Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/119912
題名: 苯甲酸鈉改善K他命誘發之行為異常
Sodium benzoate ameliorates ketamine-induced behavioral disturbances
作者: 劉奕賢
貢獻者: 陳慧諴、詹銘煥
劉奕賢
關鍵詞: K他命
苯甲酸鈉
抗憂鬱效果
擬精神病行為
麻醉反應
Ketamine
Sodium benzoate
Antidepressant-like responses
Psychotomimetic behaviors
Anesthetic responses
日期: 2018
上傳時間: 3-Sep-2018
摘要: K他命 (Ketamine)是一種合成的解離型麻醉劑,具有快速啟動抗憂鬱效果的作用。近年來,它成為了一種常見的濫用藥物。長期使用K他命會造成突觸功能損傷與行為異常,如 : 社交互動缺陷、認知功能障礙以及憂鬱症傾向的情形發生,亦會降低突觸相關蛋白的表現量。越來越多的研究發現,藉由增強NMDA受體的功能可以改善K他命誘導的行為異常與神經化學變化。苯甲酸鈉 (sodium benzoate)是一種右旋胺基酸氧化酵素酶抑制劑,透過增加D-serine間接增強NMDA受體功能,臨床研究顯示對思覺失調症或憂鬱症患者皆有良好的治療效果。本研究的目標在於檢測sodium benzoate是否可以保護或改善小鼠急性或重複暴露K他命情況下所導致的行為與突觸蛋白異常。結果發現,sodium benzoate在強迫游泳試驗中具有抗憂鬱效果,然而與K他命並不會產生加成的作用。Sodium benzoate增強了K他命在失去翻正反射試驗中的麻醉反應,但減弱了K他命誘導在社交互動行為與新物體辨識能力測試中的擬精神病行為。同時重複給予sodium benzoate與K他命14天顯著地減弱K他命誘導的持續性行為異常,包括社交退縮、認知障礙、類憂鬱症行為與5-HT2A受體介導頭部抽蓄反應的敏感性。此外,透過後給予sodium benzoate方式也能改善重複暴露K他命後的異常行為表現及海馬迴中突觸蛋白表現異常的影響。這些結果推測sodium benzoate可能有助於減緩使用K他命所造成的負面行為影響。
Ketamine is a synthetic dissociative anesthetic and has rapid onset antidepressant effect. It has become a common abused substance, recently. Heavy ketamine use often results in synaptic dysfunction and behavioral disturbances including depression, social deficits, cognitive impairments and decrease synapse-associated protein expression. Growing evidence shows that enhancement of NMDA receptor function can ameliorate the effects of ketamine-induced behavioral and neurochemical responses. Sodium benzoate, an inhibitor of D-amino acid oxidase, can indirectly increase the NMDA receptor function through increasing the levels of D-serine and is also beneficial to the patients with depression or schizophrenia in the clinical study. The present study examined whether sodium benzoate could protect or reverse the behavioral dysfunction and synaptic dysfunction in mice exposed to ketamine acutely or repeatedly. Our results showed that sodium benzoate has antidepressant-like responses in the forced swimming test, whereas it did not produce additive effect with ketamine. Sodium benzoate enhanced the anesthetic responses of ketamine in the loss of righting reflex test, but attenuated the ketamine-induced psychotomimetic behaviors in the social interaction test and novel object recognition test. Repeated cotreatment of sodium benzoate and ketamine for 14 days significantly attenuated ketamine-induced persistent behavioral abnormalities including social withdrawal, recognition impairment, depression-like behaviors and hypersensitiveness of 5-HT2A receptor-mediated head twitch response. Moreover, the behavioral manifestation and lower level of synaptic protein PSD-95 after repeated ketamine exposure could be ameliorated by post-treatment of sodium benzoate. These findings suggest that sodium benzoate might have potential to reduce negative behavioral consequences of heavy ketamine use.
參考文獻: 中文部分\n林仁政 (2016)。二甲基甘胺酸與三甲基甘胺酸對於K他命誘發抗憂鬱與擬精神病行為之效用 (未出版之博士論文)。國防醫學院,臺北市。\n\n英文部分\nAbelaira HM, Reus GZ, Neotti MV, Quevedo J (2014) The role of mTOR in depression and antidepressant responses. Life sciences 101:10-14.\nAdler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry 43:811-816.\nAghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 21:16s-23s.\nAnand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A, Krystal JH (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Archives of general psychiatry 57:270-276.\nAnis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. British journal of pharmacology 79:565-575.\nAutry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91-95.\nBartlett GR (1948) The inhibition of d-amino acid oxidase by benzoic acid and various monosubstituted benzoic acid derivatives. Journal of the American Chemical Society 70:1010.\nBecker A, Grecksch G (2004) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Test of predictive validity. Progress in neuro-psychopharmacology & biological psychiatry 28:1267-1277.\nBecker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced changes in rat behaviour: A possible animal model of schizophrenia. Progress in neuro-psychopharmacology & biological psychiatry 27:687-700.\nBelforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, Quinlan EM, Nakazawa K (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nature neuroscience 13:76-83.\nBergman SA (1999) Ketamine: review of its pharmacology and its use in pediatric anesthesia. Anesthesia progress 46:10-20.\nBerman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351-354.\nBrahmachari S, Jana A, Pahan K (2009) Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Reduces Microglial and Astroglial Inflammatory Responses. Journal of immunology (Baltimore, Md : 1950) 183:5917-5927.\nBreier A, Adler CM, Weisenfeld N, Su TP, Elman I, Picken L, Malhotra AK, Pickar D (1998) Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse (New York, NY) 29:142-147.\nBridges JW, French MR, Smith RL, Williams RT (1970) The fate of benzoic acid in various species. The Biochemical journal 118:47-51.\nBrowne CA, Lucki I (2013) Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Frontiers in pharmacology 4:161.\nChatterjee M, Ganguly S, Srivastava M, Palit G (2011) Effect of `chronic` versus `acute` ketamine administration and its `withdrawal` effect on behavioural alterations in mice: implications for experimental psychosis. Behavioural brain research 216:247-254.\nChen KT, Wu CH, Tsai MH, Wu YC, Jou MJ, Huang CC, Wei IH (2017) Antidepressant-like effects of long-term sarcosine treatment in rats with or without chronic unpredictable stress. Behavioural brain research 316:1-10.\nChen X, Shu S, Bayliss DA (2009) HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:600-609.\nCiardi C, Jenny M, Tschoner A, Ueberall F, Patsch J, Pedrini M, Ebenbichler C, Fuchs D (2012) Food additives such as sodium sulphite, sodium benzoate and curcumin inhibit leptin release in lipopolysaccharide-treated murine adipocytes in vitro. The British journal of nutrition 107:826-833.\nClarke M, Razmjou S, Prowse N, Dwyer Z, Litteljohn D, Pentz R, Anisman H, Hayley S (2017) Ketamine modulates hippocampal neurogenesis and pro-inflammatory cytokines but not stressor induced neurochemical changes. Neuropharmacology 112:210-220.\nD`Souza DC, Ahn K, Bhakta S, Elander J, Singh N, Nadim H, Jatlow P, Suckow RF, Pittman B, Ranganathan M (2012) Nicotine fails to attenuate ketamine-induced cognitive deficits and negative and positive symptoms in humans: implications for schizophrenia. Biol Psychiatry 72:785-794.\nde Bruin NM, Ellenbroek BA, Cools AR, Coenen AM, van Luijtelaar EL (1999) Differential effects of ketamine on gating of auditory evoked potentials and prepulse inhibition in rats. Psychopharmacology 142:9-17.\nDeakin JF, Lees J, McKie S, Hallak JE, Williams SR, Dursun SM (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Archives of general psychiatry 65:154-164.\nDholakia U, Clark-Price SC, Keating SCJ, Stern AW (2017) Anesthetic effects and body weight changes associated with ketamine-xylazine-lidocaine administered to CD-1 mice. PloS one 12:e0184911.\nDing R, Li Y, Du A, Yu H, He B, Shen R, Zhou J, Li L, Cui W, Zhang G, Lu Y, Wu X (2016) Changes in hippocampal AMPA receptors and cognitive impairments in chronic ketamine addiction models: another understanding of ketamine CNS toxicity. Scientific reports 6:38771.\nDuan TT, Tan JW, Yuan Q, Cao J, Zhou QX, Xu L (2013) Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors. Psychopharmacology 228:451-461.\nDuman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science (New York, NY) 338:68-72.\nDuman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends in neurosciences 35:47-56.\nDuman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35-41.\nEbert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM (1997) Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. European journal of pharmacology 333:99-104.\nEgerton A, Brugger S, Raffin M, Barker GJ, Lythgoe DJ, McGuire PK, Stone JM (2012) Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 37:2515-2521.\nEngin E, Treit D, Dickson CT (2009) Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience 161:359-369.\nFeatherstone RE, Liang Y, Saunders JA, Tatard-Leitman VM, Ehrlichman RS, Siegel SJ (2012) Subchronic ketamine treatment leads to permanent changes in EEG, cognition and the astrocytic glutamate transporter EAAT2 in mice. Neurobiology of disease 47:338-346.\nFee C, Banasr M, Sibille E (2017) Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives. Biol Psychiatry 82:549-559.\nFemenia T, Gomez-Galan M, Lindskog M, Magara S (2012) Dysfunctional hippocampal activity affects emotion and cognition in mood disorders. Brain research 1476:58-70.\nFujikawa DG (1995) Neuroprotective effect of ketamine administered after status epilepticus onset. Epilepsia 36:186-195.\nFukumoto K, Iijima M, Chaki S (2016) The Antidepressant Effects of an mGlu2/3 Receptor Antagonist and Ketamine Require AMPA Receptor Stimulation in the mPFC and Subsequent Activation of the 5-HT Neurons in the DRN. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 41:1046-1056.\nGainetdinov RR, Mohn AR, Bohn LM, Caron MG (2001) Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter. Proceedings of the National Academy of Sciences of the United States of America 98:11047-11054.\nGeyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends in pharmacological sciences 29:445-453.\nGhaemi SN (2008) Why antidepressants are not antidepressants: STEP-BD, STAR*D, and the return of neurotic depression. Bipolar disorders 10:957-968.\nGhasemi M, Raza M, Dehpour AR (2010) NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. Journal of psychopharmacology (Oxford, England) 24:585-594.\nGonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439-452.\nGreen SM, Johnson NE (1990) Ketamine sedation for pediatric procedures: Part 2, Review and implications. Annals of emergency medicine 19:1033-1046.\nGreen SM, Roback MG, Kennedy RM, Krauss B (2011) Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. Annals of emergency medicine 57:449-461.\nHirota K, Hashimoto Y, Lambert DG (2002) Interaction of intravenous anesthetics with recombinant human M1-M3 muscarinic receptors expressed in chinese hamster ovary cells. Anesthesia and analgesia 95:1607-1610, table of contents.\nHomayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:11496-11500.\nHowley E et al. (2017) Assessment of the Target Engagement and D-Serine Biomarker Profiles of the D-Amino Acid Oxidase Inhibitors Sodium Benzoate and PGM030756. Neurochemical research 42:3279-3288.\nHuang CC, Wei IH, Huang CL, Chen KT, Tsai MH, Tsai P, Tun R, Huang KH, Chang YC, Lane HY, Tsai GE (2013) Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol Psychiatry 74:734-741.\nHustveit O, Maurset A, Oye I (1995) Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacology & toxicology 77:355-359.\nIbrahim L, Diazgranados N, Luckenbaugh DA, Machado-Vieira R, Baumann J, Mallinger AG, Zarate CA, Jr. (2011) Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression. Progress in neuro-psychopharmacology & biological psychiatry 35:1155-1159.\nIkonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science (New York, NY) 283:70-74.\nImre G, Fokkema DS, Den Boer JA, Ter Horst GJ (2006) Dose-response characteristics of ketamine effect on locomotion, cognitive function and central neuronal activity. Brain research bulletin 69:338-345.\nIrifune M, Shimizu T, Nomoto M, Fukuda T (1995) Involvement of N-methyl-D-aspartate (NMDA) receptors in noncompetitive NMDA receptor antagonist-induced hyperlocomotion in mice. Pharmacology, biochemistry, and behavior 51:291-296.\nIrifune M, Sato T, Kamata Y, Nishikawa T, Dohi T, Kawahara M (2000) Evidence for GABA(A) receptor agonistic properties of ketamine: convulsive and anesthetic behavioral models in mice. Anesthesia and analgesia 91:230-236.\nIrwin SA, Iglewicz A (2010) Oral ketamine for the rapid treatment of depression and anxiety in patients receiving hospice care. Journal of palliative medicine 13:903-908.\nJana A, Modi KK, Roy A, Anderson JA, van Breemen RB, Pahan K (2013) Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders. J Neuroimmune Pharmacol 8:739-755.\nJernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, Karolewicz B (2011) The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Progress in neuro-psychopharmacology & biological psychiatry 35:1774-1779.\nKamiyama H, Matsumoto M, Otani S, Kimura SI, Shimamura KI, Ishikawa S, Yanagawa Y, Togashi H (2011) Mechanisms underlying ketamine-induced synaptic depression in rat hippocampus-medial prefrontal cortex pathway. Neuroscience 177:159-169.\nKapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Molecular psychiatry 7:837-844.\nKhasnavis S, Pahan K (2014) Cinnamon treatment upregulates neuroprotective proteins Parkin and DJ-1 and protects dopaminergic neurons in a mouse model of Parkinson`s disease. J Neuroimmune Pharmacol 9:569-581.\nKilts CD (2001) The changing roles and targets for animal models of schizophrenia. Biol Psychiatry 50:845-855.\nKim HS, Park IS, Lim HK, Choi HS, Oh S, Park WK, Jang CG, Kim SH, Chang MJ (2000) N-Methyl-D-aspartate receptor antagonists enhance the head-twitch response, a 5-hydroxytryptamine2 receptor-mediated behaviour, in reserpine-treated mice. The Journal of pharmacy and pharmacology 52:717-722.\nKohrs R, Durieux ME (1998) Ketamine: teaching an old drug new tricks. Anesthesia and analgesia 87:1186-1193.\nKoike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behavioural brain research 224:107-111.\nKokane SS, Gong K, Jin J, Lin Q (2017) Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats. Neurotoxicology and teratology 63:1-8.\nKrebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F (1983) Studies on the mechanism of the antifungal action of benzoate. The Biochemical journal 214:657-663.\nKrystal JH, Karper LP, Seibyl JP, et al. (1994a) Subanesthetic effects of the noncompetitive nmda antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199-214.\nKrystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB, Jr., Charney DS (1994b) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of general psychiatry 51:199-214.\nKubota K, Ishizaki T (1991) Dose-dependent pharmacokinetics of benzoic acid following oral administration of sodium benzoate to humans. European journal of clinical pharmacology 41:363-368.\nLahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869-872.\nLai CH, Lane HY, Tsai GE (2012) Clinical and cerebral volumetric effects of sodium benzoate, a D-amino acid oxidase inhibitor, in a drug-naive patient with major depression. Biol Psychiatry 71:e9-e10.\nLeonard JV, Morris AA (2002) Urea cycle disorders. Seminars in neonatology : SN 7:27-35.\nLi CR, Zhang S, Hung CC, Chen CM, Duann JR, Lin CP, Lee TS (2017) Depression in chronic ketamine users: Sex differences and neural bases. Psychiatry research Neuroimaging 269:1-8.\nLi N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010a) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science (New York, NY) 329:959-964.\nLi Q, Cheung C, Wei R, Cheung V, Hui ES, You Y, Wong P, Chua SE, McAlonan GM, Wu EX (2010b) Voxel-based analysis of postnatal white matter microstructure in mice exposed to immune challenge in early or late pregnancy. NeuroImage 52:1-8.\nLi X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P (2001) Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40:1028-1033.\nLiao Y, Tang J, Ma M, Wu Z, Yang M, Wang X, Liu T, Chen X, Fletcher PC, Hao W (2010) Frontal white matter abnormalities following chronic ketamine use: a diffusion tensor imaging study. Brain : a journal of neurology 133:2115-2122.\nLiebrenz M, Stohler R, Borgeat A (2009) Repeated intravenous ketamine therapy in a patient with treatment-resistant major depression. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 10:640-643.\nLiebrenz M, Borgeat A, Leisinger R, Stohler R (2007) Intravenous ketamine therapy in a patient with a treatment-resistant major depression. Swiss medical weekly 137:234-236.\nLin H, Kim JG, Park SW, Noh HJ, Kim JM, Yoon CY, Woo NS, Kim B, Il Cho S, Choi BH, Sung DJ, Bae YM (2018) Enhancement of 5-HT2A receptor function and blockade of Kv1.5 by MK801 and ketamine: implications for PCP derivative-induced disease models. Experimental & molecular medicine 50:47.\nLin JC, Lee MY, Chan MH, Chen YC, Chen HH (2016a) Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice. Psychopharmacology 233:3223-3235.\nLin JC, Chan MH, Lee MY, Chen YC, Chen HH (2016b) N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice. Progress in neuro-psychopharmacology & biological psychiatry 71:7-13.\nLindefors N, Barati S, O`Connor WT (1997) Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex. Brain research 759:205-212.\nLiu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK (2013) GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 38:2268-2277.\nLodge D, Mercier MS (2015) Ketamine and phencyclidine: the good, the bad and the unexpected. British journal of pharmacology 172:4254-4276.\nMacDonald JF, Miljkovic Z, Pennefather P (1987) Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. Journal of neurophysiology 58:251-266.\nMacDonald JF, Bartlett MC, Mody I, Pahapill P, Reynolds JN, Salter MW, Schneiderman JH, Pennefather PS (1991) Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. The Journal of physiology 432:483-508.\nMaeng S, Zarate CA, Jr., Du J, Schloesser RJ, McCammon J, Chen G, Manji HK Cellular Mechanisms Underlying the Antidepressant Effects of Ketamine: Role of α-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic Acid Receptors. Biological Psychiatry 63:349-352.\nMalhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 14:301-307.\nMalhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 17:141-150.\nMathew SJ, Murrough JW, aan het Rot M, Collins KA, Reich DL, Charney DS (2010) Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial. The international journal of neuropsychopharmacology 13:71-82.\nMathew SJ, Shah A, Lapidus K, Clark C, Jarun N, Ostermeyer B, Murrough JW (2012) Ketamine for treatment-resistant unipolar depression: current evidence. CNS drugs 26:189-204.\nMoaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, Rosenberg A, Tran T, Xiao Y, Zarate CA, Wainer IW (2013) Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in alpha7 nicotinic acetylcholine receptors. European journal of pharmacology 698:228-234.\nModi KK, Roy A, Brahmachari S, Rangasamy SB, Pahan K (2015) Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer`s Disease. PloS one 10:e0130398.\nMoghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 17:2921-2927.\nMoore KA, Sklerov J, Levine B, Jacobs AJ (2001) Urine concentrations of ketamine and norketamine following illegal consumption. Journal of analytical toxicology 25:583-588.\nMorgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV (2004) Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 29:208-218.\nNagy LR, Featherstone RE, Hahn CG, Siegel SJ (2015) Delayed emergence of behavioral and electrophysiological effects following juvenile ketamine exposure in mice. Translational psychiatry 5:e635.\nNair B (2001) Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate. International journal of toxicology 20 Suppl 3:23-50.\nNarendran R, Frankle WG, Keefe R, Gil R, Martinez D, Slifstein M, Kegeles LS, Talbot PS, Huang Y, Hwang DR, Khenissi L, Cooper TB, Laruelle M, Abi-Dargham A (2005) Altered prefrontal dopaminergic function in chronic recreational ketamine users. The American journal of psychiatry 162:2352-2359.\nNewcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 20:106-118.\nNikiforuk A, Popik P (2012) Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology 220:65-74.\nNishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S, Tohyama M (1998) Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology 88:768-774.\nNishitani N, Nagayasu K, Asaoka N, Yamashiro M, Shirakawa H, Nakagawa T, Kaneko S (2014) Raphe AMPA receptors and nicotinic acetylcholine receptors mediate ketamine-induced serotonin release in the rat prefrontal cortex. The international journal of neuropsychopharmacology 17:1321-1326.\nOrser BA, Pennefather PS, MacDonald JF (1997) Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology 86:903-917.\nOwolabi RA, Akanmu MA, Adeyemi OI (2014) Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test. Neuroscience letters 566:172-176.\nPacheco Dda F, Romero TR, Duarte ID (2014) Central antinociception induced by ketamine is mediated by endogenous opioids and mu- and delta-opioid receptors. Brain research 1562:69-75.\nPhelps LE, Brutsche N, Moral JR, Luckenbaugh DA, Manji HK, Zarate CA, Jr. (2009) Family history of alcohol dependence and initial antidepressant response to an N-methyl-D-aspartate antagonist. Biol Psychiatry 65:181-184.\nPorsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. European journal of pharmacology 47:379-391.\nRajagopal L, Burgdorf JS, Moskal JR, Meltzer HY (2016) GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice. Behavioural brain research 299:105-110.\nRazoux F, Garcia R, Lena I (2007) Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 32:719-727.\nReynolds IJ, Miller RJ (1988) Tricyclic antidepressants block N-methyl-D-aspartate receptors: similarities to the action of zinc. British journal of pharmacology 95:95-102.\nRowland LM, Beason-Held L, Tamminga CA, Holcomb HH (2010) The interactive effects of ketamine and nicotine on human cerebral blood flow. Psychopharmacology 208:575-584.\nRuddy RM, Chen Y, Milenkovic M, Ramsey AJ (2015) Differential effects of NMDA receptor antagonism on spine density. Synapse (New York, NY) 69:52-56.\nRujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H, Giegling I, Genius J, McCarley RW, Moller HJ, Grunze H (2006) A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormalities. Biol Psychiatry 59:721-729.\nRush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. The American journal of psychiatry 163:1905-1917.\nRyan A, Baker A, Dark F, Foley S, Gordon A, Hatherill S, Stathis S, Saha S, Bruxner G, Beckman M, Richardson D, Berk M, Dean O, McGrath J, Group CW, Scott J (2017) The efficacy of sodium benzoate as an adjunctive treatment in early psychosis - CADENCE-BZ: study protocol for a randomized controlled trial. Trials 18:165.\nSams-Dodd F (1996) Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behavioural pharmacology 7:3-23.\nSantini MA, Ratner C, Aznar S, Klein AB, Knudsen GM, Mikkelsen JD (2013) Enhanced prefrontal serotonin 2A receptor signaling in the subchronic phencyclidine mouse model of schizophrenia. J Neurosci Res 91:634-641.\nScaglia F, Carter S, O`Brien WE, Lee B (2004) Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients. Molecular genetics and metabolism 81 Suppl 1:S79-85.\nScheller M, Bufler J, Hertle I, Schneck HJ, Franke C, Kochs E (1996) Ketamine blocks currents through mammalian nicotinic acetylcholine receptor channels by interaction with both the open and the closed state. Anesthesia and analgesia 83:830-836.\nSchneider PG, Rodriguez de Lores Arnaiz G (2013) Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats. Neurochemistry international 62:258-264.\nSernagor E, Kuhn D, Vyklicky L, Jr., Mayer ML (1989) Open channel block of NMDA receptor responses evoked by tricyclic antidepressants. Neuron 2:1221-1227.\nShahani R, Streutker C, Dickson B, Stewart RJ (2007) Ketamine-associated ulcerative cystitis: a new clinical entity. Urology 69:810-812.\nShapiro M (2001) Plasticity, hippocampal place cells, and cognitive maps. Archives of neurology 58:874-881.\nSinner B, Graf BM (2008) Ketamine. Handbook of experimental pharmacology:313-333.\nStefani MR, Moghaddam B (2005) Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia. Biol Psychiatry 57:433-436.\nSteru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367-370.\nSuarez-Santiago JE, Briones-Aranda A, Espinosa-Raya J, Picazo O (2017) Agonist E-6837 and antagonist SB-271046 of 5-HT6 receptors both reverse the depressive-like effect induced in mice by subchronic ketamine administration. Behavioural pharmacology 28:582-585.\nTan S, Rudd JA, Yew DT (2011) Gene expression changes in GABA(A) receptors and cognition following chronic ketamine administration in mice. PloS one 6:e21328.\nThase ME, Haight BR, Richard N, Rockett CB, Mitton M, Modell JG, VanMeter S, Harriett AE, Wang Y (2005) Remission rates following antidepressant therapy with bupropion or selective serotonin reuptake inhibitors: a meta-analysis of original data from 7 randomized controlled trials. The Journal of clinical psychiatry 66:974-981.\nToth B (1984) Lack of tumorigenicity of sodium benzoate in mice. Fundamental and applied toxicology : official journal of the Society of Toxicology 4:494-496.\nTrivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, Shores-Wilson K, Biggs MM, Balasubramani GK, Fava M (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. The American journal of psychiatry 163:28-40.\nTrullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. European journal of pharmacology 185:1-10.\nVan den Berghe-Snorek S, Stankovich MT (1985) Thermodynamic control of D-amino acid oxidase by benzoate binding. The Journal of biological chemistry 260:3373-3379.\nVeliskova J, Velisek L, Mares P, Rokyta R (1990) Ketamine suppresses both bicuculline- and picrotoxin-induced generalized tonic-clonic seizures during ontogenesis. Pharmacology, biochemistry, and behavior 37:667-674.\nWang D, Zhang X, Ye JN, Jia XB, Yang TD (2009) [Effect of orexin-A on recovery from ketamine anesthesia in aged rats]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 29:936-938.\nWatanabe M, Yoshikawa M, Takeyama K, Hashimoto A, Kobayashi H, Suzuki T (2010) Subchronic administration of ketamine decreases the mRNA expression of serine racemase in rat brain. The Tokai journal of experimental and clinical medicine 35:137-143.\nWatanabe Y, Saito H, Abe K (1993) Tricyclic antidepressants block NMDA receptor-mediated synaptic responses and induction of long-term potentiation in rat hippocampal slices. Neuropharmacology 32:479-486.\nWhite PF, Ham J, Way WL, Trevor AJ (1980) Pharmacology of ketamine isomers in surgical patients. Anesthesiology 52:231-239.\nWiescholleck V, Manahan-Vaughan D (2013) Persistent deficits in hippocampal synaptic plasticity accompany losses of hippocampus-dependent memory in a rodent model of psychosis. Frontiers in integrative neuroscience 7:12.\nYan J, Huang Y, Lu Y, Chen J, Jiang H (2014) Repeated administration of ketamine can induce hippocampal neurodegeneration and long-term cognitive impairment via the ROS/HIF-1alpha pathway in developing rats. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 33:1715-1732.\nZanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA, Jr., Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481-486.\nZarate CA, Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Archives of general psychiatry 63:856-864.\nZhao T, Li Y, Wei W, Savage S, Zhou L, Ma D (2014) Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring. Neurobiology of disease 68:145-155.\nZhao T, Li C, Wei W, Zhang H, Ma D, Song X, Zhou L (2016) Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Scientific reports 6:26865.\nZhou C, Douglas JE, Kumar NN, Shu S, Bayliss DA, Chen X (2013) Forebrain HCN1 channels contribute to hypnotic actions of ketamine. Anesthesiology 118:785-795.
描述: 碩士
國立政治大學
神經科學研究所
105754004
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105754004
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File SizeFormat
400401.pdf1.14 MBAdobe PDF2View/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.