Please use this identifier to cite or link to this item:

Title: The Wisdom of Crowds in Action: Forecasting Epidemic Diseases with a Web-based Prediction Market System
Authors: 童振源
Li, Eldon;Tung, Chen-yuan;Chang, Thomas
Contributors: 國發所
Keywords: Prediction market system;Logarithmic market scoring rules;Infectious diseases;Epidemic prediction;Real-time update;Web-based system;Wisdom of crowds
Date: 2016-08
Issue Date: 2016-11-03 18:01:50 (UTC+8)
Abstract: Background : The quest for an effective system capable of monitoring and predicting the trends of epidemic diseases is a critical issue for communities worldwide. With the prevalence of Internet access, more and more researchers today are using data from both search engines and social media to improve the prediction accuracy. In particular, a prediction market system (PMS) exploits the wisdom of crowds on the Internet to effectively accomplish relatively high accuracy. Objective : This study presents the architecture of a PMS and demonstrates the matching mechanism of logarithmic market scoring rules. The system was implemented to predict infectious diseases in Taiwan with the wisdom of crowds in order to improve the accuracy of epidemic forecasting. Methods : The PMS architecture contains three design components: database clusters, market engine, and Web applications. The system accumulated knowledge from 126 health professionals for 31 weeks to predict five disease indicators: the confirmed cases of dengue fever, the confirmed cases of severe and complicated influenza, the rate of enterovirus infections, the rate of influenza-like illnesses, and the confirmed cases of severe and complicated enterovirus infection. Results : Based on the winning ratio, the PMS predicts the trends of three out of five disease indicators more accurately than does the existing system that uses the five-year average values of historical data for the same weeks. In addition, the PMS with the matching mechanism of logarithmic market scoring rules is easy to understand for health professionals and applicable to predict all the five disease indicators. Conclusions: The PMS architecture of this study affords organizations and individuals to implement it for various purposes in our society. The system can continuously update the data and improve prediction accuracy in monitoring and forecasting the trends of epidemic diseases. Future researchers could replicate and apply the PMS demonstrated in this study to more infectious diseases and wider geographical areas, especially the under-developed countries across Asia and Africa.
Relation: International Journal of Medical Informatics, Vol.92, pp.35-43
Data Type: article
DOI 連結:
Appears in Collections:[國家發展研究所] 期刊論文

Files in This Item:

File Description SizeFormat
412012.pdf1461KbAdobe PDF617View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing