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1. INTRODUCTION

In (2] J.F. Adams poses the following conjecture concerning the stable

cohomotopy groups of the infinite real projective space RP*.

Conjecture A The group of maps in Boardman’s category from the suspen-

sion spectrum of RP® to the suspension spectrum of S® is zero if n > 0.

‘The purpose of this paper is to study this conjecture from another conjec-
ture of Adams (also in (2]) on the vanishing of Ext groups of a certain. module

over the mod 2 Steenrod algebra A. We show that the latter conjecture implies
Conjecture A.

In order to state the latter conjecture let Z,(x,x-']) be the ring of finit_e

Laurent series over Z, with dim(x)=1. Z,(x,x-!) is a left A-module Wifh VA-
action given by

Sq‘xk'z(i()xl+k ' k >0

Sq'x-*= (zmi_k)x‘“ « k >1
where m is large compared with k and i. Z,(x,x-!] is considered in [2]) as
the cohomology of a hypothetical spectrum which is like the suspension spectrum
of RP®, but has one cell in each dimension p whether p is positive, negative or

zero. We refer to (2] for more story on Z,(x,x-') and why the following con-
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jecture was put forth. Let M be the Z,-submodule of Z.(x,x - “generated by all
x! with i2e-1. It is easy to see that M is an A-submodule of Z,(x,x-'].

Conjecture B Exty (M, Z,)=0 for all s and t.

The main result of the paper is
Theorem 1.1 If Conjecture B is true then so is Conjecture A.
Theorem 1.1 seems known to experts in the field, but it appears that no

detail proofs are present in the literature. It is the purpose the paper to record

a detail proof of Theorem 1.1. which, in expert’s mind, might be nonstandard.

We sall use the Adams spectral sequence arguments to prove Theorem 1.1.
Let E(RP®) denote the suspension spectrum of RP®, S° the sphere spectrum
and let (E(RP®),S"], be the group of maps of degree r from E(RP®)to S° in

the Boardman stable category S. (C13,03)). If we try to prove Conjecture A,
by using the Adams spectral sequence arguments, we need to show that (1) in

the Adams spectral squence {E.[E(RP® ),S°0}, Es2 +=0 if t-s < 0 and (2) the
spectral sequence {E.(E(RP®),S°)} converges to (E(RP®),5°)4 at least in di-
mensions of interest.

Theorem 1.2 Suppose Conjecture B is true. Then Ey*(E(RP®),S°)=Ext '(Z.,
H*(RP®)) (and hence Eg)=0 if t-s < 0 where H*(RP”) is the reduced mod

2 cohomology of RP™.

So to prove Theorem L1 it remains to consider the convergence of the
Adams spectral sequence {E.CE(RP®), S°]}. Consider the following mod 2
Adams resolution of S° in S, corresponding to the minimal resolution of Z,

over A.

S- K> Yo —— K,
S-'Ky———> \LG — K,
=5 oK,
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Let Y., be the homotopy inverse limit spectrum of the sequence
"'_>Y2_'>Y1'_)YD=SO-

Theorem 1.3 In S, (E(RP®),Y,J).=0 all r.

It is easy to see that Theorem 1.1 follow from 1.2 and Theorem 1.3.
2. Proof of Theorem 1.2

Recall that H¥*(RP® )= Z,(u] where dim (u)=1. So H*(RP®) is a (grad-
ed) vector space over Z, with base {u,u?u? ---}. We reindex the Z,-dual mo-
dule [H*(RP®)J*=H4«(RP®) (i.e. the reduced mod 2 homology of RP®) by as-
signing to u** the degree -k. Write D (H*(RP®)) for the reindexen Hy (RP®)
aud y-, for u**. Define a left A-action on D [H*( RP®)] by ay-, =y-,X (a)
where X: A ——— A is the canonical antiautomorphism of the Steenrod algebra
A and the right A-action on D (H* (RP®)) is the one naturally derived from
the left A-action on H*(PR®). The following is well known (see [5)).

Proposition 2.1 Exty'(Ze,H*(RP®) ) = Exty*(D(H*(RP*)),Z,) all s, t.
From this proposition we see to prove Theorem 1.2 amounts to proving that
if Conjecture B is true then Exty*(D(H*(RP®)),Z,)=0 for t-s < 0. We shall
prove this by showing that D(H*(RP*)) is isomorphic to a quotient module of
M as a left A-module where M is as in Conjecture B. Let M’ be the A-submo-
dule of M generated by all x' with i > 0. Let My = M/M’. So My is a
vector space over Zp with base {..., x-3,x-2}. The A-action on My is given

by Sq'x-* = (2;'1{) x'-* where m is large compared with i and k and when

i-k > -1 we interpret x'-* = 0 in My. Define a Z,-isomrphism f: My ———>

D (H*(RP®)) by f(x%) = y-y41

Proposition 2.2 f: M, — D (H*(RP®)) is a left A-module isomorphism

of degree 1.
In order to prove Proposition 2.2 we need an identity in binomial coefficients

(Lemma 2.3 (d) below). Given an integer k > 1 we write 5'0.k. € k if »'0.k.
appears in the dyadic expansion of k, otherwise we write ,'¢ k. The proof of

the following lemma is not hard (though very tedious) and is left to the reader.
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Lemma 2.3 Let k,i > 1 be integers and let m be any integer which is large
compared with i and k. Then

w (H-AEEy b

(b (2 —21 ) =0 (mod 2) in the following cases and =1 (mod 2) otherwise

F k
&gk

b

(i) k is odd and »'¢ k

(ii) k is even, o' & k and 251 & k for some L with 1 < { < i

(i) k is even, 2 & k and »* €k for any £ with 1 < £ < i,

(c) (2’“ -2! +2J (k+1)) 0 (mod 2) if k is odd or if k is even and
0<]<1 JlE)Ekforanyjlwithl§,Q<1

1 (mod 2) if k is is even and 25Z & k for
some ! with1l < £ < 1.

So we have the following identity

@ gjf,l(zm 22‘+22J (kH)) (2“1-221;1(_1) (mod 2).

Proof of Proposition 2.2: Let D( M;) be the right A-module which is related
to M, in the way that D (H* (RP®)) is related to H* (RP®). So D(M,) has
a Zs-base {zs,zs, ...} with dim (z,)=k. Define a left A-action on D (M;) by
az, = z, X (a) where X: A ——— A again is the canonical antiautomorphism of
A. It is easy to see that the right A-action on D (M,) is given by z,sq' =

(2 k-1

i ) z.,1 where m is large compared with i and k. So the left A-action

on D(M,) is given by

x SaVz= (275w )

Define a Zs-isomorphism g: D (M;) —— H* (RP®) by g(z,) =u*“~1. To
prove the proposition is equivalent to proving that g is a left A-isomorphism

of degree -1. In view of (1) we see this is equivalent to proving that in H*(RP®)
x(Sq) ut = (2RI g, @
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We prove (2) by induction on i and k. First, it is easy to see that (2) is true
for i=1 and any k since X (Sq1)=Sql. Next we prove that (2) is true for k=1
and any i. Recall that for any admissible sequence I=(i,,..., i.,,) the action

of Sq' on u is given by

Sq1u={ U2n+1 if I= (zn’ 2n_1’.”, 2,1)
0 otherwise.
It is well known ((4)) that X (Sq 2 1) =8q2" sq® " ...Sq2Sqt. It follows
that
X(Sql)u:I u2n+1 if i=2"*1 -1 for some n (3)
otherwise.

On the other hand it is easy to check that
(2m_.2_i) _ { 1 (mod 2) if i=2""1 -1 for some n
S

0 (mod 2) otherwise.

This proves (2) for k=1 and any i. Now suppose i > 1 and k > 1 and
suppose (2) is true for any pair (i’, k’) of positive integers such that either i’
< ior k/<k. Since {Sq2'} ; > 0 (and hence {X (Sq2’)}j > 0) is a Zo-base for the

indecomposable elements of the Steenrod algebra A, g: D(M,) ——— H*(RP®)

is a Z,-isomorphism and (1) is true for all i and k it follows that we may as-

sume i==22 for some . Let A: A——— A®A be the diagonal map of A. So
922

ADX(Sq** D)= = X (Sq*' ~)®X(Sa’). Then X(Sq* Ju*=X(Sq* ) (u*-'. w)
=0

2
=X X(Sq2* -Hu*-1X(Sqd)u  (Cartan formula)
=0

24 gm .
=12 (2 _Zglﬁjj_k,)uﬂ -It%-1 %(Sq)u  (by inductive hypothesis)

2™ - 21 420 - (k+1) e
= 3 ( 21 -9 41 ) u? Cby (33
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=(2m - 222;k —1) uzt tr, (by Lemma 2.3 (d))

This completes the inductive proof of (2). This proves proposition 2.2.
Now we prove Theorem 1.2.
Proof of Theorem 1.2 : From Proposition 2.1 and Proposition 2.2 we see

E 3’ ‘(E(RP®), SI=Ext3’ ‘(Z, , H*(RP*))=Ext ¥*'(M,,Z.). So to prove the

theorem it suffices to show that Exts’‘(M;,Z,)=0 for t-s < -1 provided that
Conjecture B is true. The exact sequence of A-modules

i j
0 ——> M/ —— M —— M,

— 0

yields the following long exact sequence in Ext groups

i *

v —— Ext 37V ' (ML, Z,) —— Extyttr (M, Z) —— Ext i '(M;,Z.)

j*
—— Exts* (M, Z,) —— -

Suppose Conjecture B is true. So Exts’* (M,Z,)=0all s, t. Then Exty'’*
M’ ,Z)=Exts’*(M,,Z,) all s, t. Since" M’ begins with dimension zero
we see Ext 3"t (M’ ,Z,)=01if t-s < -1. Therefore Ext5’* (M1 ,Z;) =0

if t-s < -1. This proves Theorem 1.2.

3. Proof of Theorem 1.3

Recall that Y, is the homotopy inverse limit spectrum of the sequence ---

- Yy ——> Y, —— Yo = 5% So we have the exact sequence

0 —— lim?! EX; Ynjr+1 —_—> EXs Yoo]r ————> im0 EX) Yn]r ——0 (4)

D ——
n n

for any spectrum X and any integer r (See [1)).
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Proposition 3.1 = (Yo)=0if i < -1, #.; (Yo )= 12/Z, mo (Yo)=0, m1 (Ye)
=, (S9)/7 (8% 2) if i > 1 where I, = ring of 2-adic integers and =, (8% 2)

is the 2-componentt of the i'" stable homotopy groub of spheres.

Proof: Since the mod 2 Adams resolution of S¢

§ 1K, —— ¥y —— Ka
S1Kg —— Ei{l —== K,
\l(():S" —-— Ko
corresponds to the minimal resolution of Z» over the mod 2 Steen_rod élgebra A

it follows from the already known behavior of Ext}'* (Z.,Z») that
(a) = (Y;) =0 for i <-1 and and all j,
(b) 7o (Y;)=1Z all j and each induced map =o ) =2 —— 7o
(Y,_{) = Z is the multiplication by 2 map,
(¢) For each integer m, m>1, 7o (Y,) = 0 for all large k.

Proposition 3.1 follows from (a), (b), (¢) and the exact sequence (4).

Proof of Theorem 1.3: Let K (G) be the Eilenberg-Maclane spectrum cor-
responding to an abelian group G. Let H* (RP®; G) be the reduced cohomology
of RP® in the coefficient G. It is well known that if G is a vector space over
the field Q of rationals or is a p-torsion group, p=odd prime, then H* ‘(RP"“?‘; G)
= [(RP®), K(G)]-« = 0.

By Proposition 3.1 7, (Yo)= I./Zand =, (Y,)=0for i < -1. So there
isamap f: Yo - —— 51 K(Is/Z) in S, which induces an isomorphism =,
N D)=1,/Z - > 7., (51K {:/Z)) = 1./7Z. LetW be the fiber of f. From
Proposition 3.1 we see for each r =, (W) is an odd torsion group.

Apply [E (RP®), ——1J to the fiberation W —— Y, —— St K(2/Z) to
obtain the following long exact sequence

< —= [E(RP®), W), —> [E(RP®),Y,J. — (E(RP®), St K (Io/Z)],
—— [E(RPQ)} W_]r-l. e
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Since =4 (W) are odd torsion groups and H* (RP®, Z,) = 0 for any odd prime
p it follows from the obstruction theory that [ E(RP®), W), =0 all r.  Thus
CE(RP®), Y. ). = (E(RP®), St K(I2/2)), = (E(RP*®), K(I2/Z)],,:. So to
prove the theorem it suffices to prove that [ E (RP*), K (I2/Z))x = 0.

Let Zo, be the ring of integers localized at 2. Then Z C Z, € I,. The
exact sequence 0 —— Zy/Z ——> 15/Z —— 15/Zy, —— 0 induces a fiberation
K (Z2y/Z) —— K (12/Z) —— K (1a/Zey) in S,. It is well known that Io/Z s,

is a vector space over Q; so

CLE(RP®), K(1s/Z2,))x=0 as remarked above. Therefore from the long exact
sequence which is obtained by applying [ E (RP®), — J« to the fiberation
K(Z2/2) —> K(12/Z) — K (12/Zc2)) we see [ E(RP®), K(Is/.]. =
CE(RP®), K(Z(2y/Z)), all r. It is also well known that

Zoy/Z= pzod?primezpw where Z,» is the direct limit of the sepuence
Zy ——> 22— Zs = o . S0 K(Zy/Z) = p=odc>1<" orime K (Zo) in S

Since each Z,» is a p-torsion group we see [E(RP®), K(Z,»)), =0allr
provided p is an odd prime. Therefore [ E(RP,), K (Io/Z]].

CERP®), K(Ze/ZD)e = ,_0dd prime L E (RP®), K(Z,=)3, =0 all r. This

proves Theorem 1. 3
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