Please use this identifier to cite or link to this item:

Title: 以代理人模型預測登革熱疫情之擴散
Prediction of Epidemic Diffusion of Dengue Fever Using Agent-based Model
Authors: 陳怡菁
Chen, Yi-Ching
Contributors: 沈錳坤
Shan, Man-Kwan
Chen, Yi-Ching
Keywords: 代理人模型
Agent-based model
Epidemic diffusion
Dengue fever
Date: 2018
Issue Date: 2018-10-01 12:21:18 (UTC+8)
Abstract: 隨著交通便利性的大幅提升,跨國流通促成高度全球化發展的同時,也加速傳染病疫情的擴散。流行疾病不僅是人類健康的重大威脅,也攸關國家安全,因其將產生難以估計的社會成本,造成大量資源耗費。防疫視同作戰,除了依賴個人進行居家、健康管理之外,政府相關單位也必須在第一時間掌控疫情擴散的情況,立即提出有效阻斷疫情擴散的施行原則,才能降低疫情所造成的傷亡。本研究以台南真實人口年齡分布比例作為人口模擬依據,結合代理人系統發展一套預測模型,並藉由2015年台南登革熱大流行確定病例以驗證模型之準確率。本研究旨在建立可以預測疾病擴散情況之基本模型,以期提升政府相關單位掌控傳染病疫情的能力。
The considerable increase in international transport convenience contributes to the process of globalization, and inevitably accelerates the spread of infectious diseases at the same time. The epidemic is not merely a threat to human health, but also a potential threat to national security for it pushing up enormous social costs and causing unnecessary waste of resources. Infection prevention and control of epidemic is crucial at both individual and institutional level. People should stay alert and be an active participant in their own care. The government should be able to implement effective strategies to c¬¬¬¬ontrol the spread of the epidemic and reduce the damage immediately. This thesis aims to apply the agent-based model and use the demographic data of Tainan City to develop a predictive model of epidemic spreading. The medical records of the outbreak of Dengue fever happened in Tainan in 2015 are utilized to measure the accuracy of this model. This thesis provides a contribution to the study of epidemic control and helps the government to enhance its capacity for monitoring the infectious disease.
Reference: [1]Achrekar, H., Gandhe, A., Lazarus, R., Yu, S., and Liu, B. Predicting Flu Trends using Twitter Data. The 30th IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2011.
[2]Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M.,Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R. W., Simmons, C. P., Scott, T. W., Farrar, J. J., and Hay, S. I. The Global Distribution and Burden of Dengue. Nature, Vol. 496, pp. 504–507, 2013.
[3]Diethelm, K. A Fractional Calculus Based Model for the Simulation of an Outbreak of Dengue Fever. Nonlinear Dynamics, Vol. 71, No. 4, pp. 613–619, 2013.
[4]Gubler, D. J. Dengue and Dengue Hemorrhagic Fever. Clinical Microbiology Reviews, Vol. 11, No. 3, pp. 480-496, 1998.
[5]Kermack, W.O. and McKendrick, A. G. A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London, Vol. 115, No. 772, pp. 700-721, 1927.
[6]Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A., and Rocklov, J. Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. PLoS ONE, Vol. 9, No. 3, e89783, 2014.
[7]Macal, C. M. and North, M. J. Tutorial on Agent-based Modelling and Simulation. Journal of Simulation, Vol. 4, No. 3, pp. 151-162, 2010.
[8]Medeiros, L. C. de C., Castilho, C. A. R., Braga, C., de Souza, W. V., Regis, L., and Monteiro, A. M. V. Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence. PLoS Neglected Tropical Diseases, Vol. 5, No. 1, e942, 2011.
[9]Murray, N. E. A., Quam, M. B., and Wilder-Smith, A. Epidemiology of Dengue: Past, Present and Future Prospects. Clinical Epidemiology, No. 5, pp. 299–309, 2013.
[10]Mutheneni, S.R., Mopuri, R., Naish, S., Gunti, D., and Upadhyayula, S. M. Spatial Distribution and Cluster Analysis of Dengue using Self Organizing Maps in Andhra Pradesh, India, 2011-2013. Parasite Epidemiology and Control, Vol. 3, No. 1, pp. 52-61, 2018.
[11]Patz, J. A., Martens, W. J., Focks, D. A., and Jetten, T. H. Dengue Fever Epidemic Potential as Projected by General Circulation Models of Global Climate Change. Environmental Health Perspectives, Vol. 106, No. 3, pp. 147-153, 1998.
[12]Racloz, V., Ramsey, R., Tong, S., and Hu, W. Surveillance of Dengue Fever Virus: A Review of Epidemiological Models and Early Warning Systems. PLoS Neglected Tropical Diseases, Vol. 6, No. 5, e1648, 2012.
[13]Wu, P., Lay, J., Guo, H., Lin, C., Lung, S., and Su, H. Higher Temperature and Urbanization Affect the Spatial Patterns of Dengue Fever Transmission in Subtropical Taiwan. Science of The Total Environment, Vol. 407, No. 7, pp. 2224-2233, 2009.
[14]Yu, H., Yang, S., Yen, H., and Christakos, G. A Spatio-temporal Climate-based Model of Early Dengue Fever Warning in Southern Taiwan. Stochastic Environmental Research and Risk Assessment, Vol. 25, No. 4, pp. 485–494, 2011.
[15]Zafarani, R., Abbasi, M. A., and Liu, H. Social Media Mining: An Introduction. Cambridge University Press, 2014.
[16]Lo, Y. 「2015年台灣登革熱疫情:疫情現況、臨床診治及防治政策」。(檢索日期:2018.07.15,
[19]世界衛生組織,Dengue control: Epidemiology,
[23]政府資料開放平臺,「購屋及遷徙—村里戶數、單一年齡人口」, dataset/32973
[27]曾詩婷,「麻疹風暴擴大!林口長庚群聚感染殃及護理人員 正追蹤接觸者980人」。風傳媒,2018.04.22。(檢索日期 2018.07.10,
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[資訊科學系碩士在職專班] 學位論文

Files in This Item:

File SizeFormat
101201.pdf3501KbAdobe PDF0View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing