂ + 1) + U(x̂− 1).

Since U(·+ τ∗) � U(·) on [ξ−1, η− τ∗ +1], we see that U(x̂+ τ∗±1) = U(x̂±1). By
induction, U(x̂+τ∗+k) = U(x̂+k) for all integer k satisfying x̂+k ∈ [ξ−1, η−τ∗+1].
But this is impossible since U(x + τ∗) > U(x) for all x ∈ [ξ − 1, ξ]. Thus, τ∗ = 0.

That τ∗ = 0 implies U(· + τ) > U(·) on [ξ, η − τ ] along a sequence τ ↘ 0.
In particular, U ′(x) � 0 on [ξ, η]. Finally, for m = max0�s�1 |2 − f ′(s)| and every
x ∈ [ξ, η],

cU ′′(x) = U ′(x + 1) + U ′(x− 1) + [f ′(U) − 2]U ′(x) � −mU ′(x).

It follows that (U ′(x)emx/c)′ � 0 or U ′(x)emx/c � U ′(ξ)emξ/c > 0 for all
x ∈ [ξ, η].

3.2. A linear equation from blow-up. To show that U ′ > 0 on R, we use
Lemma 3.1(iii). For this, we need only to find a sequence {[ξj − 1, ξj +1]} of intervals
on which U ′ > 0. To do this, we shall use a blow-up technique for the functions
ρ = U ′/U and σ = U ′/(U − 1), leading to the following two linear problems:{

cR′(x) = R(x + 1) + R(x− 1) − 2R(x) ∀x ≤ 1,
|R| ≤ 1 on (−∞, 2], |R(0)| = 1;

(3.2) {
cR′(x) = R(x + 1) + R(x− 1) − 2R(x) ∀x ≥ −1,
|R| ≤ 1 on[−2,∞), |R(0)| = 1.

(3.3)

Lemma 3.2.

(i) If R solves (3.2), then |R| > 1/2 on [A− 1, A + 1] for some A > 0.
(ii) Any solution of (3.3) satisfies |R| > 1/2 on [A− 1, A + 1] for some A > 0.
Proof.
(i) Suppose R solves (3.2). Then |R′| � 4/c on (−∞, 1]. Set z(x) := R′(x)/[R(x)+

2]. Dividing the ode in (3.2) by R(x) + 2 we obtain

c z(x) = e
∫ x+1
x

z(t)dt + e−
∫ x
x−1

z(t)dt − 2, |z(x)| ≤ 4/c ∀x ≤ 1.

Following the argument used in the previous section, we conclude that limx→−∞ z(x)
exists. Since R is bounded, lim infx→−∞ |R′(x)| = 0. Thus, limx→−∞ z(x) = 0, which
implies that limx→−∞ R′(x) = 0.

As R(0) is a global extremum of R restricted on (−∞, 1], R(j) = R(0) for all
integer j ≤ 1. Upon using limx→−∞ R′(x) = 0, we derive that limx→−∞ R(x) = R(0).
Since |R(0)| = 1, there exists A > 0 such that |R(·)| > 1/2 on [A − 1, A + 1]. This
proves the first assertion (i).

(ii) The proof of the second assertion (ii) is analogous to the case (i) and therefore
is omitted.
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246 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

3.3. The monotonicity of wave profile. That U ′ > 0 follows from Lemma
3.1(iii) and the following lemma.

Lemma 3.3. There exists a sequence {ξi}i∈Z such that U ′ > 0 on [ξi − 1, ξi + 1]
for each i ∈ Z and limi→±∞ ξi = ±∞.

Proof. The sequence {ξi}i�0: Here we construct the sequence such that U ′ > 0
on ∪i�0[ξi − 1, ξi + 1] and limi→∞ ξi = −∞.

When f ′(0) > 0, limx→−∞ U ′(x)/U(x) = λ > 0 so U ′(x) > 0 for all x � −1.
Hence, we need consider only the case f ′(0) = 0 and limx→−∞ ρ(x) = 0, where
ρ(x) = U ′(x)/U(x). Define

εj = max
x≤j

|ρ(x)| ∀ j < 0, θ = lim sup
j→−∞

εj−3

εj
∈ [0, 1].

We claim that θ = 1. Suppose not. Then, for θ̂ = (1 + θ)/2, there exists J < 0

such that εj−3 ≤ θ̂εj for all j ≤ J . Hence, εJ−3k ≤ εJ θ̂
k for every integer k ≥ 0.

Consequently, |ρ(x)| ≤ εJ θ̂
(J−x)/3−1 for all x ≤ J . For y < J ,

ln
U(J)

U(y)
=

∫ J

y

ρ(x)dx �
∫ J

y

εJ θ̂
(J−x)/3−1dx � 3εJ

|θ̂ ln θ̂|
.

Sending y → −∞ we obtain a contradiction. Hence θ = 1.
Let {jk}∞k=1 be a sequence such that limk→∞ jk = −∞ and limk→∞ εjk−3/εjk = 1.

Let xk � jk−3 be a point such that |ρ(xk)| = εjk−3. Define ρk(x) := ρ(xk+x)/|ρ(xk)|.
Then maxx≤3 |ρk(x)| ≤ εjk/εjk−3, |ρk(0)| = 1, and

c ρ′k(x) = [ρk(x + 1) − ρk(x)]eρ(xk)
∫ x+1
x

ρk(z)dz

+ [ρk(x− 1) − ρk(x)]e−ρ(xk)
∫ x
x−1

ρk(z)dz + ρk(x)f1(U(xk + x)),

where f1(s) = f ′(s) − f(s)/s → 0 as s ↘ 0. This equation implies that {ρk}∞k=1 is
a family of bounded and equicontinuous functions on (−∞, 2]. Hence, a subsequence
which we still denote by {ρk} converges to a limit R, uniformly in any compact subset
of (−∞, 2]. Clearly, R satisfies (3.2).

By Lemma 3.2(i), there exists a constant A < 0 such that either R � 1/2 on
[A− 1, A + 1] or R � −1/2 on [A− 1, A + 1]. As limk→∞ ρk → R on [A− 1, A + 1],
there exists an integer K > 0 such that for every integer k � K, either ρk > 0
on [A − 1, A + 1] or ρk < 0 on [A − 1, A + 1]. By Lemma 3.1(i), the latter case is
impossible. Thus ρk > 0 on [A − 1, A + 1], i.e., U ′ > 0 on [xk + A − 1, xk + A + 1].
Define ξi = A + xK+|i| for all integer i ≤ 0. Then limi→−∞ ξi = −∞ and U ′ > 0 on
[ξi − 1, ξi + 1] for every integer i ≤ 0.

The sequence {ξi}i�1: When f ′(1) < 0, we have limx→∞ U ′(x)/[1−U(x)] > 0 so
U ′(x) > 0 for all x 
 1. It remains to consider the case f ′(1) = 0. Define

σ(x) =
U ′(x)

U(x) − 1
, δj = max

x∈[j,∞)
|σ(x)|, θ = lim sup

j→∞

δj+3

δj
∈ [0, 1].

With an analogous argument as before, we can show that θ = 1. Take a sequence
{jk}∞k=1 satisfying limk→∞ jk = ∞ and limk→∞ δjk+3/δjk = 1. Let xk ≥ jk + 3 be a
point such that δjk+3 = |σ(xk)|. Set σk(x) = σ(x+xk)/|σ(xk)|. Then |σk| ≤ δjk/δjk+3

in [−3,∞). Same as before, a subsequence of {σk}∞k=0 converges to a limit R satisfying
(3.3). The rest of the proof follows from an analogous argument as before. This
completes the proof of Lemma 3.3 and also the proof of Theorems 2 and 3.
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 247

4. Uniqueness of traveling waves. In this section we prove Theorem 1. In
the following, U and V are two traveling waves with the same speed c. We want to
show that U(·) ≡ V (· − ξ) for some ξ ∈ R.

4.1. A comparison principle. The sliding method applies on compact inter-
vals.

Lemma 4.1. If V � U on [a−1, a)∪ (b, b+1] where a � b, then V � U on [a, b].
Proof. Let ξ be the number such that min[a−1,b+1]{U(·) − V (· − ξ)} = 0 and let

y ∈ [a−1, b+1] be the maximum value satisfying U(y)−V (y−ξ) = 0. Then y �∈ [a, b]
since, otherwise, U ′(y) = V ′(y− ξ) and the equations for U(·) and V (· − ξ) evaluated
at y would imply U(y ± 1) = V (y − ξ ± 1), contradicting the maximality of y. Thus,
y ∈ [a − 1, a) ∪ (b, b + 1], and by the assumption, V (y) � U(y) = V (y − ξ). Thus
ξ � 0. We conclude that U(·) � V (· − ξ) � V (·) on [a− 1, b + 1].

The success of such a simple translation technique relies on (1) the existence of a
minimal translation ξ and (2) the existence of a maximum y, both of which attribute
to the fact that a continuous function on a compact set attains its global extremes.
When the domain of interest is unbounded, neither ξ nor y may exist, and therefore
different techniques are needed.

4.2. Comparison near x = ∞. We shall compare traveling waves on the
unbounded domain [0,∞). Since simple translation technique does not work, we shall
instead construct a family of supersolutions for which translation technique works. If
one is willing to make the assumption f ′ � 0 on [1 − δ, 1] for some δ > 0, then for
every ε > 0,

min{U + ε, 1} on [−1,∞)

is a supersolution on [0,∞) provided that U(−1) � 1− δ. In this manner, no asymp-
totic behavior of U near x = ∞ is needed.

When only the assumption (A) is made, we construct a different family of super-
solutions obtained from the detailed asymptotic behavior of wave profiles and com-
pression:

Z(�, x) := U([1 + �]x) ∀x ∈ [−1,∞), � ∈ (0, 1].

The idea here is that the rate of Z approaching 1 as x → ∞ is faster than that of
any wave profile, and therefore is strictly bigger than any wave profile for sufficiently
large x.

Since limx→∞ U ′′(x)/U ′(x) = μ � 0 < c and U ′(x+h)/U ′(x) = e
∫ x+h
x

U ′′(s)/U ′(s)ds,
by translation, we may assume that

sup
x�0, |h|�2

U ′′(x + h)

U ′(x)
< c.(4.1)

For � ∈ (0, 1] and x � 0, writing y = (1 + �)x and Z(�, x) = Z(x), we calculate

LZ(x) := cZ ′(x) − Z(x + 1) − Z(x− 1) + 2Z(x) − f(Z(x))

= c[1 + �]U ′(y) − U(y + 1 + �) − U(y − 1 − �) + 2U(y) − f(U(y))

= c � U ′(y) + U(y + 1) + U(y − 1) − U(y + 1 + �) − U(y − 1 − �)

= � U ′(y)

{
c−

∫ 1

0

∫ 1+
z

−1−
z

U ′′(y + h)

U ′(y)
dhdz

}
> 0.

This shows that for each � ∈ (0, 1], Z(�, ·) is a (strict) supersolution on [0,∞).
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248 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

Lemma 4.2. Assume (4.1). Suppose V � U on [0, 1]. Then V � U on [0,∞).
Proof. Consider the function, for x � 0, ξ ∈ R, and � > 0,

Ψ(ξ, �, x) :=

∫ U([1+
]x)

V (x−ξ)

ds

f(s)
.

Note that

lim
x→∞

∂Ψ(ξ, �, x)

∂x
= lim

x→∞

(
(1 + �)U ′

f(U)
− V ′

f(V )

)
> 0 ∀ � > 0, ξ ∈ R;

inf
x≥0,ξ∈R,
∈[0,1]

∂Ψ

∂ξ
= inf

y∈R

V ′(y)

f(V (y))
> 0.

Thus limx→∞ Ψ(ξ, �, x) = ∞. For each fixed � ∈ (0, 1], there exists at least one ξ such
that Ψ(ξ, �, ·) � 0 on [0,∞). Let ξ(�) be the infimum of such numbers.

We claim that ξ(�) � 0. Suppose otherwise. Since limx→∞ Ψ(ξ(�), �, x) = ∞,
there exists y ∈ [0,∞) such that Ψ(ξ(�), �, y) = 0. We must have y > 1, since
V (· − ξ(�)) < V (·) � U(·) � U([1 + �]·) on [0, 1]. Thus, for Z(x) = U([1 + �]x),

Z(y) = V (y − ξ(�)), V (· − ξ(�)) � Z(·) on [0,∞).

This implies V ′(y − ξ(�)) = Z ′(y) and a contradiction

0 = LV
∣∣
y−ξ(
) ≥ LZ

∣∣
y
> 0.

This contradiction shows that ξ(�) � 0, so that V (·) � V (· − ξ(�)) � U([1 + �]·) on
[0,∞). Sending � ↘ 0, we obtain that V (·) � U(·) on [0,∞).

4.3. Comparison near x = −∞. In general, on the unbounded interval
(−∞, 0], it is very hard to construct a family of supersolutions that can be used
for the translation argument such as that in the previous two subsections; this is due
to the fact that the constant state 0 is unstable. Hence we compare directly two
traveling waves. We shall show that wave profiles are ordered (i.e., one is bigger than
the other) near x = −∞, by magnifying differences between any two wave profiles.

For every ξ ∈ R and x ∈ R, we define

W (ξ, x) =

⎧⎨
⎩

∫ U(x)

V (x−ξ)

ds

f(s)
if c > cmin,

lnU(x) − lnV (x− ξ) if c = cmin.

Note that W (ξ, x) magnifies the differences between U and V . When c > cmin,

Wx(ξ, x) :=
∂W (ξ, x)

∂x
=

U ′

f(U)
− V ′

f(V )
−→ 0 as x → ±∞.

This limit shows that the magnified difference between wave profiles changes slowly.
The conclusion for c = cmin is analogous.

Lemma 4.3. There exist ν > 0 and A ∈ [−∞,∞] such that

lim
x→−∞

W (ξ, x) = A + νξ ∀ ξ ∈ R.(4.2)

Consequently, near x = −∞, U < V (· − ξ) if A + νξ < 0 and U > V (· − ξ) if
A + νξ > 0.
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 249

Proof. First, we consider the case c > cmin. Note that

lim
x→−∞

{
W (ξ, x) −W (0, x)

}
= lim

x→−∞

∫ x

x−ξ

V ′(y)dy

f(V (y))
= νξ,

where ν = 1/c when f ′(0) = 0 and ν = λ/f ′(0) otherwise. Suppose limx→−∞ W (ξ, x)
does not exist. Then A := lim supx→−∞ W (ξ, x) > B := lim infx→−∞ W (ξ, x). Tak-
ing an appropriate ξ, we can assume without loss of generality that A > 0 > B. Let
α, β be finite numbers satisfying B < β < 0 < α < A. Then there exist sequences
{xi} and {yi} satisfying

W (ξ, xi) = α, W (ξ, yi) = β, xi+1 < yi < xi, lim
i→∞

xi = −∞.

Since limx→−∞ Wx(ξ, x) = 0, there exists a large integer i such that W (ξ, ·) > 0 in
[xi+1 − 1, xi+1] ∪ [xi, xi + 1] and W (ξ, yi) < 0. This implies that V (· − ξ) < U(·) on
[xi+1 − 1, xi+1]∪ [xi, xi +1] and V (yi− ξ) > U(yi) which is impossible by Lemma 4.1.
Thus A = B.

The case c = cmin is analogous.

4.4. Proof of Theorem 1. Let U and V be two traveling wave profiles with
the same speed c. By translation, we can assume that V (0) = U(0) and that U and
V satisfy (4.1). By exchanging the roles of U and V if necessary we can use Lemma
4.3 to conclude that (4.2) holds with A ∈ [0,∞].

Let η � 0 be the unique value such that

min
x∈[0,1]

{U(x) − V (x− η)} = 0.

By Lemma 4.2, V (·− η) � U(·) on [0,∞). We claim that V (·− η) � U(·) on (−∞, 0].
Suppose not. Then infx∈R W (η, x) < 0. Since Wξ > 0 and W (η,±∞) � 0, there
is a unique value ξ > η such that minR W (ξ, ·) = 0. This implies that there exists
y ∈ R such that W (ξ, y) = 0 = minR W (ξ, ·). It further implies that V (· − ξ) � U(·)
and V (y − ξ) = U(y). A comparison principle shows that this is impossible. Hence,
V (· − η) � U(·) on R. Since min[0,1]{U(· − η) − V (·)} = 0, we must have η = 0 and
U ≡ V .

5. Asymptotic expansions. Finally, we derive and verify asymptotic expan-
sions for traveling wave profiles near x = −∞, accurate enough to distinguish the
translation differences. The idea is to construct, on (−∞, 1], sub/supersolutions hav-
ing special tails near x = −∞ and slopes on the interval [0, 1]. The comparison
between a wave profile and a sub/super solution near x = −∞ will be made by a
result similar to (4.2) in Lemma 4.3. The comparison on [0, 1] will be made in a
manner similar to that in the last step of the proof of Lemma 2.3.

5.1. Super/subsolutions. In the following, a Lipschitz continuous function de-
fined on [a− 1, b + 1] is called a super/subsolution (of speed c) on [a, b] if

±L [φ](x) � 0 a.e. x ∈ (a, b),

where L [φ](x) := c φ′(x) − φ(x + 1) − φ(x− 1) + 2φ(x) − f(φ(x)).
Lemma 5.1. Suppose φ is a subsolution (or supersolution) on [a, b] and φ < U

(or φ > U) on [a− 1, a) ∪ (b, b + 1]. Then φ < U (or φ > U) on [a, b].
The proof is similar to that for Lemma 4.1 and is omitted.
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250 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

Our asymptotic expansion for a wave profile is expressed in terms of a constructed
function φ such that, for some x0 ∈ R,

U(x + x0) = φ(x + o(1)) ∀x � 0 where lim
x→−∞

o(1) = 0.(5.1)

For this, we shall use the same idea as that of Lemma 4.3. Consider the case λ �= 0.
Suppose φ is either a subsolution or a supersolution on (−∞, 0] and

lim
x→−∞

φ′(x)

φ(x)
= lim

x→−∞

U ′(x)

U(x)
= λ > 0.(5.2)

Consider the function, for ξ ∈ R and x � 0,

W (ξ, x) =

∫ U(x+ξ)

φ(x)

ds

s
= ln

U(x + ξ)

φ(x)
.(5.3)

Lemma 5.2. Suppose φ satisfies (5.2) and is either a supersolution or a sub-
solution on (−∞, 0]. Let W be defined as in (5.3). Then (4.2) holds for some
A ∈ [−∞,∞].

The proof is similar to that for Lemma 4.3 and therefore is omitted.
Suppose A is shown to be finite. Then for x0 := −A/ν, every ε > 0, and all

x � −1, W (x0 − ε, x) < 0 < W (x0 + ε, x); that is, φ(x− ε) < U(x + x0) < φ(x + ε)
for every ε > 0 and all x � −1. Hence (5.1) holds. To construct sub/supersolutions
and to show that A is finite, we shall assume that

(B) |f(u)−f ′(0)u| ≤ Mu1+α for all u ∈ [0, 1] and some positive constants M and α.

In most cases, we shall construct sub/supersolutions via linear combinations of
exponential functions. Note that for φ = aeωx, Lφ = P (ω)φ + [f ′(0)φ− f(φ)], where

P (ω) := c ω − eω − e−ω + 2 − f ′(0).

Observe that P (·) is concave, positive between its two roots, and negative outside of
these two roots. Denote by λ and Λ, where 0 � λ � Λ, the two roots of P (·) = 0.
Among all possibilities, we divide them into four cases:

(i) c = cmin and (1.6) has two real roots;
(ii) c = cmin and (1.6) has only one real root;
(iii) c > cmin and f ′(0) > 0;
(iv) c > cmin and f ′(0) = 0.
Note that limx→−∞{U ′(x)/U(x)} > 0 in the cases (i)–(iii). For the last case (iv),

λ = 0 so that sub/supersolutions have to be constructed by nonexponential functions.
For this, we need extra assumptions on f .

5.2. The case c = cmin and (1.6) has two real roots. Assume that c = cmin

is the minimum wave speed and that the characteristic equation cminz = ez + e−z −
2 + f ′(0) has two real roots. Let λ be the smaller real root and Λ be the large real
root. Then λ < Λ and

lim
x→−∞

U ′(x)

U(x)
= Λ > 0 =⇒ U(x)

U(0)
= e

∫ x
0

U ′/U = eΛx+o(x).

Choose ω1 and ω2 satisfying

λ < ω1 < Λ < ω2, ω2 < (1 + α)Λ.
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 251

Then P (ω1) > 0 = P (Λ) > P (ω2). Consider, for ε ∈ [0, 1] and small δ > 0,

φ±(ε, δ, x) := δ
{
eΛx ± ε(eω1x − eΛx) ± δα/2(eΛx − eω2x)

}
.

Note that when ε > 0 and x � −1, φ+ 
 U and φ− < 0. Also, for all x � 0,

L [φ+] = δ
{
εP (ω1)e

ω1x − P (ω2)δ
α/2eω2x + O(1)δα

[
ε1+αe(1+α)ω1x + e(1+α)Λx

]}
> 0

if ε ∈ [0, 1] and δ ∈ (0, δ0] for some δ0 > 0. Similarly, for every ε ∈ [0, 1] and δ ∈ (0, δ0],
max{0, φ−(ε, δ, ·)} is a subsolution on (−∞, 0]. Taking δ0 small enough we can assume
that φ±

x > 0 for all x ∈ [0, 1], ε ∈ [0, 1] and δ ∈ [0, δ0].
Take ξ negatively large such that δ := U(ξ) < δ0. Comparing U(· + ξ − 1) with

φ+(ε, δ, ·) on (−∞, 0] for every ε ∈ (0, 1], we see that U(x + ξ − 1) ≤ φ+(ε, δ, x) for
all x ≤ 0. Here the positivity of ε guarantees that φ+ > U near x = −∞. Now
sending ε ↘ 0 we conclude that U(x+ ξ− 1) ≤ δ[1+ δα/2]eΛx for all x � 0. Similarly,
U(x + ξ + 1) > δ[1 − δα/2]eΛx for all x � 0.

Now applying Lemma 5.2 to φ = φ+(0, δ0, x), we see that there is the limit

A = lim
x→−∞

{
lnU(x)− lnφ+(0, δ0, x)

}
= lim

x→−∞

{
lnU(x)−Λx

}
− ln

[
δ0

(
1 + δ

α/2
0

)]
.

From the estimate in the previous paragraph, A must be finite. Hence we proved the
following theorem.

Theorem 5.1. Assume (A) and (B). Let (cmin, U) be a traveling wave of the
minimum speed where the characteristic equation has two roots λ,Λ, λ < Λ. Then,
for some x0 ∈ R,

U(x) = eΛ[x+x0+o(1)] ∀x � −1, where lim
x→−∞

o(1) = 0.

5.3. The case c = cmin and (1.6) has only one real root. Let P (z) =
cminz − [ez + e−z − 2 + f ′(0)] be the characteristic function at 0. That P (·) = 0 has
only one real root, denoted by λ, implies that P (λ) = P ′(λ) = 0; that is,

cmin = eλ − e−λ, f ′(0) = λ(eλ − e−λ) + (2 − eλ − e−λ).(5.4)

Take ω ∈ (λ, [1 + α]λ) and consider the function, for small δ > 0,

φ∗(δ, x) = δ[−xeλx − δα/2(eλx − eωx)].(5.5)

Note that φ∗ > 0 in (−∞, 0) and φ∗ < 0 in (0,∞). Since P (ω) < 0, for x ≤ 0,

Lφ∗ = δ
{
δα/2P (ω)eωx + O(1)δα[|x| + 1]1+αe(1+α)λx

}
< 0.

It follows that φ− := max{φ∗, 0} is a subsolution for every δ ∈ (0, δ0], where δ0 > 0.
From Lemma 5.2, there exists the limit

A = lim
x→−∞

{
lnU(x) − λx− ln |x|

}
.(5.6)

We claim that A < ∞. Suppose A = ∞. Then for each fixed ξ ∈ R, U(x + ξ) >
φ−(δ, x) for all x � −1. Since φ− = 0 on [0,∞) and φ− is a subsolution, a comparison
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252 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

gives U(x + ξ) > φ−(δ, x) for all x ∈ R. This is impossible for every ξ ∈ R. Thus
A < ∞.

We now consider the lower bound of A. Since P (·) is a concave function, that λ is
a double root to P (·) = 0 implies that P (ω) < 0 for every ω �= λ. It is then very hard
to construct supersolutions. As the existence of a supersolution implies the existence
of a traveling wave, the construction of a supersolution is equivalent to find cmin which
is not totally determined by the local behavior of f(s) near s = 0. That cmin is the
solution of (5.4) which is uniquely determined by f ′(0) requires special properties on
the nonlinearity on f . The whole nonlinear structure of f on [0, 1] determines whether
A is bounded from below. As will be seen in a moment, the answer to whether A
is bounded is all we need to determine uniquely the asymptotic behavior of U as
x → −∞, i.e., the alternatives in (1.11).

Case 1. A > −∞. Then A is finite, so from (5.6), the first alternative in (1.11)
holds.

Case 2. A = −∞. Fix ω ∈ (λ, (1 + α)λ). Consider, for ε ∈ [0, 1] and small δ > 0,

φ+(ε, δ, x) = δ
{

[1 − εx]eλx − δα/2eωx
}
.

Direct calculation shows that φ+ is a supersolution on (−∞, 0] for every ε ∈ [0, 1] and
δ ∈ (0, δ0]. Fix a translation such that U(1) ≤ δ0/2. For every ε ∈ (0, 1] we compare
U(·) and φ+(ε, δ0, ·) on (−∞, 0]. When x ∈ [0, 1], U(x) ≤ U(1) < δ0/2 < φ(ε, δ0, x).
Since A = −∞, we see that U < φ for all x � −1. It then follows that U(·) < φ(ε, δ0, ·)
on (−∞, 1]. Sending ε ↘ 0 we obtain U(x) ≤ δ0e

λx for all x ∈ (−∞, 0].
Also, by Lemma 5.2, there exists the limit

Ã := lim
x→−∞

{
lnU(x) − lnφ+(0, δ0, x)

}
= lim

x→−∞

{
lnU(x) − λx

}
− ln δ0.

In addition, since U(x) ≤ δ0e
λx for all x ∈ (−∞, 0], Ã ≤ 0.

Next we show that Ã > −∞. To do this, for every ω1 ∈ [λ, ω], consider the
function φ−(ω1, δ, x) := δ[eω1x + eωx]. It is easy to show that φ− is a subsolution on
(−∞, 0] for every ω1 ∈ [λ, ω] and every δ ∈ (0, δ0].

Fix a translation such that U(−1) > 2δ0. For every ω1 ∈ (λ, ω], by comparing U
and φ−(ω1, δ0, x), we see that U > φ−(ω1, δ0, x), since ω1 > λ implies U > φ− for all
x � −1. Now sending ω1 ↘ λ we see that U(x) ≥ δ0e

λx for all x ≤ 0. Thus Ã is
finite; namely, the second alternative in (1.11) holds.

Finally, we provide two examples showing that both alternatives in (1.11) can
happen.

Example 1. This example provides the second alternative in (1.11). We define

U(x) =
ex

1 + ex
, λ = 1, c = e− 1

e
,

f(u) =
u(1 − u)(e− 1)[2(1 − u)2 + 2eu2 + (e2 + 1)(e + 1)u(1 − u)/e]

e(1 − u)2 + eu2 + u(1 − u)(e2 + 1)
.

Using ex = U(x)/[1 − U(x)], one can verify that (c, U) is a traveling wave. Since
f ′(0) = 2− 2/e, λ = 1 is a double root of the characteristic equation cω = eω + e−ω −
2 + f ′(0). Consequently, cmin = e− 1/e.

Example 2. We show that the first alternative in (1.11) holds if

f ∈ C1+α([0, 1]), f(0) = f(1) = 0 < f(u) � f ′(0)u ∀u ∈ (0, 1).(5.7)
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 253

First of all, defining (cmin, λ) as in (5.4), one can show that min{1, eλx} is a super-
solution with c = cmin so that there is a traveling wave of speed cmin. Consequently,
the minimum wave speed is given by the solution of (5.4); see, for example, [5, 6, 27].

Also, there is a supersolution given by

φ+(x) = [1 − λ
1+λ x]eλx ∀x < 0, φ+(x) = 1 for x � 0.

Note that, for a large constant M , φ+(x + M) > φ∗(δ0, x) on R, where φ∗ is as in
(5.5). Following the existence proof of [5], (max{φ∗, 0}, φ+) sandwiches a solution
which satisfies the first alternative in (1.11).

We conclude the following theorem.
Theorem 5.2. Assume (A) and (B). Suppose c = cmin and the characteristic

equation has a root λ of multiplicity 2, i.e., (5.4) holds. Then there is the alternative
(1.11). In addition, under (5.7), only the first alternative in (1.11) holds.

5.4. The case c > cmin and f ′(0) > 0. Let λ and Λ, λ < Λ, be two roots of
the characteristic equation P (·) = 0, where P (z) = c z − [ez + e−z − 2 + f ′(0)]. Pick
ω such that λ < ω < min{Λ, (1 + α)λ}. Then P (ω) > 0. For each ε ∈ (0, e−ω] and
small δ, consider functions

φ±(ε, δ, x) := δ
(
[1 ∓ ε]eλx ± εeωx

)
, x � 1.

Note that

min
0�x�1

φ+
x (ε, δ, x)

φ+(ε, δ, x)
= λ + ε(ω − λ), max

0�x�1

φ−
x (ε, δ, x)

φ−(ε, δ, x)
= λ− ε(ω − λ).

In addition, for all x � 0, ε ∈ (0, 1], and δ ∈ (0, 1], using |f(u) − f ′(0)u| ≤ Mu1+α

and 0 < φ± ≤ 2δeλx we obtain

±L [φ±δ] = δεP (ω)eωx ± [f(φ±δ) − f ′(0)φ±δ]

� δeωx
{
ε P (ω) − 21+αMδαe[(1+α)λ−ω]x

}
.

Hence, we have the following:
(i) For every ε ∈ (0, e−ω], there exists xε � 0 such that φ±(ε, 1, ·) is a super/sub-

solution on (−∞, xε].
(ii) For every ε ∈ (0, e−ω], there exists δε > 0 such that for every δ ∈ (0, δε],

φ±(ε, δ, ·) is a super/subsolution on (−∞, 0].
Indeed, we need only take

xε := min

{
0,

ln[εP (ω)] − ln[21+αM ]

(1 + α)λ− ω

}
, δε = min

{
1,
( εP (ω)

21+αM

)1/α
}
.

Theorem 5.3. Assume (A), (B), and f ′(0) > 0. Let (c, U) be a traveling
wave with speed c > cmin. Then U(x) = eλ(x+x0+o(1)) for some x0 ∈ R, where
limx→−∞ o(1) = 0.

Proof. First of all, note that (4.2) holds for W defined as in (5.3) with φ =
φ+(ε, 1, x).

We show that A > −∞. Suppose A = −∞. Fix ε = e−ω. Since

lim
x→∞

U ′(x)/U(x) = λ,
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254 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

there exists ξ < 0 such that U ′(x)/U(x) < λ + ε(ω − λ) for all x < ξ + 2. Now we
compare U(· + ξ) with φ := φ+(ε, U(ξ), ·) on (−∞, 0]. By taking negatively large ξ,
we may assume that U(ξ) < δε so that φ is a supersolution on (−∞, 0].

Note that φ(0) = U(0 + ξ) and

φ′(x)

φ(x)
> λ + ε(ω − λ) >

U ′(x + ξ)

U(x + ξ)
∀x ∈ [0, 1]

so that U(·+ ξ) < φ(·) on (0, 1]. Also, limx→−∞[lnφ(x)− lnU(x+ ξ)] = ∞. It follows
by comparison that φ(·) > U(· + ξ) on (−∞, 0], contradicting φ(0) = U(0 + ξ). Thus
A > −∞.

Similarly, by using the subsolution φ−, one can show that A < ∞. Thus A =
limx→−∞{lnU(x) − λx} exists and is finite. This completes the proof.

5.5. The case c > cmin and f ′(0) = 0. When c > cmin, λ := limx→−∞ U ′(x)/
U(x) is the smaller root to the characteristic equation cz = ez +e−z−2+f ′(0). When
f ′(0) = 0, we have λ = 0. Thus as x → −∞, U(x) does not decay to 0 exponentially
fast. To find the precise rate of decay, we shall assume the following:

(B1) 0 � ff ′′ � Mf ′2 on (0, ε] for some ε > 0 and M > 0;
∫ ε

0
f ′2(s)/f(s)ds < ∞.

Simple examples of such functions are

f(u) = κu1+q(1 − u)p, f(u) = κe−1/u(1 − u)p (κ > 0, q > 0, p � 1).

Theorem 5.4. Assume (A), (B1), and f ′(0) = 0. Let (c, U) be a traveling wave
with nonminimum speed c. Then (1.12) holds for some x0 ∈ R.

Proof.
The idea. The proof is based on the following formal calculation. When f ′(0) = 0

and c > cmin, it follows from Theorem 3 that cU ′ ≈ f(U). Then at least formally
we should have c2U ′′ ≈ cf ′(U)U ′ ≈ f(U)f ′(U). Since by the mean value theorem
U(x + 1) + U(x− 1) − 2U(x) = U ′′(y) ≈ U ′′(x), we obtain

cU ′ ≈ U ′′ + f(U) ≈ f(U)f ′(U)/c2 + f(U) = f(U)[1 + f ′(U)/c2].

This suggests that sub/super solutions can be obtained from solutions of ODEs of the
form c φ′ = f(φ)[1+f ′(φ)/c2]±o(1), where o(1) is a small positive term large enough
to offset the error of the approximation U(x+1)+U(x−1)−2U(x) = U ′′(y) ≈ U ′′(x).

Construction of super/subsolutions. Let δ0 be a small enough constant and be
fixed. For every δ ∈ (0, δ0] and K ∈ [1, 1/(4f ′2(δ))], let φ be the solution of

c φ′ = f(φ) { 1 + f ′(φ)/c2 ±Kf ′2(φ) } on (−∞, 1], φ(0) = δ.(5.8)

The solution is given implicitly by∫ φ(x)

δ

ds

f(s)[1 + f ′(s)/c2 ±Kf ′2(s)]
=

x

c
∀ x � 1.

When δ0 is small, we have φ ≤ δ[1 + o(1)] and cφ′ = f(φ)[1 + o(1)] on (−∞, 1]. In
the following, O(1) is a quantity bounded by a constant independent of K and δ.

Write (5.8) as c φ′ = (1 + g(φ))f(φ), where g := f ′/c2 ±Kf ′2. In the following,
the arguments of f , f ′, f ′′, and g are evaluated at φ(x), if not specified. Since f ′′ � 0
and ff ′′ = O(1)f ′2 on the interval of interest, we see that

|g| + |g′f/f ′| = O(f ′) + O(f ′2)K.

D
ow

nl
oa

de
d 

02
/0

1/
16

 to
 1

40
.1

19
.1

15
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 255

Consequently,

c2φ′′(x) = {(1 + g)f ′ + fg′}(1 + g)f = ff ′{1 + O(f ′) + O(f ′2)K}.

Also by the mean value theorem,

φ(x + 1) + φ(x− 1) − 2φ(x) = φ′′(y) for some y ∈ [x− 1, x + 1],

f ′(φ(y))

f ′(φ(x))
= exp

(∫ y

x

(1 + g)ff ′′

cf ′

)
= exp

(∫ y

x

O(f ′(φ(z))dz

)
.

This implies that

f ′(φ(y)) = [1 + O(f ′(φ(x)))]f ′(φ(x)).

Similarly,

f(φ(y)) = [1 + O(f ′(φ(x)))]f(φ(x)).

This follows that

c2φ′′(y) = f ′f{1 + O(f ′) + O(f ′2)K}
∣∣∣
φ(x)

.

Hence, for all x � 1,

L [φ](x) = cφ′ − f − f ′f
{
c−2 + O(f ′) + O(f ′2)K

}
= ff ′2

{
±K + O(1) + O(f ′)K

}
.

Thus we have the following lemma.
Lemma 5.3. There exist a small positive constant δ0 and a large constant K0 such

that for every δ ∈ (0, δ0] and every K ∈ [K0, 1/(4f
′2(δ))], the solution φ±(δ, x) := φ(x)

of (5.8) is a super/subsolution on (−∞, 0].
The comparison. Consider the function

W±(ξ, x) =

∫ U(x+ξ)

φ±(δ,x)

ds

f(s)[1 + f ′(s)/c2]
x ≤ 1, ξ ∈ R.

Following a proof similar to that for Lemma 4.3, we can show that (4.2) holds
with W = W±, A = A± ∈ [−∞,∞] and ν = 1/c. Note that

W+ −W− =

∫ δ

φ+

{
1

f [1 + f ′/c2]
− 1

f [1 + f ′/c2 + Kf ′2]

}
ds

−
∫ δ

φ−

{
1

f [1 + f ′/c2]
− 1

f [1 + f ′/c2 −Kf ′2]

}
ds,

since the two integrals involving K cancel each other. Sending x → −∞ and using
φ±(−∞) = 0 and

∫ ε

0
f ′2(s)/f(s)ds < ∞, we then obtain

lim
x→−∞

{W+(ξ, x) −W−(ξ, x)} =

∫ δ

0

2Kf ′2

f{[1 + f ′/c2]2 − [Kf ′2]2} ds < ∞.
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256 XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

We now show that A+ > −∞. Suppose on the contrary that A+ = −∞. For
each δ ∈ (0, δ0], taking K = 1/(4f ′(δ)2) we see that

φ+′(x)

f(φ+(x))
=

1

c
− f ′(φ+)

c3
+

f ′2(φ+)

4cf ′2(δ)
� 1

c
+

1

8c
∀ x ∈ [0, 1]

if δ0 is small enough. As we know that limx→−∞ U ′/f(U) = 1/c, there exits ξ < 0
such that U ′/f(U) < 1/c + 1/(8c) for all x ≤ ξ + 1. Now set δ = U(ξ) and compare
U(ξ + ·) and φ+(δ, ·) on (−∞, 0].

As φ+′/f(φ+) > U ′/f(U) on [0, 1] and φ(0) = U(ξ+0), we have φ+(·) > U(ξ+ ·)
on (0, 1]. Also, A+ = −∞ implies that φ+(x) > U(ξ + x) for all x � −1. By
comparison, φ+ > U on (−∞, 0], contradicting φ+(0) = U(ξ + 0). Thus A+ > −∞.
Similarly, using φ−, we can show that A− < ∞. Hence A± are finite.

Finally, we observe that

lim
x→−∞

W+(0, x) = lim
x→−∞

{∫ U(x)

δ

ds

f(s)[1 + f ′(s)/c2]
− x

c

}

−
∫ δ

0

{
1

1 + f ′(s)/c2
− 1

1 + f ′(s)/c2 + Kf ′2(s)

}
ds

f(s)
,

the assertion of the theorem, i.e., (1.12) thus follows.
As an illustration, we consider the case when

f(u) = κu2(1 − u)p (κ > 0, p � 1).

Then for some integral constant a∫ u

1/2

ds

f(s)[1 + f ′(s)/c2]
= − 1

κu
+

(
p

κ
− 2

c2

)
lnu + a + O(u) as u → 0.

After translation, we see that, as x → −∞,

− 1

κU(x)
+

(
p

κ
− 2

c2

)
lnU(x) =

x

c
+ o(1).

This implies that, as x → −∞,

1

U(x)
=

κ|x|
c

+ O(ln |x|) =
κ|x|
c

(
1 + o(1)

)
, lnU(x) = ln

c

κ|x| + o(1).

Thus, after another translation,

U(x) =
c

κ[|x| − x0 + o(1)] + (p c− 2κ/c) ln |x|

=
c

κ|x| −
(pc2 − 2κ) ln |x|

κ2x2
− cx0 + o(1)

κx2
as x → −∞.

Note that the translation is distinguished by the third term in the Taylor’s expansion.
Finally, observe that∫ u

1/2

ds

f(s)[1 + f ′(s)/c2]
=

∫ u

1/2

ds

f(s)
− ln f(u)

c2
+ a + o(1) as u → 0.
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UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 257

In particular, if f(u) = κu1+q[1 + o(1)] for some q > 0, then U ∝ |x|−1/q so that
ln f(U) ≈ −b ln |x|+B + o(1) for some b > 0 and B ∈ R. Therefore, it is generic that
for some constants b > 0 and x0 ∈ R,

∫ U(x)

1/2

ds

f(s)
=

c[x + x0 + o(1)] − b ln |x|
c2

.

In a similar manner, we can establish an asymptotic expansion near ∞. We omit
the details.

Acknowledgments. We are grateful to the anonymous referees for many helpful
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