English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89192/118972 (75%)
Visitors : 23702445      Online Users : 75
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 政大學報 > 第72期 > 期刊論文 >  Item 140.119/104748
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/104748


    Title: Estimating the Latent Trait From Likert-Type Data: A Comparison of Factor Analysis, Item Response Theory, and Multidimensional Scaling
    Authors: 詹志禹
    Chan, Jason C.
    Contributors: 教育系
    Date: 1996-05
    Issue Date: 2016-12-09 11:19:02 (UTC+8)
    Abstract: 本研究比較三個統計模式從李克特式(Likert-Type)資料中估計單向度潛在特質的能力,這三個模式是「植基於多序類相關(polychoric correlations)的因素分析」(FA-PL),「試題反應理論中的漸變反應模式」(IRT-GRM),以及「加權多維展開法」(WMDU)。一般常用的方法(SSI)--分派連續性整數給李克特式量尺中的一個反應類別(如「非常同意」),再將每一題得分加總--則做為比較的基準線。本研究為電腦模擬研究,操弄了樣本大小、測驗長度,以及試題反應分配的偏態程度等三個自變項,依變項則為回復潛在特質的真傎的正確性,結果發現:IRT-GRM表現得最好,最不受偏態的影響;FA-PL只有在試題反應分配為常態時,才能表現與IRT-GRM一樣好,而在試題反應分配為高度偏態時,甚至表現得比SSI差;最後,WMDU只有在試題反應分配為常態或輕微偏態時,才能表現得與SSI一樣好。本文也討論了這些發現對模式選擇的涵意。
    Three statistical models were compared with one another in terms of the ability to recover a unidimensional latent trait from Likert-type data. They are factor analysis based on polychoric correlations (FA-PL), the graded response model in item response theory (IRT-GRM), and the weighted multidimensional unfolding (WMDU). The common procedure of summing up successive integers assigned to response categories (SSI) served as the base- line procedure. Sample size, test length, and skewness of item response distributions were manipulated in this simulation study. Generally speaking, IRT-GRM performed the best and was most robust against skewness. FA-PL were competitive with IRT-GRM only when item responses were normally distributed. It performed even worse than did SSI when item responses were highly skewed.WMDU might be a rival alternative to SSI only when item responses were normally distributed or moderately skewed and sample size was large for MDU models (e.g.. N=100).
    Relation: 國立政治大學學報,72 part 1 ,299-320
    Data Type: article
    Appears in Collections:[第72期] 期刊論文

    Files in This Item:

    File Description SizeFormat
    72-299-320.pdf1682KbAdobe PDF491View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback