Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/131898


Title: 在虛擬實境中基於個人動暈敏感性以客製化機制減輕暈眩之可行性探討
Reducing Motion Sickness in VR by Customized Mechanism According to Individual Susceptibility: A Feasibility Study
Authors: 謝宜庭
Hsieh, Yi-Ting
Contributors: 李蔡彥
陳宜秀

Li, Tsai-Yen
Chen, Yi-Hsiu

謝宜庭
Hsieh, Yi-Ting
Keywords: 虛擬實境
動暈症
移動錯覺
減輕暈眩
動暈敏感性
客製化
Date: 2020
Issue Date: 2020-09-02 13:07:30 (UTC+8)
Abstract: 隨著虛擬實境蓬勃發展,VR的市場亦日漸龐大,但是其所帶來的暈眩問題卻始終存在,讓無數使用者苦不堪言,其中又以控制器為主之靜態虛擬實境系統最為嚴重。雖然目前學界、業界已發明出了許多減緩暈眩的機制,不過相對都有其缺點與限制,而其中最重要的是這些機制似乎是普世通用的,且大多限制在單一旋轉或平移情境中使用。然而,每個人的動暈敏感程度不盡相同,倘若都採用一樣的機制類型,可能會讓敏感的人無法真正受惠、達到舒適最大化,不敏感的人則要犧牲體驗、換取不必要的減暈效果。因此,本研究針對個人動暈敏感性、客製化的減暈機制類型、旋轉和平移並行之情境提出一個整合性的研究,希望探討在綜合情境下,是否能夠依照人們不同的動暈敏感程度,給定客製化的機制以降低其不適感,讓每位使用者都能在VR中擁有最舒適的狀態,以最少的暈眩感,獲得最好的體驗。
本研究總共分成兩階段的實驗,在第一階段的初步研究中,透過旋轉和平移情境各五種速度,分別找出一個能區分不同動暈敏感特性的臨界速度值,並且依照此結果設計一套前置測試系統,以用來量測移動錯覺的動暈敏感程度。在第二階段的正式實驗中,我們藉由此系統作為預試,將受試者依照其旋轉、平移敏感的高和低,分成四種動暈敏感組別,並導入學者發明的旋轉、平移減暈機制,分別給定開和關所組成的四種減暈模式,以了解各組別在各模式下的反應。從實驗結果的趨勢中,我們觀察到特定的動暈敏感組別、在特定的減暈模式下,確實有助於減輕暈眩,且每個人對於旋轉錯覺和平移錯覺在動暈敏感性上亦存在差異,證實了客製化減暈的可行性與必要性。透過此研究,我們期望能為日後的虛擬實境暈眩領域,提供新的發展方向和對客製化研究的相關建議與參考。
Reference: [1] R. S. Kennedy, K. M. Stanney, and W. P. Dunlap, “Duration and Exposure to Virtual Environments: Sickness Curves During and Across Sessions,” Presence Teleoperators Virtual Environ., vol. 9, no. 5, pp. 463–472, Oct. 2000.
[2] “ESSENTIAL FACTS About the computer and video game industry,” 2017.
[3] C. Boletsis, “The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology,” Multimodal Technol. Interact., vol. 1, no. 4, p. 24, Sep. 2017.
[4] C. Boletsis and J. E. Cedergren, “VR Locomotion in the New Era of Virtual Reality: An Empirical Comparison of Prevalent Techniques,” Adv. Human-Computer Interact., vol. 2019, 2019.
[5] J. J. LaViola, “A discussion of cybersickness in virtual environments,” ACM SIGCHI Bull., vol. 32, no. 1, pp. 47–56, Jan. 2000.
[6] L. Rebenitsch and C. Owen, “Review on cybersickness in applications and visual displays,” Virtual Reality, vol. 20, no. 2, pp. 101–125, 2016.
[7] Y. Y. Kim, H. J. Kim, E. N. Kim, H. D. Ko, and H. T. Kim, “Characteristic changes in the physiological components of cybersickness,” Psychophysiology, vol. 42, no. 5, pp. 616–625, Aug. 2005.
[8] M. S. Dennison, A. Z. Wisti, and M. D’Zmura, “Use of physiological signals to predict cybersickness,” Displays, vol. 44, pp. 42–52, Sep. 2016.
[9] M. E. McCauley and T. J. Sharkey, “Cybersickness: Perception of Self-Motion in Virtual Environments,” Presence Teleoperators Virtual Environ., vol. 1, no. 3, pp. 311–318, Jan. 1992.
[10] L. J. Hettinger and G. E. Riccio, “Visually Induced Motion Sickness in Virtual Environments,” Presence Teleoperators Virtual Environ., vol. 1, no. 3, pp. 306–310, Jan. 1992.
[11] J. Reason and J. Brand, Motion sickness. 1975.
[12] E. M. Kolasinski, “Simulator Sickness in Virtual Environments,” United States Army Research Institute for the Behavioral and Social Sciences, vol. 1027, no. 4. p. 68, 1995.
[13] J. C. Glover, “Vestibular System,” in Encyclopedia of Neuroscience, Elsevier Ltd, pp. 127–132, 2004.
[14] G. E. Riccio and T. A. Stoffregen, “An ecological Theory of Motion Sickness and Postural Instability,” Ecol. Psychol., vol. 3, no. 3, pp. 195–240, Sep. 1991.
[15] T. A. Stoffregen and L. J. Smart, “Postural instability precedes motion sickness,” Brain Res. Bull., vol. 47, no. 5, pp. 437–448, Nov. 1998.
[16] M. Treisman, “Motion sickness: an evolutionary hypothesis,” Science (80-. )., vol. 197, no. 4302, pp. 493–495, Jul. 1977.
[17] I. B. McIntosh, “Motion Sickness—Questions and Answers,” J. Travel Med., vol. 5, no. 2, pp. 89–91, Jun. 1998.
[18] S. Klosterhalfen, S. Kellermann, F. Pan, U. Stockhorst, G. Hall, and P. Enck, “Effects of ethnicity and gender on motion sickness susceptibility.,” Aviat. Space. Environ. Med., vol. 76, no. 11, pp. 1051–1057, Nov. 2005.
[19] L. L. Arns and M. M. Cerney, “The relationship between age and incidence of cybersickness among immersive environment users,” in IEEE Proc. VR 2005. Virtual Reality, 2005., pp. 267–268, 2005.
[20] Z. H. Taha, Y. H. Jen, R. A. R. Gadzila, and A. P. T. Chai, “The effect of body weight and height on incidence of cyber sickness among immersive environment malaysian users,” in Proc. of 17th World Congress on Ergonomics, 2009.
[21] K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience.,” Hum. Factors, vol. 45, no. 3, pp. 504–20, Sep. 2003.
[22] L. Rebenitsch and C. Owen, “Individual variation in susceptibility to cybersickness,” in Proc. 27th Annu. ACM Symp. User Interface Softw. Technol. (UIST 2014), pp. 309–318, 2014.
[23] S. Weech, J. P. Varghese, and M. Barnett-Cowan, “Estimating the sensorimotor components of cybersickness,” J. Neurophysiol., vol. 120, no. 5, pp. 2201–2217, Nov. 2018.
[24] B. Keshavarz, B. E. Riecke, L. J. Hettinger, and J. L. Campos, “Vection and visually induced motion sickness: how are they related?,” Front. Psychol., vol. 6, no. APR, Apr. 2015.
[25] L. C. Trutoiu, B. J. Mohler, J. Schulte-Pelkum, and H. H. Bülthoff, “Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection,” Comput. Graph., vol. 33, no. 1, pp. 47–58, Feb. 2009.
[26] A. Kemeny, P. George, F. Mérienne, and F. Colombet, “New VR navigation techniques to reduce cybersickness,” in Proc. of International Symposium on Electronic Imaging Science and Technology, pp. 48–53, 2017.
[27] R. H. Y. So, W. T. Lo, and A. T. K. Ho, “Effects of Navigation Speed on Motion Sickness Caused by an Immersive Virtual Environment,” Hum. Factors J. Hum. Factors Ergon. Soc., vol. 43, no. 3, pp. 452–461, Sep. 2001.
[28] S. Hu, R. M. Stern, M. W. Vasey, and K. L. Koch, “Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum.,” Aviat. Space. Environ. Med., vol. 60, no. 5, pp. 411–414, 1989.
[29] C. Mueller, G. Wiest, and L. Deecke, “Vertically moving visual stimuli and vertical vection: A tool against space motion sickness,” in Proc. of Fourth European Symposium on Life Sciences Research in Space p 157-161(SEE N 91-19572 11-51), 1990.
[30] R. S. Kennedy, L. J. Hettinger, D. L. Harm, J. M. Ordy, and W. P. Dunlap, “Psychophysical Scaling of Circular Vection (CV) Produced by Optokinetic (OKN) Motion: Individual Differences and Effects of Practice,” J. Vestib. Res., vol. 6, no. 5, pp. 331–341, 1996.
[31] A. S. Fernandes and S. K. Feiner, “Combating VR sickness through subtle dynamic field-of-view modification,” in Proc. of 2016 IEEE Symposium on 3D User Interfaces, 3DUI 2016, pp. 201–210, 2016.
[32] P. Budhiraja, M. R. Miller, A. K. Modi, and D. Forsyth, “Rotation Blurring: Use of Artificial Blurring to Reduce Cybersickness in Virtual Reality First Person Shooters,” arXiv:1710.02599, Oct. 2017.
[33] Y. Farmani and R. J. Teather, “Viewpoint snapping to reduce cybersickness in virtual reality,” in Proc. of Graph. Interface, vol. 2018-May, pp. 159–166, 2018.
[34] E. Bozgeyikli, A. Raij, S. Katkoori, and R. Dubey, “Point & Teleport locomotion technique for virtual reality,” in Proc. of the 2016 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY 2016), pp. 205–216, 2016.
[35] Y. Farmani and R. J. Teather, “Evaluating discrete viewpoint control to reduce cybersickness in virtual reality,” Virtual Real., Jan. 2020.
[36] J. Plouzeau, J.-R. Chardonnet, and F. Merienne, “Using Cybersickness Indicators to Adapt Navigation in Virtual Reality: A Pre-Study,” in Proc. of 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 14, pp. 661–662, 2018.
[37] W. T. Lo and R. H. Y. So, “Cybersickness in the presence of scene rotational movements along different axes,” Appl. Ergon., vol. 32, no. 1, pp. 1–14, Feb. 2001.
[38] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, “Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness,” Int. J. Aviat. Psychol., vol. 3, no. 3, pp. 203–220, Jul. 1993.
[39] S. Davis, K. Nesbitt, and E. Nalivaiko, “Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters,” in Proc. of 11th Australasian Conference on Interactive Entertainment (IE 2015), pp. 27–30, 2015.
[40] K. Rahimi Moghadam, C. Banigan, and E. D. Ragan, “Scene Transitions and Teleportation in Virtual Reality and the Implications for Spatial Awareness and Sickness,” IEEE Transactions on Visualization and Computer Graphics, IEEE Computer Society, 2018.
[41] J. F. Golding, “Predicting individual differences in motion sickness susceptibility by questionnaire,” Pers. Individ. Dif., vol. 41, no. 2, pp. 237–248, Jul. 2006.
[42] T. Schubert, F. Friedmann, and H. Regenbrecht, “The experience of presence: Factor analytic insights,” Presence Teleoperators Virtual Environ., vol. 10, no. 3, pp. 266–281, Jun. 2001.
[43] S. Weech, S. Kenny, and M. Barnett-Cowan, “Presence and cybersickness in virtual reality are negatively related: A review,” Frontiers in Psychology, vol. 10, no. FEB. Frontiers Media S.A., 04-Feb-2019.
Description: 碩士
國立政治大學
數位內容碩士學位學程
107462001
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107462001
Data Type: thesis
Appears in Collections:[數位內容碩士學位學程] 學位論文
[數位內容碩士學位學程] 學位論文

Files in This Item:

File Description SizeFormat
200101.pdf5121KbAdobe PDF0View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing