Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/50995
題名: 蛋白激酶 CK2 在大鼠腦部之抗細胞凋亡機制的探討
The anti-apoptotic mechanisms of protein kinase CK2 in the brain of rat
作者: 張家銘
貢獻者: 趙知章
張家銘
關鍵詞: 蛋白激酶 CK2
血清反應因子
Mcl-1
DARPP-32
Bcl-xL
抗細胞凋亡
protein kinase CK2
SRF
Mcl-1
DARPP-32
Bcl-xL
anti-apoptosis
日期: 2010
上傳時間: 29-Sep-2011
摘要: 蛋白激酶 CK2 是一種具有多種功能的絲胺酸/蘇胺酸蛋白質激酶,CK2 作用的受質眾多且廣泛表現在哺乳類動物細胞中,對於細胞週期的發展、轉錄作用以及抗細胞凋亡等機制扮演非常重要的角色。在神經系統中,CK2 已知可以保護神經細胞以抵抗外來的傷害,但是其分子層面的機制目前尚未釐清。本篇論文的研究重點在於探討 CK2 保護作用可能參與的細胞分子機制。血清反應因子 SRF 是一種哺乳類動物細胞的轉錄因子,調控基因的轉錄作用來促進細胞的存活。Mcl-1 是抗細胞凋亡家族 Bcl-xL 家族蛋白成員之一,可以促進細胞的存活能力。先前研究指出,SRF 會受到 CK2 的磷酸化作用而增加本身的 DNA 結合能力。在其他研究也指出,Mcl-1 會受到 SRF 的調控。在本篇論文的第一部份,著重於 Mcl-1 的表現是否會受到 CK2 調控 SRF 的路徑所影響,實驗結果顯示,轉染野生型 CK2α 質體 DNA 可以增加海馬迴 CA1 腦區的 SRF 磷酸化,而轉染不活化的突變型 CK2αΑ156 質體 DNA 則會減少 SRF 的磷酸化。更進一步,轉染野生型 CK2α 會增加 Mcl-1 的 mRNA 及蛋白質表現,轉染突變型 CK2αΑ156 則減少 Mcl-1 的表現。此外,轉染突變型 SRF99A 也會減少 Mcl-1 的 mRNA 及蛋白質表現;而且在共同轉染實驗中,SRF99A 會拮抗野生型 CK2α 對促進的 Mcl-1 蛋白質表現的作用。\r\n 另一方面,DARPP-32 是一個在新紋狀體神經細胞中具有調控多巴胺訊息效力的訊息傳遞分子。先前研究指出,DARPP-32 具有抗細胞凋亡的功能,且發現在 DARPP-32 Ser102 氨基酸會受 CK2 的磷酸化作用。因此,本篇論文的第二部份主要是探討 CK2 的抗細胞凋亡能力是否是透過磷酸化 DARPP-32 來調控。實驗結果顯示,轉染野生型 CK2α 可以增加紋狀體 DARPP-32 的磷酸化,而轉染不活化的突變型 CK2αΑ156 則會減少 DARPP-32 的磷酸化。此外,轉染 CK2α 的小干擾 RNA (siRNA) 可以抑制內生性的 CK2 表現,同時也會減少 DARPP-32 的磷酸化以及抗細胞凋亡蛋白, Bcl-xL 的表現。綜合這些實驗結果,CK2α可以分別透過 SRF 或 DARPP-32 調控的訊息傳遞來促進 Mcl-1 或 Bcl-xL 的表現進而調控神經系統的抗細胞凋亡機制。
Protein kinase CK2 is a multifunctional serine/threonine protein kinase with many protein substrares and is ubiquitously expressed in mammalian cells to play an important role in cell cycle progression, transcription, and anti-apoptosis. In the nervous system, CK2 is shown to protect neurons against injury, but the cellular mechanisms are not well studies. In the present studies, we investigate which cellular mechanism might involve in the CK2 protection effects. The serum response factor (SRF) is a mammalian transcription factor which mediates some gene transcriptions relevent to promote the cell survival. The Myeloid cell leukemin 1 (Mcl-1) is one of the anti-apoptotic Bcl-2 family members and is involved in promoting cell viability. Previous studied have revealed that the SRF phosphorylation by CK2 can enhance its DNA-binding activity. The regulation of Mcl-1 by SRF has also been reported in other studies. In the first part of the present studies, we investigate whether the Mcl-1 expression is regulated by CK2 through SRF mediated pathway. The results from wildtype CK2α plasmid DNA transfection revealed that the phosphorylated SRF were increased in hippocampus CA1 region, whereas transfection of the catalytically inactive CK2αA156 mutant plasmid DNA decreased phosphorylated SRF. Further, wildtype CK2α increased, whereas CK2αA156 mutant decreased the mRNA and protein levels of Mcl-1. Moreover, transfection of the mutant SRF99A also decreased the mRNA and protein levels of Mcl-1. Furthermore, the mutant SRF99A antagonized the upregulatory effects of wildtype CK2α on Mcl-1 protein level in the co-transfection experiments. \r\nIn the other side, DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa) is a signal transduction molecule that regulates the efficacy of dopamine signaling in neostriatal neurons. Previous studies have revealed that DARPP-32 might involve in the anti-apoptosis and its Ser102 residue is phosphorylated by CK2. Therefore, in the second part of this study, we investigate whether one of the anti-apoptotic effects of CK2 is through DARPP-32 phosphorylation by CK2 in the present study. The results revealed that the phosphorylated DARPP-32 is increased in stratum by wildtype CK2α transfection and decreased by catalytically inactive CK2αA156 mutant transfection. Further, transfection of CK2α siRNA can inhibit endogenous CK2 expression and also decrease phosphorylation of DARPP-32 as well as the anti-apoptotic protein, Bcl-xL. These results together suggest that CK2α-mediated anti-apoptotic effects are partially through SRF mediated or DARPP-32 mediated signaling to regulate Mcl-1 or Bcl-xL expression, respectively.
參考文獻: Abdallah, B., Hassan, A., Benoist, C., Goula, D., Behr, J.P., and Demeneix, B.A. (1996). A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 7, 1947-1954.
Adrain, C., and Martin, S.J. (2001). The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26, 390-397.
Ahlskog, J.E., and Muenter, M.D. (2001). Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16, 448-458.
Ahmad, K.A., Wang, G., Unger, G., Slaton, J., and Ahmed, K. (2008). Protein kinase CK2--a key suppressor of apoptosis. Adv Enzyme Regul 48, 179-187.
Ahmed, K. (1999). Nuclear matrix and protein kinase CK2 signaling. Crit Rev Eukaryot Gene Expr 9, 329-336.
Alderson, R.F., Alterman, A.L., Barde, Y.A., and Lindsay, R.M. (1990). Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 5, 297-306.
Allende, J.E., and Allende, C.C. (1995). Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J 9, 313-323.
Almeida, R.D., Manadas, B.J., Melo, C.V., Gomes, J.R., Mendes, C.S., Graos, M.M., Carvalho, R.F., Carvalho, A.P., and Duarte, C.B. (2005). Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12, 1329-1343.
Andersson, M., Hilbertson, A., and Cenci, M.A. (1999). Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson`s disease. Neurobiol Dis 6, 461-474.
Ashkenazi, A. (2008). Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7, 1001-1012.
Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and Martin, J.B. (1986). Replication of the neurochemical characteristics of Huntington`s disease by quinolinic acid. Nature 321, 168-171.
Glover, C.V., 3rd (1998). On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 59, 95-133.
Gotz, C., Kartarius, S., Scholtes, P., Nastainczyk, W., and Montenarh, M. (1999). Identification of a CK2 phosphorylation site in mdm2. Eur J Biochem 266, 493-501.
Gotz, C., Wagner, P., Issinger, O.G., and Montenarh, M. (1996). p21WAF1/CIP1 interacts with protein kinase CK2. Oncogene 13, 391-398.
Graham, K.C., and Litchfield, D.W. (2000). The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. J Biol Chem 275, 5003-5010.
Green, D.R. (2005). Apoptotic pathways: ten minutes to dead. Cell 121, 671-674.
Green, D.R., and Reed, J.C. (1998). Mitochondria and apoptosis. Science 281, 1309-1312.
Greengard, P. (2001). The neurobiology of slow synaptic transmission. Science 294, 1024-1030.
Greengard, P., Allen, P.B., and Nairn, A.C. (1999). Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23, 435-447.
Greengard, P., Nairn, A.C., Girault, J.A., Ouimet, C.C., Snyder, G.L., Fisone, G., Allen, P.B., Fienberg, A., and Nishi, A. (1998). The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Brain Res Rev 26, 274-284.
Greenwood, J.A., Scott, C.W., Spreen, R.C., Caputo, C.B., and Johnson, G.V. (1994). Casein kinase II preferentially phosphorylates human tau isoforms containing an amino-terminal insert. Identification of threonine 39 as the primary phosphate acceptor. J Biol Chem 269, 4373-4380.
Meek, D.W., Simon, S., Kikkawa, U., and Eckhart, W. (1990). The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J 9, 3253-3260.
Grimbergen, Y.A., Langston, J.W., Roos, R.A., and Bloem, B.R. (2009). Postural instability in Parkinson`s disease: the adrenergic hypothesis and the locus coeruleus. Expert Rev Neurother 9, 279-290.
Gross, A., McDonnell, J.M., and Korsmeyer, S.J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899-1911.
Halpain, S., Girault, J.A., and Greengard, P. (1990). Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343, 369-372.
Han, B.H., and Holtzman, D.M. (2000). BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20, 5775-5781.
Hara, M., Fukui, R., Hieda, E., Kuroiwa, M., Bateup, H.S., Kano, T., Greengard, P., and Nishi, A. (2010). Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons. J Neurochem 113, 1046-1059.
Hardingham, G.E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5, 405-414.
Harper, P.S. (1999). Huntington`s disease: a clinical, genetic and molecular model for polyglutamine repeat disorders. Philos Trans R Soc Lond B Biol Sci 354, 957-961.
Heidenreich, O., Neininger, A., Schratt, G., Zinck, R., Cahill, M.A., Engel, K., Kotlyarov, A., Kraft, R., Kostka, S., Gaestel, M., et al. (1999). MAPKAP kinase 2 phosphorylates serum response factor in vitro and in vivo. J Biol Chem 274, 14434-14443.
Heldt, S.A., Stanek, L., Chhatwal, J.P., and Ressler, K.J. (2007). Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12, 656-670.
Hemmings, H.C., Jr., Greengard, P., Tung, H.Y., and Cohen, P. (1984a). DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310, 503-505.
Meggio, F., and Pinna, L.A. (2003). One-thousand-and-one substrates of protein kinase CK2? FASEB J 17, 349-368.
Hemmings, H.C., Jr., Nairn, A.C., Elliott, J.I., and Greengard, P. (1990). Synthetic peptide analogs of DARPP-32 (Mr 32,000 dopamine- and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. J Biol Chem 265, 20369-20376.
Hemmings, H.C., Jr., Williams, K.R., Konigsberg, W.H., and Greengard, P. (1984b). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated neuronal phosphoprotein. I. Amino acid sequence around the phosphorylated threonine. J Biol Chem 259, 14486-14490.
Hickey, M.A., Kosmalska, A., Enayati, J., Cohen, R., Zeitlin, S., Levine, M.S., and Chesselet, M.F. (2008). Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington`s disease mice. Neuroscience 157, 280-295.
Homma, M.K., and Homma, Y. (2008). Cell cycle and activation of CK2. Mol Cell Biochem 316, 49-55.
Hyman, C., Hofer, M., Barde, Y.A., Juhasz, M., Yancopoulos, G.D., Squinto, S.P., and Lindsay, R.M. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230-232.
Jakubowicz, T., and Leader, D.P. (1987). A major phosphoprotein of cells infected with pseudorabies virus is phosphorylated by cellular casein kinase II. J Gen Virol 68 ( Pt 4), 1159-1163.
Janknecht, R., Hipskind, R.A., Houthaeve, T., Nordheim, A., and Stunnenberg, H.G. (1992). Identification of multiple SRF N-terminal phosphorylation sites affecting DNA binding properties. EMBO J 11, 1045-1054.
Johnson, S.A., and Hunter, T. (2005). Kinomics: methods for deciphering the kinome. Nat Methods 2, 17-25.
Kang, H., and Schuman, E.M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658-1662.
Kato, T., Jr., Delhase, M., Hoffmann, A., and Karin, M. (2003). CK2 Is a C-Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Mol Cell 12, 829-839.
Milnerwood, A.J., Gladding, C.M., Pouladi, M.A., Kaufman, A.M., Hines, R.M., Boyd, J.D., Ko, R.W., Vasuta, O.C., Graham, R.K., Hayden, M.R., et al. (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington`s disease mice. Neuron 65, 178-190.
Keefe, K.A., and Ganguly, A. (1998). Effects of NMDA receptor antagonists on D1 dopamine receptor-mediated changes in striatal immediate early gene expression: evidence for involvement of pharmacologically distinct NMDA receptors? Dev Neurosci 20, 216-228.
Keller, D.M., and Lu, H. (2002). p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 277, 50206-50213.
Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257.
Konradi, C., Leveque, J.C., and Hyman, S.E. (1996). Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci 16, 4231-4239.
Kroemer, G., and Reed, J.C. (2000). Mitochondrial control of cell death. Nat Med 6, 513-519.
Landesman-Bollag, E., Romieu-Mourez, R., Song, D.H., Sonenshein, G.E., Cardiff, R.D., and Seldin, D.C. (2001). Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20, 3247-3257.
Lebel, M., Chagniel, L., Bureau, G., and Cyr, M. (2010). Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat. Neurobiol Dis 38, 59-67.
Lebrin, F., Bianchini, L., Rabilloud, T., Chambaz, E.M., and Goldberg, Y. (1999). CK2alpha-protein phosphatase 2A molecular complex: possible interaction with the MAP kinase pathway. Mol Cell Biochem 191, 207-212.
Lee, C.Q., Yun, Y.D., Hoeffler, J.P., and Habener, J.F. (1990). Cyclic-AMP-responsive transcriptional activation of CREB-327 involves interdependent phosphorylated subdomains. EMBO J 9, 4455-4465.
Leu, J.I., Dumont, P., Hafey, M., Murphy, M.E., and George, D.L. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6, 443-450.
Munstermann, U., Fritz, G., Seitz, G., Lu, Y.P., Schneider, H.R., and Issinger, O.G. (1990). Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189, 251-257.
Lin, A., Frost, J., Deng, T., Smeal, T., al-Alawi, N., Kikkawa, U., Hunter, T., Brenner, D., and Karin, M. (1992). Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 70, 777-789.
Loizou, J.I., El-Khamisy, S.F., Zlatanou, A., Moore, D.J., Chan, D.W., Qin, J., Sarno, S., Meggio, F., Pinna, L.A., and Caldecott, K.W. (2004). The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117, 17-28.
Lorenz, P., Pepperkok, R., Ansorge, W., and Pyerin, W. (1993). Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit beta demonstrate participation of the kinase in mitogenic signaling. J Biol Chem 268, 2733-2739.
Lorenz, P., Pepperkok, R., and Pyerin, W. (1994). Requirement of casein kinase 2 for entry into and progression through early phases of the cell cycle. Cell Mol Biol Res 40, 519-527.
Luscher, B., Kuenzel, E.A., Krebs, E.G., and Eisenman, R.N. (1989). Myc oncoproteins are phosphorylated by casein kinase II. EMBO J 8, 1111-1119.
Ma, Y.L., Wang, H.L., Wu, H.C., Wei, C.L., and Lee, E.H. (1998). Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience 82, 957-967.
Manak, J.R., de Bisschop, N., Kris, R.M., and Prywes, R. (1990). Casein kinase II enhances the DNA binding activity of serum response factor. Genes Dev 4, 955-967.
Manak, J.R., and Prywes, R. (1993). Phosphorylation of serum response factor by casein kinase II: evidence against a role in growth factor regulation of fos expression. Oncogene 8, 703-711.
Manna, S.K., Manna, P., and Sarkar, A. (2007). Inhibition of RelA phosphorylation sensitizes apoptosis in constitutive NF-kappaB-expressing and chemoresistant cells. Cell Death Differ 14, 158-170.
Marais, R.M., Hsuan, J.J., McGuigan, C., Wynne, J., and Treisman, R. (1992). Casein kinase II phosphorylation increases the rate of serum response factor-binding site exchange. EMBO J 11, 97-105.
Nishi, A., Bibb, J.A., Matsuyama, S., Hamada, M., Higashi, H., Nairn, A.C., and Greengard, P. (2002). Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A. J Neurochem 81, 832-841.
Matsumura, S., Murakami, N., Tashiro, Y., Yasuda, S., and Kumon, A. (1983). Identification of calcium-independent myosin kinase with casein kinase II. Arch Biochem Biophys 227, 125-135.
McElhinny, J.A., Trushin, S.A., Bren, G.D., Chester, N., and Paya, C.V. (1996). Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol 16, 899-906.
McKendrick, L., Milne, D., and Meek, D. (1999). Protein kinase CK2-dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable. Mol Cell Biochem 191, 187-199.
Nishi, A., Bibb, J.A., Snyder, G.L., Higashi, H., Nairn, A.C., and Greengard, P. (2000). Amplification of dopaminergic signaling by a positive feedback loop. Proc Natl Acad Sci U S A 97, 12840-12845.
Nishi, A., Snyder, G.L., and Greengard, P. (1997). Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 17, 8147-8155.
Nutt, J.G., Obeso, J.A., and Stocchi, F. (2000). Continuous dopamine-receptor stimulation in advanced Parkinson`s disease. Trends Neurosci 23, S109-115.
Obeso, J.A., Olanow, C.W., and Nutt, J.G. (2000). Levodopa motor complications in Parkinson`s disease. Trends Neurosci 23, S2-7.
Ouimet, C.C., Langley-Gullion, K.C., and Greengard, P. (1998). Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res 808, 8-12.
Belkhiri, A., Zaika, A., Pidkovka, N., Knuutila, S., Moskaluk, C., and El-Rifai, W. (2005). Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res 65, 6583-6592.
Ouimet, C.C., Miller, P.E., Hemmings, H.C., Jr., Walaas, S.I., and Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 4, 111-124.
Padmanabha, R., Chen-Wu, J.L., Hanna, D.E., and Glover, C.V. (1990). Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10, 4089-4099.
Pavon, N., Martin, A.B., Mendialdua, A., and Moratalla, R. (2006). ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59, 64-74.
Pepperkok, R., Lorenz, P., Ansorge, W., and Pyerin, W. (1994). Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem 269, 6986-6991.
Perumal, A.S., Tordzro, W.K., Katz, M., Jackson-Lewis, V., Cooper, T.B., Fahn, S., and Cadet, J.L. (1989). Regional effects of 6-hydroxydopamine (6-OHDA) on free radical scavengers in rat brain. Brain Res 504, 139-141.
Picconi, B., Centonze, D., Hakansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M.A., and Calabresi, P. (2003). Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 6, 501-506.
Rascol, O., Brooks, D.J., Korczyn, A.D., De Deyn, P.P., Clarke, C.E., and Lang, A.E. (2000). A five-year study of the incidence of dyskinesia in patients with early Parkinson`s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 342, 1484-1491.
Riedel, G., Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav Brain Res 140, 1-47.
Rivera, V.M., Miranti, C.K., Misra, R.P., Ginty, D.D., Chen, R.H., Blenis, J., and Greenberg, M.E. (1993). A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol 13, 6260-6273.
Rommelfanger, K.S., Edwards, G.L., Freeman, K.G., Liles, L.C., Miller, G.W., and Weinshenker, D. (2007). Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci U S A 104, 13804-13809.
Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., and Greenamyre, J.T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson`s disease. Nat Neurosci 3, 1301-1306.
Rossler, O.G., Giehl, K.M., and Thiel, G. (2004). Neuroprotection of immortalized hippocampal neurones by brain-derived neurotrophic factor and Raf-1 protein kinase: role of extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase. J Neurochem 88, 1240-1252.
Sala, C., Rudolph-Correia, S., and Sheng, M. (2000). Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J Neurosci 20, 3529-3536.
Santini, E., Valjent, E., Usiello, A., Carta, M., Borgkvist, A., Girault, J.A., Herve, D., Greengard, P., and Fisone, G. (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 27, 6995-7005.
Schratt, G., Philippar, U., Hockemeyer, D., Schwarz, H., Alberti, S., and Nordheim, A. (2004). SRF regulates Bcl-2 expression and promotes cell survival during murine embryonic development. EMBO J 23, 1834-1844.
Shi, Y. (2001). A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8, 394-401.
Shi, Y., Evans, J.E., and Rock, K.L. (2003). Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516-521.
Srinivasan, J., and Schmidt, W.J. (2003). Potentiation of parkinsonian symptoms by depletion of locus coeruleus noradrenaline in 6-hydroxydopamine-induced partial degeneration of substantia nigra in rats. Eur J Neurosci 17, 2586-2592.
Stigare, J., Buddelmeijer, N., Pigon, A., and Egyhazi, E. (1993). A majority of casein kinase II alpha subunit is tightly bound to intranuclear components but not to the beta subunit. Mol Cell Biochem 129, 77-85.
Stipanovich, A., Valjent, E., Matamales, M., Nishi, A., Ahn, J.H., Maroteaux, M., Bertran-Gonzalez, J., Brami-Cherrier, K., Enslen, H., Corbille, A.G., et al. (2008). A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature 453, 879-884.
Stringer, J.L., Belaguli, N.S., Iyer, D., Schwartz, R.J., and Balasubramanyam, A. (2002). Developmental expression of serum response factor in the rat central nervous system. Brain Res Dev Brain Res 138, 81-86.
Bezard, E., Brotchie, J.M., and Gross, C.E. (2001). Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2, 577-588.
Svenningsson, P., Nishi, A., Fisone, G., Girault, J.A., Nairn, A.C., and Greengard, P. (2004). DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44, 269-296.
Taylor, R.C., Cullen, S.P., and Martin, S.J. (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9, 231-241.
Thornberry, N.A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312-1316.
Timofeeva, O.A., Plisov, S., Evseev, A.A., Peng, S., Jose-Kampfner, M., Lovvorn, H.N., Dome, J.S., and Perantoni, A.O. (2006). Serine-phosphorylated STAT1 is a prosurvival factor in Wilms` tumor pathogenesis. Oncogene 25, 7555-7564.
Tyan, S.W., Tsai, M.C., Lin, C.L., Ma, Y.L., and Lee, E.H. (2008). Serum- and glucocorticoid-inducible kinase 1 enhances zif268 expression through the mediation of SRF and CREB1 associated with spatial memory formation. J Neurochem 105, 820-832.
Ulery, P.G., Rudenko, G., and Nestler, E.J. (2006). Regulation of DeltaFosB stability by phosphorylation. J Neurosci 26, 5131-5142.
Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5, 107-110.
Uretsky, N.J., and Iversen, L.L. (1970). Effects of 6-hydroxydopamine on catecholamine containing neurones in the rat brain. J Neurochem 17, 269-278.
Vaux, D.L. (2002). Apoptosis timeline. Cell Death Differ 9, 349-354.
Vaux, D.L., Cory, S., and Adams, J.M. (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440-442.
Bibb, J.A., Snyder, G.L., Nishi, A., Yan, Z., Meijer, L., Fienberg, A.A., Tsai, L.H., Kwon, Y.T., Girault, J.A., Czernik, A.J., et al. (1999). Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402, 669-671.
Vickers, E.R., Kasza, A., Kurnaz, I.A., Seifert, A., Zeef, L.A., O`Donnell, A., Hayes, A., and Sharrocks, A.D. (2004). Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death. Mol Cell Biol 24, 10340-10351.
Walaas, S.I., Aswad, D.W., and Greengard, P. (1983). A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301, 69-71.
Walaas, S.I., and Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J Neurosci 4, 84-98.
Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922-2933.
Weng, C., Li, Y., Xu, D., Shi, Y., and Tang, H. (2005). Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem 280, 10491-10500.
Westin, J.E., Vercammen, L., Strome, E.M., Konradi, C., and Cenci, M.A. (2007). Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry 62, 800-810.
Winkler, C., Kirik, D., Bjorklund, A., and Cenci, M.A. (2002). L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson`s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10, 165-186.
Yamane, K., and Kinsella, T.J. (2005). CK2 inhibits apoptosis and changes its cellular localization following ionizing radiation. Cancer Res 65, 4362-4367.
Yang-Feng, T.L., Naiman, T., Kopatz, I., Eli, D., Dafni, N., and Canaani, D. (1994). Assignment of the human casein kinase II alpha` subunit gene (CSNK2A1) to chromosome 16p13.2-p13.3. Genomics 19, 173.
Yang, T., Kozopas, K.M., and Craig, R.W. (1995). The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol 128, 1173-1184.
Bingle, C.D., Craig, R.W., Swales, B.M., Singleton, V., Zhou, P., and Whyte, M.K. (2000). Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. J Biol Chem 275, 22136-22146.
Zdunek, M., Silbiger, S., Lei, J., and Neugarten, J. (2001). Protein kinase CK2 mediates TGF-beta1-stimulated type IV collagen gene transcription and its reversal by estradiol. Kidney Int 60, 2097-2108.
Zhang, P., Davis, A.T., and Ahmed, K. (1998). Mechanism of protein kinase CK2 association with nuclear matrix: role of disulfide bond formation. J Cell Biochem 69, 211-220.
Zhang, S.J., Steijaert, M.N., Lau, D., Schutz, G., Delucinge-Vivier, C., Descombes, P., and Bading, H. (2007). Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53, 549-562.
Bito, H., Deisseroth, K., and Tsien, R.W. (1996). CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203-1214.
Blanquet, P.R. (1998). Neurotrophin-induced activation of casein kinase 2 in rat hippocampal slices. Neuroscience 86, 739-749.
Blanquet, P.R. (2000). Identification of two persistently activated neurotrophin-regulated pathways in rat hippocampus. Neuroscience 95, 705-719.
Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A.L., Sadoul, R., and Verna, J.M. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson`s disease. Prog Neurobiol 65, 135-172.
Burnett, G., and Kennedy, E.P. (1954). The enzymatic phosphorylation of proteins. J Biol Chem 211, 969-980.
Cenci, M.A. (2002). Transcription factors involved in the pathogenesis of L-DOPA-induced dyskinesia in a rat model of Parkinson`s disease. Amino Acids 23, 105-109.
Chai, J., and Tarnawski, A.S. (2002). Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J Physiol Pharmacol 53, 147-157.
Chang, S.H., Poser, S., and Xia, Z. (2004). A novel role for serum response factor in neuronal survival. J Neurosci 24, 2277-2285.
Chao, C.C., Chiang, C.H., Ma, Y.L., and Lee, E.H. (2006). Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiol Aging 27, 105-118.
Chao, C.C., Ma, Y.L., and Lee, E.H. (2007). Protein kinase CK2 impairs spatial memory formation through differential cross talk with PI-3 kinase signaling: activation of Akt and inactivation of SGK1. J Neurosci 27, 6243-6248.
Chao, C.C., Ma, Y.L., and Lee, E.H. (2011). Brain-derived neurotrophic factor enhances Bcl-xL expression through protein kinase casein kinase 2-activated and nuclear factor kappa B-mediated pathway in rat hippocampus. Brain Pathol 21, 150-162.
Chao, J.R., Wang, J.M., Lee, S.F., Peng, H.W., Lin, Y.H., Chou, C.H., Li, J.C., Huang, H.M., Chou, C.K., Kuo, M.L., et al. (1998). mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol Cell Biol 18, 4883-4898.
Chen, R.C., Chang, S.F., Su, C.L., Chen, T.H., Yen, M.F., Wu, H.M., Chen, Z.Y., and Liou, H.H. (2001). Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology 57, 1679-1686.
Clari, G., and Moret, V. (1985). Phosphorylation of membrane proteins by cytosolic casein kinases in human erythrocytes. Effect of monovalent ions, 2,3-bisphosphoglycerate and spermine. Mol Cell Biochem 68, 181-187.
Cosmelli, D., Antonelli, M., Allende, C.C., and Allende, J.E. (1997). An inactive mutant of the alpha subunit of protein kinase CK2 that traps the regulatory CK2beta subunit. FEBS Lett 410, 391-396.
Craig, R.W. (2002). MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16, 444-454.
Creagh, E.M., Conroy, H., and Martin, S.J. (2003). Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193, 10-21.
Desdouits, F., Cohen, D., Nairn, A.C., Greengard, P., and Girault, J.A. (1995a). Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase I in vitro and in vivo. J Biol Chem 270, 8772-8778.
Desdouits, F., Siciliano, J.C., Greengard, P., and Girault, J.A. (1995b). Dopamine- and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin. Proc Natl Acad Sci U S A 92, 2682-2685.
Dexter, D.T., Wells, F.R., Agid, F., Agid, Y., Lees, A.J., Jenner, P., and Marsden, C.D. (1987). Increased nigral iron content in postmortem parkinsonian brain. Lancet 2, 1219-1220.
Di Maira, G., Salvi, M., Arrigoni, G., Marin, O., Sarno, S., Brustolon, F., Pinna, L.A., and Ruzzene, M. (2005). Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 12, 668-677.
Diaz-Nido, J., Serrano, L., Mendez, E., and Avila, J. (1988). A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-1B during neuroblastoma cell differentiation. J Cell Biol 106, 2057-2065.
Ehrnhoefer, D.E., Butland, S.L., Pouladi, M.A., and Hayden, M.R. (2009). Mouse models of Huntington disease: variations on a theme. Dis Model Mech 2, 123-129.
Fan, M.M., and Raymond, L.A. (2007). N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington`s disease. Prog Neurobiol 81, 272-293.
Faust, R.A., Niehans, G., Gapany, M., Hoistad, D., Knapp, D., Cherwitz, D., Davis, A., Adams, G.L., and Ahmed, K. (1999). Subcellular immunolocalization of protein kinase CK2 in normal and carcinoma cells. Int J Biochem Cell Biol 31, 941-949.
Follezou, J.Y., Emerit, J., and Bricaire, F. (1999). [Neuro-degenerative diseases: role of reactive oxygen species and of apoptosis]. Presse Med 28, 1661-1666.
Gallucci, S., Lolkema, M., and Matzinger, P. (1999). Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5, 1249-1255.
Gerfen, C.R., Miyachi, S., Paletzki, R., and Brown, P. (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22, 5042-5054.
Gietz, R.D., Graham, K.C., and Litchfield, D.W. (1995). Interactions between the subunits of casein kinase II. J Biol Chem 270, 13017-13021.
Girault, J.A., Hemmings, H.C., Jr., Williams, K.R., Nairn, A.C., and Greengard, P. (1989). Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. J Biol Chem 264, 21748-21759.
Glineur, C., Bailly, M., and Ghysdael, J. (1989). The c-erbA alpha-encoded thyroid hormone receptor is phosphorylated in its amino terminal domain by casein kinase II. Oncogene 4, 1247-1254.
描述: 碩士
國立政治大學
神經科學研究所
96754002
99
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0096754002
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File SizeFormat
index.html128 BHTML2View/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.