Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/119578
題名: 發炎的機制以及其在中樞代謝調控中的作用研究
The Study of the Mechanisms of Inflammation and Its roles in Central Controls of Metabolism
作者: 章學榛
貢獻者: 陳紹寬
章學榛
關鍵詞: 干擾素誘導跨膜蛋白
發炎
POMC神經元
促發炎細胞因子
代謝調控
IFITM
Inflammation
POMC neuron
Proinflammatory cytokines
Metabolic signaling
日期: 2018
上傳時間: 27-Aug-2018
摘要: 本研究包括兩個部分。第一部分是發現Ifitm基因剔除鼠中產生的自發性發炎反應表型。Ifitm基因是一組會受干擾素所誘導表現的基因,干擾素刺激後所轉譯出的蛋白質在抗病毒功能中有著重要作用。然而,這些蛋白質的生化性質和生物功能上還不清楚。在先前的研究中,剔除5個Ifitm基因的IfitmDel小鼠被用來探討Ifitm基因的生物功能,我們在IfitmDel小鼠中觀察到隨著年齡的增加會產生低度發炎,在周邊血中單核細胞活化標誌物如CD86和MHCII的水平升高。IfitmDel小鼠在文獻中被指出有肥胖和食慾過盛的表現,我們發現這些小鼠的下視丘中Nos2表現顯著增加,表示著下視丘有發炎的情況。為了測試是否是機能不全的骨髓細胞或是過多的發炎訊號引起IfitmDel小鼠低度發炎,我們取野生型小鼠及IfitmDel小鼠的骨髓,並將其誘導成巨噬細胞來,比較其對發炎刺激的反應。在脂多醣體(LPS)和干擾素-γ(Interferon-γ)的刺激下,IfitmDel小鼠骨髓誘導巨噬細胞被活化的程度顯著較高。我們的結果顯示IFITM蛋白在巨噬細胞中具有調節發炎反應的功能,Ifitm基因的缺失導致在刺激下有較強烈的發炎反應。本研究的第二部分是研究促發炎細胞因子如何改變POMC神經元的代謝信號。位於下視丘弓狀核的POMC神經元在飲食調控和能量平衡中扮演重要角色,透過接受周邊代謝信號,如瘦蛋白和胰島素,來調控食慾下降並增加能量消耗,最近的研究中表明發炎可能會干擾POMC神經元中的代謝調節路徑。在我們的研究中,檢測了促發炎因子的增加如何影響mHypoA-POMC / GFP細胞株的代謝信號傳導。此外,考慮到造成發炎的物質並不局限於單一種促發炎細胞因子,所以將以LPS處理過的誘導巨噬細胞培養液應用為條件培養液加入POMC神經元中,此條件培養液中含有促炎細胞因子混合物。我們首先檢測POMC神經元對混合促炎細胞因子的反應,調控POMC神經元厭食反應的基因,如:POMC和Socs3,在發炎信號的刺激下升高。之後檢測在有條件培養液的環境下,POMC神經元中瘦素或胰島素誘導的信號傳導途徑的活化是否會受影響,瘦素或胰島素信號傳導在促炎細胞因子存在下會被破壞。另外,POMC神經元中的關鍵代謝調節蛋白:單磷酸腺苷活化蛋白質激酶(AMPK)的活化會被促炎細胞因子抑制。綜合上述觀察結果,我們認為POMC神經元的代謝調控會在發炎的環境下遭到破壞。
This study consists of two major parts. The first part is to characterize the inflammation developed in Ifitm genes knockout mutants. Ifitm genes are a group of interferon inducible genes that are transcriptional activated upon interferon stimulation and play important roles in interferon meditated antiviral functions. However, the biochemical properties and other biological functions of these proteins are not fully understood. Previously IfitmDel mutant mice that lack 5 Ifitm genes were generated to investigate the biological functions of Ifitm genes. We recently observed age dependent low-grade inflammation phenotype in IfitmDel mice. Mutants at 4-month of age started to exhibit elevated levels of monocyte activation markers such as CD86 and MHCII in peripheral blood. Obesity and hyperphagia have previously been reported in IfitmDel mutants. The expression of hypothalamic nos2 is upregulated in the mutants, indicating that hypothalamic inflammation is also developed. To test whether inflammation is caused by malfunctioned mutant myeloid cells or by excessive inflammatory signals, we further generate bone marrow derived macrophages from both IfitmDel mutants and wild type controls. Upon LPS and interferon-γ stimulation, mutant macrophages are drastically activated and the activation status is significantly higher than that of wild type macrophages. Our data suggest the anti-inflammatory roles of IFITM proteins. Ablating Ifitm genes augment the inflammatory response upon stimulation. The second part of this study is to investigate how proinflammatory cytokines altered the metabolic signaling in POMC neurons. POMC neurons in arcuate nucleus play pivotal roles in feeding controls and energy homeostasis. This group of neurons respond to peripheral metabolic signals, such as leptin and insulin, and mediate the anorexigenic response and increase energy expenditure in the hypothalamus. Recently accumulating data suggest that inflammation might interrupt metabolic regulations by affecting this group of neurons. In this study, we examined how increase of proinflammatory molecules influence metabolic signaling in the cell line mHypoA-POMC/GFP, which is generated by immortalizing the primary hypothalamic POMC neurons cultures. Also, considering that the effect of inflammation might not be limited to single kind of proinflammatory cytokines, we applied conditioned medium of LPS-primed macrophages, which contained a mixture of proinflammatory cytokines, to the POMC neuron culture. We first examined the response of the POMC neurons to the mixed proinflammatory cytokines. The genes mediating anorexigenic response of POMC neurons, such as POMC and Socs3, are elevated upon the stimulation of the inflammatory signals. Additionally, the activation of signaling pathways of the POMC neurons induced by leptin or insulin were examined with the conditioned medium. Both leptin or insulin signaling are disrupted at the presence of proinflammatory cytokines. Also, the activation of AMP-activated protein kinase (AMPK), a key metabolic regulator in POMC neurons, is also inhibited by proinflammatory cytokines. Combining all the observations, we conclude that metabolic signaling of POMC neurons are disrupted with inflammation.
參考文獻: 參考文獻\n張立德、林翠品、陳金滄、張讚昌、陳至理、楊堉驎、周秀慧、吳正男、戴國峯、吳文勉、施科念、郭加恩 (2007) 免疫學 華格那出版社\nAbdelaal M, le Roux CW, Docherty NG (2017)Morbidity and mortality associated with obesity. Ann Transl Med. 5(7):161.\nAlber D, Staeheli P. (1996) Partial inhibition of vesicular stomatitis virus by the interferon-induced human 9-27 protein. J Interferon Cytokine Res 165:375-380.\nAshley NT, Weil ZM, Nelson RJ. (2012) Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst 43:385–406.\nAtasoy D, Betley JN, Su HH, Sternson SM. (2012) Deconstruction of a neural circuit for hunger. Nature. 488:172–177.\nBailey CC, Kondur HR, Huang IC, Farzan M. (2013) Interferon-induced Transmembrane Protein 3 Is a Type II Transmembrane Protein. J Biol Chem 288(45): 32184–32193.\nBailey CC, Zhong G, Huang IC, Farzan M (2014) IFITM-Family Proteins: The Cell’s First Line of Antiviral Defense. Annu. Rev. Virol. 1:261–83\nBaumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, Lai CF, Tartaglia LA. (1996) The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci U S A. 93(16):8374-8.\nBoltz-Nitulescu G, Wiltschke C, Holzinger C, Fellinger A, Scheiner O, Gessl A, Förster O. (1987) Differentiation of rat bone marrow cells into macrophages under the influence of mouse L929 cell supernatant. J Leukoc Biol. 41(1):83-91.\nBouret SG, Draper SJ, Simerly RB. (2004) Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci. 24(11):2797-805.\nBrass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ. (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 139(7):1243-1254.\nBraun TP, Marks DL. (2010) Pathophysiology and treatment of inflammatory anorexia in chronic disease. J Cachexia Sarcopenia Muscle. 1:135–45.\nBurke JD, Platanias LC, Fish EN. (2014) Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against coxsackievirus B3. J Virol. 88(6):3485-95.\nChallen GA, Boles N, Lin KK, Goodell MA. (2009) Mouse Hematopoietic Stem Cell Identification And Analysis. Cytometry A. 75(1): 14–24.\nClaret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ. (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest. 117(8):2325-36.\nCota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ. (2006) Hypothalamic mTOR signaling regulates food intake. Science. 312(5775):927-30.\nDagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB. (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin`s effect on food intake. Cell Metab. 16(1):104-12.\nDe Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA. (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 146(10):4192–9.\nDiamond MS, Farzan M. (2013) The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13:46–57\nElmquist JK, Elias CF, Saper CB. (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron. 22:221-232.\nEvans SS, Lee DB, Han T, Tomasi TB, Evans RL. (1990) Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood 76, 2583–93.\nFernández-Riejos P, Najib S, Santos-Alvarez J, Martín-Romero C, Pérez-Pérez A, González-Yanes C, Sánchez-Margalet V. (2010) Role of leptin in the activation of immune cells. Mediators Inflamm. 2010:568343.\nFerrante AW Jr. (2007). Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J. Intern. Med. 262, 408–414.\nFriedman R, Hughes AL. (2002) Molecular evolution of theNF-κβsignaling system. Immunogenetics 53:964–74\nFriedman RL, Manly SP, McMahon M, Kerr IM, Stark GR. (1984) Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell. 38:745–755.\nFritsch SD, Weichhart T. (2016) Effects of Interferons and Viruses on Metabolism. Front Immunol. 7:630. 10.3389\nFujiwara N, Kobayashi K. (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4(3):281-6.\nGao S, Kinzig KP, Aja S, Scott KA, Keung W, Kelly S, Strynadka K, Chohnan S, Smith WW, Tamashiro KL, Ladenheim EE, Ronnett GV, Tu Y, Birnbaum MJ, Lopaschuk GD, Moran TH. (2007) Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci U S A. 104(44):17358-63.\nGhosh S, May MJ, Kopp EB. (1998) NF-κβand Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–60\nHan SM, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H, Chun S, Kim SW, Park JY, Lee KU, Kim MS. (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia. 48(10):2170-8.\nHanagata N, Li X, Morita H, Takemura T, Li J, Minowa T. (2011) Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab 29(3):279-90.\nHill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R, Cowley MA, Cantley LC, Lowell BB, Elmquist JK. (2008) Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest. 118:1796–1805.\nHo HH, Ivashkiv LB. (2006) Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem. 281(20):14111-8.\nHotamisligil GS. (2006). Inflammation and metabolic disorders. Nature 444, 860–867.\nHoward JK, Lord GM, Matarese G, Vendetti S, Ghatei MA, Ritter MA, Lechler RI, Bloom SR. (1999) Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J Clin Invest. 104(8):1051-9.\nHuynh MK, Kinyua AW, Yang DJ, Kim KW. (2016) Hypothalamic AMPK as a regulator of energy homeostasis. Neural Plast. 2016:2754078.\nHyam SR, Lee IA, Gu W, Kim KA, Jeong JJ, Jang SE, Han MJ, Kim DH. (2013) Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur J Pharmacol. 708(1-3):21-9\nJaneway CA, Travers P, Walport M, Shlomchik MJ. (2005) Immunobiology: The Immune System in Health and Disease. New York: Garland Sci.\nJia R, Pan Q, Ding S, Rong L, Liu SL, Geng Y, Qiao W, Liang C. (2012)The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J Virol 86, 13697–707.\nKim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim HS, Park JY, Kim YB, Lee KU. (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 9(7):901-6.\nKlein S.L. and Nelson R.J. (2010) Social Behavior and Parasites. In: Breed M.D. and Moore J., (eds.) Encyclopedia of Animal Behavior, volume 3, pp. 216-225\nLange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TC, Rosenstiel P. (2001) Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol 28:1687–702\nLange UC, Adams DJ, Lee C, Barton S, Schneider R, Bradley A, Surani MA. (2008) Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. Mol Cell Biol 28(15):4688-96.\nLange UC, Saitou M, Western PS, Barton SC, Surani MA. (2003) The Fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev Biol. 3: 1.\nLanglet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, Mazur D, Carmeliet P, Bouret SG, Prevot V, Dehouck B. (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17(4):607-17.\nLanglet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, Mazur D, Carmeliet P, Bouret SG, Prevot V, Dehouck B. (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17(4):607-17.\nLe Thuc O, Stobbe K, Cansell C, Nahon JL, Blondeau N, Rovère C. (2017) Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Front Endocrinol (Lausanne). 14;8:197.\nLeshan RL, Björnholm M, Münzberg H, Myers MG Jr. (2006) Leptin receptor signaling and action in the central nervous system. Obesity (Silver Spring). Suppl 5:208S-212S.\nLi JM, Ge CX, Xu MX, Wang W, Yu R, Fan CY, Kong LD. (2015)Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats. Molecular nutrition & food research. 59(2):189–202.\nLing S., Zhang C., Wang W., Cai X., Yu L., Wu F., Chang L, Tian, C. (2016). Combined approaches of EPR and NMR illustrate only one transmembrane helix in the human IFITM3. Sci Rep, 6:24029.\nLord GM, Matarese G, Howard JK, Bloom SR, Lechler RI. (2002) Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines. J Leukoc Biol. 72(2):330-8.\nLu Y, Zuo Q, Zhang Y, Wang Y, Li T, Han J. (2017) The expression profile of IFITM family gene in rats. Intractable Rare Dis Res 6(4): 274–280.\nMarim FM, Silveira TN, Lima DS Jr, Zamboni DS. (2010) A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS One. 5(12):e15263.\nMartinez FO, Gordon S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 10.12703/P6-13\nMayle A, Luo M, Jeong M, Goodell MA. (2013) Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A. Jan;83(1):27-37.\nMedzhitov R. (2008) Origin and physiological roles of inflammation. Nature 454(7203): 428–435\nMinokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB. (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 428(6982):569-74.\nNathan C. (2002) Points of control in inflammation. Nature 420:846–52\nNazarians-Armavil A, Chalmers JA, Lee CB, Ye W, Belsham DD. (2014) Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways. Journal of Endocrinology 220.1: 13-24.\nNikolic T, Dingjan GM, Leenen PJ, Hendriks RW. (2002) A subfraction of B220(+) cells in murine bone marrow and spleen does not belong to the B cell lineage but has dendritic cell characteristics. Eur J Immunol. 32(3):686-92.\nNiswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr, Seeley RJ, Schwartz MW. (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes. 52(2):227-31.\nNutr Metab Cardiovasc Dis. 18(2):158-68.\nOh TS, Cho H, Cho JH, Yu SW, Kim EK. (2016) Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy. 12(11):2009-2025.\nOuchi N., Parker JL., Lugus JJ., and Walsh K. (2011). Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97.\nOuchi, N., Parker, J. L., Lugus, J. J., and Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97.\nProell M, Riedel SJ, Fritz JH, Rojas AM, Schwarzenbacher R. (2008) The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 3:e2199\nQuan W, Kim HK, Moon EY, Kim SS, Choi CS, Komatsu M, Jeong YT, Lee MK, Kim KW, Kim MS, Lee MS. (2012) Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology. 153(4):1817-26.\nRauch I, Müller M, Decker T. (2013)The regulation of inflammation by interferons and their STATs. JAKSTAT. 2(1):e23820.\nRoach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. (2005) The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. USA 102:9577–82\nSällman Almén M, Bringeland N, Fredriksson R, Schiöth HB. (2012) The dispanins: a novel gene family of ancient origin that contains 14 human members. PLoS One 7(2):e31961\nSamuel CE. (2001) Antiviral actions of interferons. Clin Microbiol Rev. 14(4):778-809\nSanyal AJ (2005). Mechanisms of disease: pathogenesis of nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 46–53.\nSchwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. (2000) Central nervous system control of food intake. Nature 404:661-671.\nSerhan CN, Savill J. (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–97\nShapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, Gupta PB, Hao T, Silver SJ, Root DE, Hill DE, Regev A, Hacohen N. (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell, 139(7):1255-1267.\nStolarczyk E. (2017) Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol. 37:35-40.\nStout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 175(1):342-9\nStout RD, Suttles J. (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 76(3):509-13.\nTakahashi S, Doss C, Levy S, Levy R. (1990)Tapa-1, the Target of an Antiproliferative Antibody, Is Associated on the Cell-Surface with the Leu-13 Antigen. Journal of Immunology 145, 2207–2213.\nThomas C, Moraga I, Levin D, Krutzik P O, Podoplelova Y, Trejo A, Lee, C, Yarden G, Vleck S E, Glenn J S, Nolan G P, Piehler J, Schreiber G, and Garcia K C. (2011) Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 146, 621–632.\nTilg H., and Moschen AR. (2008). Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol. Metab. 19, 371–379.\nTrépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 21(8): 1009–1026.\nValassi E, Scacchi M, Cavagnini F. (2008) Neuroendocrine control of food intake.\nVarela L, Horvath TL. (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 13(12):1079-86.\nVelloso LA, Araújo EP, de Souza CT. (2008) Diet-induced inflammation of the hypothalamus in obesity. Neuroimmunomodulation. 15:189–93.\nWee YS, Weis JJ, Gahring LC, Rogers SW, Weis JH (2015)Age-related onset of obesity corresponds with metabolic dysregulation and altered microglia morphology in mice deficient for Ifitm proteins. PLoS One. 10(4):e0123218.\nWeston S, Czieso S, White IJ, Smith SE, Kellam P, Marsh M. (2014) A membrane topology model for human interferon inducible transmembrane protein 1. PLoS One 9(8):e104341.\nYount JS, Karssemeijer RA, Hang HC. (2012) S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem 287, 19631–41.\nZhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M. (2013) Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci. 33:3624–3632.\nZhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 135(1):61–73.\nZhang Z, Liu J, Li M, Yang H, Zhang C. (2012) Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates. PLoS One 7(11):e49265.
描述: 碩士
國立政治大學
神經科學研究所
104754006
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104754006
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File SizeFormat
400601.pdf2.21 MBAdobe PDF2View/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.