English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89192/118972 (75%)
Visitors : 23702467      Online Users : 66
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/128129


    Title: 電動汽車儲能對電網售電營運模式之成本有效性分析
    Cost-Effectiveness Analysis of the Operation Model of Electric Vehicle-to-Grid
    Authors: 蔡志祥
    Tsai, Chih-Hsiang
    Contributors: 許志義
    Hsu, Jyh-Yih
    蔡志祥
    Tsai, Chih-Hsiang
    Keywords: 電動汽車
    成本有效性分析
    車對電網
    再生能源
    電力儲能
    electric vehicles
    cost-effectiveness analysis
    vehicle to grid
    renewable energy
    energy storage
    Date: 2019
    Issue Date: 2020-01-03 15:58:09 (UTC+8)
    Abstract: 隨著近年來越來越多再生能源加入電網,電力產業需要儲能設備平衡電網供需,以維持電力系統的穩定度。電力產業除了建置電池儲能系統,可以選擇電動汽車的電池作為儲能設備之替代方案。電動汽車可以藉由車對電網(Vehicle to Grid, V2G)的技術,當不作為交通用途使用時,電動汽車的電池扣除移動所需之容量,可以藉由整合商聚集大規模數量之電動汽車,便可以提供可觀的儲存量能,對於電力公司可以節省建置儲能設備之成本,整合商、電動汽車車主可以從V2G的商業模式中獲益。本研究分析台灣電動汽車參與V2G商業模式之下,相對於傳統汽車之成本有效性分析。
    本研究首先比較電動汽車與傳統汽車之差異,釐清電動汽車所需考慮之成本項目以及如何估算;接著說明電動汽車與V2G的商業模式,探討V2G營運模式如何興起,而電動汽車如何從其營運模式中獲益;最後解釋V2G的概念,為電動汽車參與V2G商業模式提供相關技術背景架構。
    本研究的研究方法是成本效益分析中的成本有效性分析法,分別計算傳統汽車以及電動汽車之使用成本,對於車主自己以及整體社會之影響,並考量免除電動汽車牌照稅以及電動汽車參與V2G商業模式對於使用成本之改變。
    本研究結果顯示,從汽車車主觀點,Nissan Leaf的使用成本低於110萬以上傳統汽車,而當同時免除電動汽車牌照稅、電動汽車參與V2G商業模式時,Tesla Model 3的使用成本僅高於70萬以上傳統汽車之使用成本。對於整體社會而言,Nissan Leaf的使用成本低於110萬以上傳統汽車的使用成本,Tesla Model 3的使用成本低於130萬以上傳統汽車的使用成本。電動汽車參與V2G商業模式時,對於整體社會而言,兩款電動汽車的使用成本皆低於90萬以上傳統汽車德使用成本。本研究最後針對電動汽車V2G商業模式加以引申探討其經濟意涵。
    With more and more renewable energy feed-in to the grid in recent years, the power industry needs energy storage equipment to balance the supply and demand to maintain the stability of the power system. Without energy storage equipment, the power industry can choose the battery of the electric vehicle as an alternative. Electric vehicles can provide its battery capacity deducted from required for movement when it is not used for transportation purposes by Vehicle to Gird (V2G) technology. Aggregators can integrate the large number of electric vehicles so that can provide considerable storage capacity. Power companies can save on the cost of building energy storage equipment and aggregators and electric vehicle owners can benefit from V2G's business model. The purpose of this study is to analyzes the cost-effectiveness of Taiwan's electric vehicles under V2G’s business model compared to traditional vehicles.
    First of all, this study compares the differences between electric vehicles and traditional vehicles, clarifies the cost items needed to be considered for electric vehicles and how to estimate them. Secondly, this study explains what is the V2G model, describes how this model is emerging, and how electric vehicles can benefit from it. Finally, this study explains the concept of vehicle to grid, and provides relevant technical background for the V2G model of electric vehicles.
    The research method of this study is the cost-effectiveness analysis. By simulating the influence on the car owners and the society as a whole when car owners’ purchasing electric cars comparing to traditional cars. On the other hand, this study considers exemption of electric vehicle license tax and electric vehicles benefit from V2G business model as changes in net present value and benefit-cost ratio.
    The results of this study show that for car owners, only the cost of using 1.1 million traditional car owners are lower than Nissan Leaf. When the electric vehicle license tax is waived and electric vehicles participate in the V2G business model, only the cost of using 700,000 traditional car owners lower than Tesla Model 3. For the whole society, the cost of using Nissan Leaf is lower than 1.1 million traditional car, and the cost of using Tesla Model 3 is lower than 1.3 million traditional car. When electric vehicles participate in the V2G business model, it is lower cost for the whole society to have these two kinds of electric vehicles than 900,000 traditional cars. Finally, this study infers economic implications of the V2G business model for electric vehicles.
    Reference: 一、 中文文獻
    (一)書籍
    郭昱瑩(2007)。《成本效益分析》。台北:華泰文化。
    蕭代基、鄭蕙燕、吳珮瑛、錢玉蘭、溫麗琪(2002)。《環境保護之成本效益分析:理論、方法與應用》。台北:俊傑書局股份有限公司。
    (二)期刊論文
    吳念祺、陳彥豪(2011)。電動車成本結構分析及對傳統汽車產業之影響。台灣經濟月刊,第34卷第11期,頁75-82。
    張嘉諳、藍柏荏、林彥均、羅亭竣、呂承鴻、劉人豪、陳斌魁(2014)。智慧電網及推動再生能源面臨的挑戰。臺灣能源期刊,第1卷第2期,頁259-281。
    (三)政府報告
    交通部統計處(2017)。自用小客車使用狀況調查報告。
    經濟部能源局(2017)。智慧電網總體規劃方案。
    (四)碩博士學位論文
    張國廷(2006)。《都市旅次外部成本之研究》。國立臺灣大學土木工程學研究所碩士輪文。
    游晨廷(2017)。《電動機車商業模式之經濟效益分析:共享經濟vs.電池租賃》。國立政治大學經濟學研究所碩士輪文。
    劉庭瑋(2017)。《台灣社會折現率之實證研究》。國立台北大學自然資源與環境管理研究所碩士輪文。
    (五)網路資源
    8891新車網。8891新車網。上網日期:2018年12月28日,檢自:https://c.8891.com.tw/
    Tesla台灣官方網站。TESLA。上網日期:2018年12月28日,檢自:https://www.tesla.com/zh_TW/
    台達電子。台達電動車充電解決方案獲BMW台灣總代理汎德肯定 為台北市打造20處電動車充電站。上網日期:2018年12月28日,檢自:http://www.deltaww.com/news/pressDetail.aspx?secID=3&pID=1&typeID=1;2&itemID=7104&tid=0&hl=zh-TW
    台灣電力公司。台灣電力公司。上網日期:2018年12月28日,檢自:https://www.taipower.com.tw/tc/index.aspx
    行政院。空氣污染防制行動方案(紅害減半大作戰)。上網日期:2018.12.25,檢自:https://www.ey.gov.tw/Page/448DE008087A1971/5638596f-c460-4a12-9e62-d623d34f67d1
    財政部。認識使用牌照稅。上網日期:2018.12.25,檢自:https://www.etax.nat.gov.tw/etwmain/web/ETW118W/CON/407/6766142868914425732?tagCode=
    經濟部能源局。甚麼是「智慧電網」,上網日期:2019年1月11日。檢自:http://www.smartgrid.org.tw/About/
    經濟部能源局。2017年電力排碳係數,上網日期:2018.12.05。檢自:https://www.moeaboe.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=6989。

    二、 英文文獻
    (ㄧ)書籍
    Warner, J. (2015). The Handbook of Lithium-Ion Battery Pack Design. Amsterdam, Oxford, Waltham: Elsevier Science.
    (二)期刊
    Baker, E., Chon, H., & Keisler, J. (2010). Battery technology for electric and hybrid vehicles: Expert views about prospects for advancement. Technological Forecasting and Social Change, 77(7), 1139–1146.
    Budde Christensen, Wells, & Cipcigan. (2012). Can innovative business models overcome resistance to electric vehicles? Better Place and battery electric cars in Denmark. Energy Policy, 48, 498-505.
    Delucchi, & Lipman. (2001). An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transportation Research Part D, 6(6), 371-404.
    Faria, Marques, Moura, Freire, Delgado, & De Almeida. (2013). Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renewable and Sustainable Energy Reviews, 24, 271-287.
    Gough, Dickerson, Rowley, & Walsh. (2017). Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage. Applied Energy, 192(C), 12-23.
    Guille, & Gross. (2009). A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy, 37(11), 4379-4390.
    Kley, Lerch, & Dallinger. (2011). New business models for electric cars—A holistic approach. Energy Policy, 39(6), 3392-3403.
    Kempton, & Tomić. (2005). Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources, 144(1), 280-294.
    Lane, Dumortier, Carley, Siddiki, Clark-Sutton, & Graham. (2018). All plug-in electric vehicles are not the same: Predictors of preference for a plug-in hybrid versus a battery-electric vehicle. Transportation Research Part D, 65, 1-13.
    Laurischkat, K., Viertelhausen, A., & Jandt, D. (2016). Business Models for Electric Mobility. Procedia CIRP, 47, 483-488. doi: 10.1016/j.procir.2016.03.042
    Levinson, R., & West, T. (2018). Impact of public electric vehicle charging infrastructure. Transportation Research Part D-Transport And Environment, 64, 158-177.
    Lund, & Kempton. (2008). Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy, 36(9), 3578-3587.
    Noel, & Mccormack. (2014). A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Applied Energy, 126(C), 246-255.
    Onat, Kucukvar, & Tatari. (2015). Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Applied Energy, 150, 36-49.
    Propfe, B., Redelbach, M., Santini, D. J., & Friedrich, H. (2012). Cost analysis of plug-in hybrid electric vehicles including maintenance & repair costs and resale values, World Electr. Veh. J., 5(4), 886-895.
    Rangaraju, De Vroey, Messagie, Mertens, & Van Mierlo. (2015). Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study. Applied Energy, 148, 496-505.
    Razeghi, Carreras-Sospedra, Brown, Brouwer, Dabdub, & Samuelsen. (2016). Episodic air quality impacts of plug-in electric vehicles. Atmospheric Environment, 137(C), 90-100.
    Ruan, Walker, & Zhang. (2016). A comparative study energy consumption and costs of battery electric vehicle transmissions. Applied Energy, 165(C), 119-134.
    Steven Chu, & Arun Majumdar. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294-303.
    Turton, & Moura. (2008). Vehicle-to-grid systems for sustainable development: An integrated energy analysis. Technological Forecasting & Social Change, 75(8), 1091-1108.
    Uddin, Dubarry, & Glick. (2018). The viability of vehicle-to-grid operations from a battery technology and policy perspective. Energy Policy, 113, 342-347.
    Weldon, Morrissey, & O’mahony. (2018). Long-term cost of ownership comparative analysis between electric vehicles and internal combustion engine vehicles. Sustainable Cities and Society, 39, 578-591.
    Wolbertus, Kroesen, Van Den Hoed, & Chorus. (2018). Policy effects on charging behaviour of electric vehicle owners and on purchase intentions of prospective owners: Natural and stated choice experiments. Transportation Research Part D, 62(C), 283-297.
    (三)專案報告
    Cluzel C, Douglas C. (2012). Cost and performance of EV batteries: final report for the committee on climate change.
    Electric Power Research Institute (2016). Vehicle-to-Grid:State of the Technology, Markets, and Related Implementation.
    International Energy Agency (2018).Global EV Outlook 2018.
    UK Power Networks & Innovate UK (2018). V2G Global Roadtrip: Around the world in 50 projects.
    (四)網路資源
    European Union Emission Trading Scheme, Retrieved December 28 2018, from: https://sandbag.org.uk/carbon-price-viewer/
    Model 3 Could Change The World: A Cost Of Ownership Study, Retrieved December 28 2018 , from: https://loupventures.com/model-3-could-change-the-world-a-cost-of-ownership-study/
    2019 Nissan Leaf, Retrieved December 28 2018, from: https://www.nissanusa.com/vehicles/electric-cars/leaf.html
    Description: 碩士
    國立政治大學
    經濟學系
    106258001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106258001
    Data Type: thesis
    DOI: 10.6814/NCCU201901298
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File SizeFormat
    800101.pdf2782KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback