Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/56332
題名: 親子分離對新生老鼠之腎上腺發育的影響
The effects of maternal separation on the development of adrenal glands
作者: 周斈澧
貢獻者: 賴桂珍
周斈澧
關鍵詞: 嗜鉻細胞
親子分離
腎上腺素
正腎上腺素
日期: 2011
上傳時間: 3-Dec-2012
摘要: 腎上腺素為哺乳類為了因應各種不同的壓力所釋放出的物質,影響生物體日常的生理功能且對生物體的存活有著莫大的貢獻,在成體中的調節已經在很多文獻中被探討,但對於處在發育階段的新生兒其腎上腺的發育與早期壓力對此系統的影響仍不盡清楚。為探討壓力與腎上腺發育及壓力調控之間的關係,本論文將觀察之重點放在腎上腺髓質中能夠製造腎上腺素的嗜鉻細胞(chromaffin cells)上。要了解新生兒腎上腺發育與壓力之間的關係,主要是利用親子分離的實驗,對新生老鼠造成壓力,實驗將新生老鼠分成三組,分別為控制組(control)、隔離組(isolate;P2~P14一小時/天)與撫摸組(handle;P2~P14 十分鐘/天),試驗完畢後分別在老鼠出生後十四天(P14)與出生後二十一天(P21)進行腎上腺切片,利用腎上腺素合成酵素(PNMT ,phenylethanolamine-N-methyl transferase)及腎上腺素與正腎上腺素共同合成酵素(TH,tyrosine hydroxylase)之螢光免疫染色,來區分可製造腎上腺素的chromaffin cells,發現不管在P14或是P21,三組之間的腎上腺髓質結構並無太大差異。結果顯示,經過親子分離實驗的操弄,發現在撫摸組chromaffin cells中其PNMT的含量相對於TH的比例含量高於控制組與隔離組,顯示在撫摸組中每一chromaffin cell含有較多的PNMT,可能可以製造較多的腎上腺素。最後,為探討親子分離實驗對新生老鼠之腎上腺素與正腎上腺素含量的影響,以HPLC檢測經過親子分離實驗的新生老鼠之腎上腺,發現在P14時撫摸組與隔離組之腎上腺素含量比控制組高(p<0.05),而正腎上腺素的含量則沒有差異;在P21時三組間的腎上腺素與正腎上腺素含量則沒有差異。而同樣的親子分離實驗在一胎一組新生老鼠的腎上腺發育上未看到任何顯著影響。
參考文獻: Alison J. WINDER (1991)New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J. Biochcm. f98, 317-326\nAndrej Tillinger (2010)Vesicular Monoamine Transporters (VMATs) in Adrenal Chromaffin Cells: Stress-Triggered Induction of VMAT2\nand Expression in Epinephrine Synthesizing Cells .Cell Mol Neurobiol30:1459–1465\nBaker PF ,Knight DE.(1978) Calcium-dependent exocytosis in bovine\nadrenal medullary cells with leaky plasma membranes. Nature\n276: 620–622.\nBanks, P.(1965) Effects of stimulation by carbachol on the metabolism of the bovine adrenal medulla. Biochem. J.97: 555.\nBaruchin A, Vollmer RR, Miner LL, Sell SL, Stricker EM,Kaplan BB.(1993) Cold-induced increases in phenylethanolamine Nmethyltransferase\n(PNMT) mRNA are mediated by non-cholinergic mechanisms in the rat adrenal gland. Neurochem Res 18: 759–766.\nBeatriz Galán-Rodríguez(2004)Extra-adrenal chromaffin cells of the Zuckerkandl´s paraganglion: morphological and electrophysiological study. Cell Biology of the Chromaffin Cell\nBenedict J. Kolber (2008) HPA axis dysregulation and behavioral analysis of mouse mutants with altered GR or MR function. NIH Public Access 11(5): 321–338\nBlaschko (I942)The activity OF I(-)-dopa decarboxylase J. Physiol. IOI, 337-\nBlazicek P, Kvetnansky R(1989) Kinetic parameters of rat adrenal TH\nand PNMT under acute and repeated stress. In: Stress: Neurochemical\nand Humoral Mechanisms, edited by Van Loon GR, Kvetnansky\nR, McCarty R, Axelrod J. New York: Gordon and Breach, p. 787–797\nBenedict J. Kolber (2008) HPA axis dysregulation and behavioral analysis of mouse mutants with altered GR or MR function. NIH Public Access 11(5): 321–338\nCannon. (1926) Physiological regulation of normal states: some tentative postulates concerning biological homeostatics. p. 91. Paris: Éditions Médicales.\nChuang DM, Costa E.(1974) Biosynthesis of tyrosine hydroxylase in rat\nadrenal medulla after exposure to cold. Proc Natl Acad Sci USA 71:\n4570–4574.\nConnett, R. J. ,Kirshner, N.(1970) Purification and properties of bovine phenylethanolamine N-methyltransferase.\nJ. Biol. Chem. 245: 329, 1970.\nCoulter CL.(2004) Functional biology of the primate fetal adrenal gland: advances in technology provide new insight. Clinical and Experimental Pharmacology & Physiology.31: 475–484.\nCoupland, R. E.(1965) Electron microscopic observations on the structure of the rat adrenal medulla. II. Normal innervation. J. Anat. 99: 255.\nCynthia G Zoski (2007) Handbook of electrochemistry P722\nDouglas WW , Rubin RP(1961) The role of calcium in the secretory\nresponse of the adrenal medulla to acetylcholine. J Physiol 159:\n40–57.\nEdith (1949) Formation of adrenaline from noradrenaline in\nthe perfused suprarenal gland. Brit. J. Pharmacol.,4, 245.\nEhrhart-Bornstein (1998) Intraadrenal Interactions in the Regulation of\nAdrenocortical Steroidogenesis. Endocrine Reviews 19(2): 101–143\nErankii 0, Harkonen M (1963) Histochemical demonstration of fluorogenic amines in the cytoplasm of sympathetic ganglion cells of the rat. Acta Physiol Stand 58:285-286.\nFangwen Rao (2007) Tyrosine Hydroxylase, the Rate-Limiting Enzyme in Catecholamine Biosynthesis Circulation.116: 993-1006\nGiuseppe Biagini (1998) Postnatal maternal separation during the stress hyporesponsive period enhances the adrenocortical response to novelty in adult rats by affecting feedback regulation in the CA1 hippocampal field. Neuroscience Volume 16, Issues 3–4 Pages 187–197\nH. Winkler (1993) The adrenal chromaffin granule: a model for large dense core vesicles of endocrine and nervous tissue. J. Anat. 183, pp. 237-252\nIkeda, M., Fahien, L. A(1966) A kinetic study of bovine adrenal tyrosine hydroxylase. J. Biol.Chem. 241: 4452.\nJohn F. Cryan(2001) Use of Dopamine-b-hydroxylase-Deficient Mice to Determine the Role of Norepinephrine in the Mechanism of Action of\nAntidepressant Drugs. vol. 298 no. 2 651-657\nKirshner, N.(1957) Pathway of noradrenaline formation from dopa. J. Biol. Chem. 226: 821.\nKlaus Unsicker(2005) Chromaffin Cell and its Development. Neurochemical Research, Vol. 30, 921–925\nKohn, A.(1902)Des chromaffine Gewebe. Ergeb. Anat. Entw. Gesch. 12: 253.\nKubovcakova L, Tybitanclova K, Sabban EL, Majzoub J, Zorad\nS, Vietor I, Wagner EF, Krizanova O, Kvetnansky R (2004)\nCatecholamine synthesizing enzymes and their modulation by immobilization stress in knockout mice. Ann NY Acad Sci 1018:\n458–465.\nKumer S. C. ,Vrana K. E. (1996) The intricate regulation of tyrosine\nhydroxylase activity and gene expression. J. Neurochem. 67, 443–\n462.\nKvetnansky R, Mikulaj L.(1970) Adrenal and urinary catecholamines in\nrats during adaptation to repeated immobilization stress. Endocrinology 87: 738–743.\nKvetnansky R, Weise VK, Gewirtz GP, Kopin IJ.(1971) Synthesis of\nadrenal catecholamines in rats during and after immobilization\nstress. Endocrinology 89: 46–49.\nKvetnansky (2009) Catecholaminergic Systems in Stress: Structural and Molecular Physiol. Genetic Approaches.Rev 89: 535–606\nLevin, E. Y., LEvENBERG, B. AND KAUFMAN, S.(1960): The enzymatic conversion of 3, 4-dihydroxyphenylethylamine to norepinephrine. J. Biol. Chem. 235: 2080.\nMary K. Dahmer (1996) Dopaminergic Inhibition of Catecholamine Secretion from Chromaffin Cells: Evidence that Inhibition Is Mediated by D4 and D5 Dopamine Receptors Journal of Neurochemistry Volume 66, Issue 1, pages 222–232\nMatthews (1969) The ultrastructure and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion. J. Anat, 105, 2, pp. 255-282\nMcewen,B.s.,stellar,e.(1993).Stress and the individual: mechanisms leading to disease.arch int Med,153:2093-2011\nMcewwn,b.s.(1998). Protective and damaging effects of stress mediators. New eng J med,338:171-179\nMeaney,M.J.,Sapolsky,R.M.,Mcewen,b.s.(1985).The development of the glucocorticoid receptor system in the rat limbic brain.i.ontogeny and autoregulation.dev brain res,18:159-164\nMesiano S , Jaffe RB.(1997) Developmental and functional biology of the primate fetal adrenal cortex.Endocrine Reviews 18: 378–403.\nP. E. MacDonald (2003)Voltage-dependent K+channels in pancreatic beta cells: Role, regulation and potential as therapeutic targets.Diabetologia46:1046–1062\nPeter Burkhard (2001) Structural insight into Parkinson`s disease treatment from drug-inhibited DOPA decarboxylase Nature Structural Biology 8, 963 - 967\nPetra Kempna (2008) Adrenal gland development and defects.Best Practice & Research Clinical Endocrinology & Metabolism Vol. 22, No. 1, pp. 77–93.\nPeter R. Dunkley, Larisa Bobrovskaya, Mark E. Graham(2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. Journal of Neurochemistry, 91, 1025–1043\nPohorecky, L. A. ,Rust, J. H.(1968) Studies on the cortical control of the adrenal medulla in the rat. J. Pharmaol.Exp. Ther. 162: 227.\nRichard Kvetnansky, Esther L. Sabban, Miklos Palkovits (2009)\nCatecholaminergic Systems in Stress: Structural and Molecular\nGenetic Approaches. Physiol Rev 89: 535–606.\nRuth M.K. Keil (2004) Coping and stress: a conceptual analysis. Journal of Advanced Nursing 45(6), 659–665\nSabban EL, Kvetnansky R. (2001) Stress-triggered activation of gene\nexpression in catecholaminergic systems: dynamics of transcriptional\nevents. Trends Neurosci 24: 91–98.\nSapolsky,R.M.,Meaney,MJj.(1986).maturation of the adrenocortical stress response:neuroendocrine control mechanisms and the stress hyporesponsive period. Brain res rev,396:64-76\nSelye (1955) Stress and disease. science 122:625-631\nSelye (1975). Confusion and controversy in the stress field. Journal of Human Stress 1: 37–44.\nSzabo,s (1980) Stress and gastroduodenal ulcers. Stress 1: 25-36\nVincent, S.(1910) The chromaphil tissues and the adrenal medulla. Proc. Roy. Soc. Ser. B Biol. Sci. 82: 502, 1910.\nWalter Bradford Cannon (1929). Bodily changes in pain, hunger, fear, and rage. New York: Appleton-Century-Crofts.\nWurtman, R. J., Axelrod, J. (1965)Adrenaline synthesis: Control by the pituitary gland and adrenal glucocorticoids.Science 150:237–252.\nYuan Ji(2008) Human phenylethanolamine N-methyltransferase genetic polymorphisms and exercise-induced epinephrine release .Physiol Genomics 33: 323–332\nZigmond R. E., Schwarzschild M. A. , Rittenhouse A. R. (1989) Acute\nregulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Ann. Rev. Neurosci. 12, 415–461.
描述: 碩士
國立政治大學
神經科學研究所
97754003
100
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0977540031
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File SizeFormat
003101.pdf1.45 MBAdobe PDF2View/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.