Please use this identifier to cite or link to this item:
https://ah.nccu.edu.tw/handle/140.119/101253
|
Title: | 以使用者意見提升推薦系統效能之研究 Exploiting User Opinions for Improving Individual Recommendations |
Authors: | 林金永 |
Contributors: | 蔡銘峰 林金永 |
Keywords: | 推薦系統 協同過濾 文字探勘 Recommender Systems Collaborative Filtering Text Mining Factorization Machines |
Date: | 2016 |
Issue Date: | 2016-09-02 01:32:47 (UTC+8) |
Abstract: | 近年來,受惠於網路的盛行及其帶來的便利性,許多網 站得以收集到大量的使用者對於商品之評價以及評論,運用 這些使用者的回饋資料進行分析,以更精準的進行商業行銷 正是當今浪潮。 而推薦系統廣泛應用於商業行銷,常用的推薦系統之計 算理論,乃依據使用者對商品的評分進行協同式的過濾,以 找出合適的產品給予推薦,其理論的基礎是品味相近的消費 者應該會喜歡類似的商品,使用者對商品的評分即為此模式 所採用的依據,例如:運用User-based Collaborative Filtering ,可以找出與被推薦者的特徵值類似的使用者,並以類似使 用者中較高評分的項目作為推薦清單,這種方式能得到相當 不錯的推薦結果,且計算的運算量亦不太大。 相較之下,以使用者對商品的文字評論作為依據的推薦 方法則較為少見,但我們認為文字訊息在推薦系統中亦佔有 相當份量的重要性;直覺上,將使用者的評分與其文字評論 作結合進行分析,應可更完整呈現該使用者的意向,並進而 應能改進推薦系統之推薦效能。在這份論文研究中,我們嘗 試結合使用者對商品的評分與文字評論於推薦系統中,並以 一份取自TripAdvisor.com的使用者對於飯店評價之資料集進 行實驗,透過libFM 建立推薦模型;從實驗結果探討中印證 了我們的想法:使用者的文字評論訊息的確能夠用以改進推 薦系統之效能。 |
Reference: | [1] G. Adomavicius and Y. Kwon. New recommendation techniques for multicriteria rating systems. IEEE Intelligent Systems, 22(3):48–55, 2007. [2] H. Ahn, K. Kim, and I. Han. Mobile advertisement recommender system using collaborative filtering: Mar-cf. 2006. [3] D. Bridge and A. Waugh. Using experience on the read/write web: The ghostwriter system. In Proceedings of WebCBR: The Workshop on Reasoning from Experiences on the Web (Workshop Programme of the Eighth International Conference on Case-Based Reasoning), pages 15–24, 2009. [4] R. Burke. Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction, 12(4):331–370, 2002. [5] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. Combining content-based and collaborative filters in an online newspaper. In Proceedings of ACM SIGIR Workshop on Recommender Systems, volume 60. Citeseer, 1999. [6] M. Fuchs and M. Zanker. Multi-criteria ratings for recommender systems: an empirical analysis in the tourism domain. In International Conference on Electronic Commerce and Web Technologies, pages 100–111. Springer, 2012. [7] K. Ganesan and C. Zhai. Opinion-based entity ranking. Information Retrieval, 15(2):116–150, 2012. 33 [8] G. Huming and L. Weili. A hotel recommendation system based on collaborative filtering and rankboost algorithm. In 2010 second international conference on multimedia and information technology, 2010. [9] A. Levi, O. Mokryn, C. Diot, and N. Taft. Finding a needle in a haystack of reviews: cold start context-based hotel recommender system. In Proceedings of the sixth ACM conference on Recommender systems, pages 115–122. ACM, 2012. [10] Y. Liu, X. Huang, A. An, and X. Yu. Modeling and predicting the helpfulness of online reviews. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages 443–452. IEEE, 2008. [11] C. D. Manning, P. Raghavan, and H. Sch¨utze. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008. [12] M. P. O’Mahony and B. Smyth. Learning to recommend helpful hotel reviews. In Proceedings of the Third ACM Conference on Recommender Systems, pages 305–308. ACM, 2009. [13] S. Rendle. Factorization machines. In Proceedings of Data Mining, 2010 IEEE 10th International Conference on, pages 995–1000. IEEE, 2010. [14] S. Rendle. Factorization machines with libFM. ACM Transactions on Intelligent Systems and Technology, 3(3):57:1–57:22, May 2012. [15] G. Salton, A. Wong, and C.-S. Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11):613–620, 1975. [16] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th Internatio |
Description: | 碩士 國立政治大學 資訊科學系碩士在職專班 101971019 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0101971019 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系碩士在職專班] 學位論文 |
Files in This Item:
|
All items in 學術集成 are protected by copyright, with all rights reserved.
社群 sharing |