Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/66497
題名: 1-甲基-4-苯基碘化啶對大鼠紋狀體神經細胞中CK2/DARPP-32/GAD67訊息傳遞表現及 神經生理功能之影響
Effect of MPP+ on CK2/DARPP-32/GAD67 signaling pathway and neurophysiological function in the striatum of rats
作者: 洪禎廷
貢獻者: 趙知章
洪禎廷
關鍵詞: 紋狀體
MSN細胞
1-甲基-4-苯基-1,2,3,6-四氢吡啶碘化物
蛋白激酶CK2
DARPP-32蛋白
麩胺酸脫羧酵素67
gamma-丁氨基酪酸
多巴胺
striatum
medium spiny neuron
protein kinase CK2
DARPP-32
glutamic acid decarboxylase 67
gamma-aminobutyric acid
dopamine
日期: 2013
上傳時間: 4-六月-2014
摘要: 蛋白激酶CK2(Casine kinase 2)為四單體所構成,針對配受質蛋白之絲胺酸或蘇胺酸位置進行磷酸化,先前研究已經發現在紋狀體腦區之CK2的表現量與活性皆高於大腦中其餘腦區,而紋狀體腦區主要神經細胞為-氨基丁酸神經元(GABAergic neurons)的medium spiny neuron(MSN),會受到來自黑質多巴胺神經細胞(dopaminergic neurons)的調控。此外,DARPP-32(dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDA)蛋白亦被發現大量表現於在MSN細胞中,且為CK2之受質蛋白質。雖然CK2已被證實參與多巴胺神經元的神經保護機制,但是否參與MSN細胞對運動行為調控之生理機制仍未清楚。由於已有研究發現施予1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)藥物處理造成黑質-紋狀體腦區受損之老鼠腦內-氨基丁酸(GABA)的生合成酵素─麩胺酸脫羧酵素67(GAD67)表現量與正常老鼠不同,因此本論文研究的主題擬在大鼠實驗模式中利用MPP+造成投射至紋狀體之多巴胺神經細胞受損,探討當多巴胺調控紋狀體神經細胞能力缺失的狀態下,MSN細胞之CK2、DARPP-32和GAD蛋白表現與動物運動行為之相關性。\r\n實驗結果發現,直接於紋狀體給予1-甲基-4-苯基碘化啶 (MPP+ Iodide)皆會造成CK2、DARPP-32以及GAD67之蛋白質含量的減少,多巴胺及其代謝物和GABA等神經化學傳遞物質亦有減少的現象;另外,在MPP+給予前分別操弄CK2或DARPP-32 胺基酸Ser102磷酸化的表現,皆會改變GAD67蛋白質含量與黑質酪胺酸羥化酶(Tyrosine Hydroxylase, TH)蛋白質含量,同時神經化學傳遞物質的含量或代謝亦有改變。由現有之結果推測CK2/DARPP-32/GAD67細胞訊息傳遞機制可能參與巴金森氏症運動行為失常之細胞層面的調控。
Protein kinase CK2 is a heterotetrameric and serine/threonine protein kinase. Its protein levels and activity are found to be elevated in the striatum when compared to other brain areas. CK2 is known to involve in the neuroprotective effects of dopaminergic neurons, whether it also regulates the neuronal function relative to motor behaviors is still unclear. DARPP-32 protein is known as one of the substrates for CK2 and is highly expressed in the GABAergic medium spiny neurons (MSN) responsible for dopamine stimulation in the striatum. Furthermore, other studies have indicated that the expression of glutamic acid decarboxylase 67 (GAD67) mRNA and protein was different in the striatum of MPTP vs. naïve animals, which is one of the enzymes responsible for the synthesis of neurotransmitter GABA. In the present study, we observed that the parallel changes in protein levels of CK2, DARPP-32 and GAD67 in the striatum and TH in the substantia nigra of MPP+-treated. We also found that manipulation of CK2 or DARPP-32 gene expression aggravated the MPP+-induced neuropathological dificts. The present results suggest that CK2/DARPP-32/GAD67 signaling pathway might involve in the cellular mechanism of motor-deficit in Parkinson’s disease.
參考文獻: Abbruzzese, G., Barone, P., Bonuccelli, U., Lopiano, L., & Antonini, A. (2012). Continuous intestinal infusion of levodopa/carbidopa in advanced Parkinson`s disease: ef fi cacy, safety and patient selection. Funct Neurol, 27, 147-154.\r\nAhlskog, J. E., & Muenter, M. D. (2001). Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord, 16, 448-458.\r\nAhn, J. H., McAvoy, T., Rakhilin, S. V., Nishi, A., Greengard, P., & Nairn, A. C. (2007). Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci U S A, 104, 2979-2984.\r\nAhn, J. H., Sung, J. Y., McAvoy, T., Nishi, A., Janssens, V., Goris, J., Greengard, P., & Nairn, A. C. (2007). The B``/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proc Natl Acad Sci U S A, 104, 9876-9881.\r\nAksenova, M. V., Burbaeva, G. S., Kandror, K. V., Kapkov, D. V., & Stepanov, A. S. (1991). The decreased level of casein kinase 2 in brain cortex of schizophrenic and Alzheimer`s disease patients. FEBS Lett, 279, 55-57.\r\nAndersson, M., Hilbertson, A., & Cenci, M. A. (1999). Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson`s disease. Neurobiol Dis, 6, 461-474.\r\nAndersson, M., Konradi, C., & Cenci, M. A. (2001). cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J Neurosci, 21, 9930-9943.\r\nAndersson, M., Usiello, A., Borgkvist, A., Pozzi, L., Dominguez, C., Fienberg, A. A., Svenningsson, P., Fredholm, B. B., Borrelli, E., Greengard, P., & Fisone, G. (2005). Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci, 25, 8432-8438.\r\nArai, R., Karasawa, N., Geffard, M., & Nagatsu, I. (1995). L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett, 195, 195-198.\r\nAubert, I., Guigoni, C., Hakansson, K., Li, Q., Dovero, S., Barthe, N., Bioulac, B. H., Gross, C. E., Fisone, G., Bloch, B., & Bezard, E. (2005). Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol, 57, 17-26.\r\nAyton, S., George, J. L., Adlard, P. A., Bush, A. I., Cherny, R. A., & Finkelstein, D. I. (2013). The effect of dopamine on MPTP-induced rotarod disability. Neurosci Lett, 543, 105-109.\r\nBao, J., Cheung, W. Y., & Wu, J. Y. (1995). Brain L-glutamate decarboxylase. Inhibition by phosphorylation and activation by dephosphorylation. J Biol Chem, 270, 6464-6467.\r\nBargiotas, P., & Konitsiotis, S. (2013). Levodopa-induced dyskinesias in Parkinson`s disease: emerging treatments. Neuropsychiatr Dis Treat, 9, 1605-1617.\r\nBateup, H. S., Santini, E., Shen, W., Birnbaum, S., Valjent, E., Surmeier, D. J., Fisone, G., Nestler, E. J., & Greengard, P. (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A, 107, 14845-14850.\r\nBeal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., & Martin, J. B. (1986). Replication of the neurochemical characteristics of Huntington`s disease by quinolinic acid. Nature, 321, 168-171.\r\nBennett, M. K., Miller, K. G., & Scheller, R. H. (1993). Casein kinase II phosphorylates the synaptic vesicle protein p65. J Neurosci, 13, 1701-1707.\r\nBerke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E., & Gerfen, C. R. (1998). A complex program of striatal gene expression induced by dopaminergic stimulation. J Neurosci, 18, 5301-5310.\r\nBezard, E., Brotchie, J. M., & Gross, C. E. (2001). Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci, 2, 577-588.\r\nBibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., & Greengard, P. (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 410, 376-380.\r\nBibb, J. A., Snyder, G. L., Nishi, A., Yan, Z., Meijer, L., Fienberg, A. A., Tsai, L. H., Kwon, Y. T., Girault, J. A., Czernik, A. J., Huganir, R. L., Hemmings, H. C., Jr., Nairn, A. C., & Greengard, P. (1999). Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 402, 669-671.\r\nBido, S., Marti, M., & Morari, M. (2011). Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels. J Neurochem, 118, 1043-1055.\r\nBito, H., Deisseroth, K., & Tsien, R. W. (1996). CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell, 87, 1203-1214.\r\nBlandini, F., & Armentero, M. T. (2012). Animal models of Parkinson`s disease. FEBS J, 279, 1156-1166.\r\nBlanquet, P. R. (2000). Casein kinase 2 as a potentially important enzyme in the nervous system. Prog Neurobiol, 60, 211-246.\r\nBorgkvist, A., & Fisone, G. (2007). Psychoactive drugs and regulation of the cAMP/PKA/DARPP-32 cascade in striatal medium spiny neurons. Neurosci Biobehav Rev, 31, 79-88.\r\nBorgkvist, A., Usiello, A., Greengard, P., & Fisone, G. (2007). Activation of the cAMP/PKA/DARPP-32 signaling pathway is required for morphine psychomotor stimulation but not for morphine reward. Neuropsychopharmacology, 32, 1995-2003.\r\nBoyce, S., Rupniak, N. M., Steventon, M. J., & Iversen, S. D. (1990). Characterisation of dyskinesias induced by L-dopa in MPTP-treated squirrel monkeys. Psychopharmacology (Berl), 102, 21-27.\r\nBuchou, T., Vernet, M., Blond, O., Jensen, H. H., Pointu, H., Olsen, B. B., Cochet, C., Issinger, O. G., & Boldyreff, B. (2003). Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol, 23, 908-915.\r\nBuddhala, C., Hsu, C. C., & Wu, J. Y. (2009). A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int, 55, 9-12.\r\nCarlsson, A. (1959). The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev, 11, 490-493.\r\nCarta, A. R., Frau, L., Pontis, S., Pinna, A., & Morelli, M. (2008). Direct and indirect striatal efferent pathways are differentially influenced by low and high dyskinetic drugs: behavioural and biochemical evidence. Parkinsonism Relat Disord, 14 Suppl 2, S165-168.\r\nCarta, A. R., Pinna, A., & Morelli, M. (2006). How reliable is the behavioural evaluation of dyskinesia in animal models of Parkinson`s disease? Behav Pharmacol, 17, 393-402.\r\nCarta, M., Carlsson, T., Kirik, D., & Bjorklund, A. (2007). Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain, 130, 1819-1833.\r\nCastillo, M. A., Ghose, S., Tamminga, C. A., & Ulery-Reynolds, P. G. (2010). Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry, 67, 208-216.\r\nCeglia, I., Flajolet, M., & Rebholz, H. (2011). Predominance of CK2alpha over CK2alpha` in the mammalian brain. Mol Cell Biochem, 356, 169-175.\r\nCenci, M. A. (2002). Transcription factors involved in the pathogenesis of L-DOPA-induced dyskinesia in a rat model of Parkinson`s disease. Amino Acids, 23, 105-109.\r\nCenci, M. A., Lee, C. S., & Bjorklund, A. (1998). L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci, 10, 2694-2706.\r\nChang, C. M., & Chao, C. C. (2013). Protein kinase CK2 enhances Mcl-1 gene expression through the serum response factor-mediated pathway in the rat hippocampus. J Neurosci Res, 91, 808-817.\r\nChao, C. C., Chiang, C. H., Ma, Y. L., & Lee, E. H. (2006). Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiol Aging, 27, 105-118.\r\nChao, C. C., Ma, Y. L., & Lee, E. H. (2011). Brain-derived neurotrophic factor enhances Bcl-xL expression through protein kinase casein kinase 2-activated and nuclear factor kappa B-mediated pathway in rat hippocampus. Brain Pathol, 21, 150-162.\r\nCharriaut-Marlangue, C., Otani, S., Creuzet, C., Ben-Ari, Y., & Loeb, J. (1991). Rapid activation of hippocampal casein kinase II during long-term potentiation. Proc Natl Acad Sci U S A, 88, 10232-10236.\r\nChassain, C., Bielicki, G., Carcenac, C., Ronsin, A. C., Renou, J. P., Savasta, M., & Durif, F. (2013). Does MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A (1)H nuclear MRS study. NMR Biomed, 26, 336-347.\r\nChaudhuri, K. R., & Schapira, A. H. V. (2009). Non-motor symptoms of Parkinson`s disease: dopaminergic pathophysiology and treatment. The Lancet Neurology, 8, 464-474.\r\nChester, N., Yu, I. J., & Marshak, D. R. (1995). Identification and characterization of protein kinase CKII isoforms in HeLa cells. Isoform-specific differences in rates of assembly from catalytic and regulatory subunits. J Biol Chem, 270, 7501-7514.\r\nCohen, P. T. (2002). Protein phosphatase 1--targeted in many directions. J Cell Sci, 115, 241-256.\r\nDa Cunha, C., Wietzikoski, E. C., Ferro, M. M., Martinez, G. R., Vital, M. A., Hipolide, D., Tufik, S., & Canteras, N. S. (2008). Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission. Behav Brain Res, 189, 364-372.\r\nDarmopil, S., Martin, A. B., De Diego, I. R., Ares, S., & Moratalla, R. (2009). Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry, 66, 603-613.\r\nde Jong, P. J., Lakke, J. P., & Teelken, A. W. (1984). CSF GABA levels in Parkinson`s disease. Adv Neurol, 40, 427-430.\r\nDesagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B., & Martinou, J. C. (2001). Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell, 8, 601-611.\r\nDesdouits, F., Cheetham, J. J., Huang, H. B., Kwon, Y. G., da Cruz e Silva, E. F., Denefle, P., Ehrlich, M. E., Nairn, A. C., Greengard, P., & Girault, J. A. (1995). Mechanism of inhibition of protein phosphatase 1 by DARPP-32: studies with recombinant DARPP-32 and synthetic peptides. Biochem Biophys Res Commun, 206, 652-658.\r\nDionisi-Vici, C., Hoffmann, G. F., Leuzzi, V., Hoffken, H., Brautigam, C., Rizzo, C., Steebergen-Spanjers, G. C., Smeitink, J. A., & Wevers, R. A. (2000). Tyrosine hydroxylase deficiency with severe clinical course: clinical and biochemical investigations and optimization of therapy. J Pediatr, 136, 560-562.\r\nDirkx, R., Jr., Thomas, A., Li, L., Lernmark, A., Sherwin, R. S., De Camilli, P., & Solimena, M. (1995). Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J Biol Chem, 270, 2241-2246.\r\nFan, M. M., & Raymond, L. A. (2007). N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington`s disease. Prog Neurobiol, 81, 272-293.\r\nFan, M. M., Zhang, H., Hayden, M. R., Pelech, S. L., & Raymond, L. A. (2008). Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. J Neurochem, 104, 790-805.\r\nFernandez, E., Schiappa, R., Girault, J. A., & Le Novere, N. (2006). DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol, 2, e176.\r\nFienberg, A. A., Hiroi, N., Mermelstein, P. G., Song, W., Snyder, G. L., Nishi, A., Cheramy, A., O`Callaghan, J. P., Miller, D. B., Cole, D. G., Corbett, R., Haile, C. N., Cooper, D. C., Onn, S. P., Grace, A. A., Ouimet, C. C., White, F. J., Hyman, S. E., Surmeier, D. J., Girault, J., Nestler, E. J., & Greengard, P. (1998). DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science, 281, 838-842.\r\nFreichel, C., Potschka, H., Ebert, U., Brandt, C., & Loscher, W. (2006). Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Neuroscience, 141, 2177-2194.\r\nFriedman, A. (1985a). [Dyskinesia as a complication of the treatment of Parkinson disease with L-dopa--clinical observations]. Neurol Neurochir Pol, 19, 291-294.\r\nFriedman, A. (1985b). Levodopa-induced dyskinesia: clinical observations. J Neurol, 232, 29-31.\r\nGerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., Jr., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250, 1429-1432.\r\nGerfen, C. R., Miyachi, S., Paletzki, R., & Brown, P. (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci, 22, 5042-5054.\r\nGirault, J. A., Hemmings, H. C., Jr., Williams, K. R., Nairn, A. C., & Greengard, P. (1989). Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. J Biol Chem, 264, 21748-21759.\r\nGirault, J. A., Hemmings, H. C., Jr., Zorn, S. H., Gustafson, E. L., & Greengard, P. (1990). Characterization in mammalian brain of a DARPP-32 serine kinase identical to casein kinase II. J Neurochem, 55, 1772-1783.\r\nGomez-Mancilla, B., & Bedard, P. J. (1993). Effect of nondopaminergic drugs on L-dopa-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol, 16, 418-427.\r\nGourfinkel-An, I., Parain, K., Hartmann, A., Mangiarini, L., Brice, A., Bates, G., & Hirsch, E. C. (2003). Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. J Neurochem, 86, 1369-1378.\r\nGraybiel, A. M. (2000). The basal ganglia. Curr Biol, 10, R509-511.\r\nGreengard, P. (2001). The neurobiology of dopamine signaling. Biosci Rep, 21, 247-269.\r\nGreengard, P., Allen, P. B., & Nairn, A. C. (1999). Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron, 23, 435-447.\r\nGuerra, M. J., Liste, I., & Labandeira-Garcia, J. L. (1997). Effects of lesions of the nigrostriatal pathway and of nigral grafts on striatal serotonergic innervation in adult rats. Neuroreport, 8, 3485-3488.\r\nHaavik, J., & Toska, K. (1998). Tyrosine hydroxylase and Parkinson`s disease. Mol Neurobiol, 16, 285-309.\r\nHardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 5, 405-414.\r\nHarper, P. S. (1999). Huntington`s disease: a clinical, genetic and molecular model for polyglutamine repeat disorders. Philos Trans R Soc Lond B Biol Sci, 354, 957-961.\r\nHemmings, H. C., Jr., Greengard, P., Tung, H. Y., & Cohen, P. (1984). DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature, 310, 503-505.\r\nHemmings, H. C., Jr., Nairn, A. C., & Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. J Biol Chem, 259, 14491-14497.\r\nHemmings, H. C., Jr., Williams, K. R., Konigsberg, W. H., & Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated neuronal phosphoprotein. I. Amino acid sequence around the phosphorylated threonine. J Biol Chem, 259, 14486-14490.\r\nHickey, M. A., Kosmalska, A., Enayati, J., Cohen, R., Zeitlin, S., Levine, M. S., & Chesselet, M. F. (2008). Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington`s disease mice. Neuroscience, 157, 280-295.\r\nHsu, C. C., Thomas, C., Chen, W., Davis, K. M., Foos, T., Chen, J. L., Wu, E., Floor, E., Schloss, J. V., & Wu, J. Y. (1999). Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J Biol Chem, 274, 24366-24371.\r\nIngham, C. A., Hood, S. H., & Arbuthnott, G. W. (1989). Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res, 503, 334-338.\r\nKemp, J. M., & Powell, T. P. (1971). The site of termination of afferent fibres in the caudate nucleus. Philos Trans R Soc Lond B Biol Sci, 262, 413-427.\r\nKim, H. R., Kim, K., Lee, K. H., Kim, S. J., & Kim, J. (2008). Inhibition of casein kinase 2 enhances the death ligand- and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol, 152, 336-344.\r\nKonradi, C., Westin, J. E., Carta, M., Eaton, M. E., Kuter, K., Dekundy, A., Lundblad, M., & Cenci, M. A. (2004). Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis, 17, 219-236.\r\nKorchounov, A., Meyer, M. F., & Krasnianski, M. (2010). Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. J Neural Transm, 117, 1359-1369.\r\nKosel, M., Rudolph, U., Wielepp, P., Luginbuhl, M., Schmitt, W., Fisch, H. U., & Schlaepfer, T. E. (2004). Diminished GABA(A) receptor-binding capacity and a DNA base substitution in a patient with treatment-resistant depression and anxiety. Neuropsychopharmacology, 29, 347-350.\r\nKoshibu, K., Graff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., Farinelli, M., Bollen, M., & Mansuy, I. M. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci, 29, 13079-13089.\r\nKwon, Y. G., Huang, H. B., Desdouits, F., Girault, J. A., Greengard, P., & Nairn, A. C. (1997). Characterization of the interaction between DARPP-32 and protein phosphatase 1 (PP-1): DARPP-32 peptides antagonize the interaction of PP-1 with binding proteins. Proc Natl Acad Sci U S A, 94, 3536-3541.\r\nLangston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979-980.\r\nLangston, J. W., Quik, M., Petzinger, G., Jakowec, M., & Di Monte, D. A. (2000). Investigating levodopa-induced dyskinesias in the parkinsonian primate. Ann Neurol, 47, S79-89.\r\nLee, C. S., Cenci, M. A., Schulzer, M., & Bjorklund, A. (2000). Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson`s disease. Brain, 123 ( Pt 7), 1365-1379.\r\nLee, H. R., Park, S. Y., Kim, H. Y., Shin, H. K., Lee, W. S., Rhim, B. Y., Hong, K. W., & Kim, C. D. (2012). Protection by cilostazol against amyloid-beta(1-40)-induced suppression of viability and neurite elongation through activation of CK2alpha in HT22 mouse hippocampal cells. J Neurosci Res, 90, 1566-1576.\r\nLindskog, M., Svenningsson, P., Pozzi, L., Kim, Y., Fienberg, A. A., Bibb, J. A., Fredholm, B. B., Nairn, A. C., Greengard, P., & Fisone, G. (2002). Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature, 418, 774-778.\r\nLiu, F. C., & Graybiel, A. M. (1996). Spatiotemporal dynamics of CREB phosphorylation: transient versus sustained phosphorylation in the developing striatum. Neuron, 17, 1133-1144.\r\nLloyd, K. G., Bossi, L., Morselli, P. L., Munari, C., Rougier, M., & Loiseau, H. (1986). Alterations of GABA-mediated synaptic transmission in human epilepsy. Adv Neurol, 44, 1033-1044.\r\nLonze, B. E., & Ginty, D. D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron, 35, 605-623.\r\nLopez-Huerta, V. G., Carrillo-Reid, L., Galarraga, E., Tapia, D., Fiordelisio, T., Drucker-Colin, R., & Bargas, J. (2013). The balance of striatal feedback transmission is disrupted in a model of parkinsonism. J Neurosci, 33, 4964-4975.\r\nLoschmann, P. A., Smith, L. A., Lange, K. W., Jahnig, P., Jenner, P., & Marsden, C. D. (1992). Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology (Berl), 109, 49-56.\r\nLou, D. Y., Dominguez, I., Toselli, P., Landesman-Bollag, E., O`Brien, C., & Seldin, D. C. (2008). The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol, 28, 131-139.\r\nMaeda, T., Nagata, K., Yoshida, Y., & Kannari, K. (2005). Serotonergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered l-DOPA. Brain Res, 1046, 230-233.\r\nMeggio, F., & Pinna, L. A. (2003). One-thousand-and-one substrates of protein kinase CK2? FASEB J, 17, 349-368.\r\nMilnerwood, A. J., Gladding, C. M., Pouladi, M. A., Kaufman, A. M., Hines, R. M., Boyd, J. D., Ko, R. W., Vasuta, O. C., Graham, R. K., Hayden, M. R., Murphy, T. H., & Raymond, L. A. (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington`s disease mice. Neuron, 65, 178-190.\r\nMurnion, M. E., Adams, R. R., Callister, D. M., Allis, C. D., Earnshaw, W. C., & Swedlow, J. R. (2001). Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J Biol Chem, 276, 26656-26665.\r\nMuschamp, J. W., & Carlezon, W. A., Jr. (2013). Roles of nucleus accumbens CREB and dynorphin in dysregulation of motivation. Cold Spring Harb Perspect Med, 3, a012005.\r\nNakajo, S., Hagiwara, T., Nakaya, K., & Nakamura, Y. (1986). Tissue distribution of casein kinases. Biochem Int, 13, 701-707.\r\nNakashima, A., Ota, A., Kaneko, Y. S., Mori, K., Nagasaki, H., & Nagatsu, T. (2013). A possible pathophysiological role of tyrosine hydroxylase in Parkinson`s disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer. J Neural Transm, 120, 49-54.\r\nNestler, E. J. (2004). Molecular mechanisms of drug addiction. Neuropharmacology, 47 Suppl 1, 24-32.\r\nNishi, A., Bibb, J. A., Snyder, G. L., Higashi, H., Nairn, A. C., & Greengard, P. (2000). Amplification of dopaminergic signaling by a positive feedback loop. Proc Natl Acad Sci U S A, 97, 12840-12845.\r\nNishi, A., Snyder, G. L., & Greengard, P. (1997). Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci, 17, 8147-8155.\r\nNishi, A., Snyder, G. L., Nairn, A. C., & Greengard, P. (1999). Role of calcineurin and protein phosphatase-2A in the regulation of DARPP-32 dephosphorylation in neostriatal neurons. J Neurochem, 72, 2015-2021.\r\nNutt, J. G. (2000). Clinical pharmacology of levodopa-induced dyskinesia. Ann Neurol, 47, S160-164; discussion S164-166.\r\nObeso, J. A., Olanow, C. W., & Nutt, J. G. (2000). Levodopa motor complications in Parkinson`s disease. Trends Neurosci, 23, S2-7.\r\nObeso JA, R.-O. M., Rodriguez M, Macias R, Alvarez L, Guridi J, Vitek J, DeLong MR. (2000). Pathophysiologic basis of surgery for Parkinson`s disease. Neurology.\r\nOertel, W. H., & Quinn, N. P. (1997). Parkinson`s disease: drug therapy. Baillieres Clin Neurol, 6, 89-108.\r\nOlanow, C. W., Gauger, L. L., & Cedarbaum, J. M. (1991). Temporal relationships between plasma and cerebrospinal fluid pharmacokinetics of levodopa and clinical effect in Parkinson`s disease. Ann Neurol, 29, 556-559.\r\nPavon, N., Martin, A. B., Mendialdua, A., & Moratalla, R. (2006). ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry, 59, 64-74.\r\nPearce, R. K., Banerji, T., Jenner, P., & Marsden, C. D. (1998). De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-dopa in the MPTP-treated marmoset. Mov Disord, 13, 234-241.\r\nPicconi, B., Centonze, D., Hakansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M. A., & Calabresi, P. (2003). Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci, 6, 501-506.\r\nRascol, O., Brooks, D. J., Korczyn, A. D., De Deyn, P. P., Clarke, C. E., & Lang, A. E. (2000). A five-year study of the incidence of dyskinesia in patients with early Parkinson`s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med, 342, 1484-1491.\r\nRebholz, H., Zhou, M., Nairn, A. C., Greengard, P., & Flajolet, M. (2013). Selective knockout of the casein kinase 2 in d1 medium spiny neurons controls dopaminergic function. Biol Psychiatry, 74, 113-121.\r\nReis, H. J., Rosa, D. V., Guimaraes, M. M., Souza, B. R., Barros, A. G., Pimenta, F. J., Souza, R. P., Torres, K. C., & Romano-Silva, M. A. (2007). Is DARPP-32 a potential therapeutic target? Expert Opin Ther Targets, 11, 1649-1661.\r\nRobinson, P. J., Liu, J. P., Powell, K. A., Fykse, E. M., & Sudhof, T. C. (1994). Phosphorylation of dynamin I and synaptic-vesicle recycling. Trends Neurosci, 17, 348-353.\r\nRobinson, T. E., & Becker, J. B. (1983). The rotational behavior model: asymmetry in the effects of unilateral 6-OHDA lesions of the substantia nigra in rats. Brain Res, 264, 127-131.\r\nRozas, G., Lopez-Martin, E., Guerra, M. J., & Labandeira-Garcia, J. L. (1998). The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J Neurosci Methods, 83, 165-175.\r\nSala, C., Rudolph-Correia, S., & Sheng, M. (2000). Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J Neurosci, 20, 3529-3536.\r\nSano, H., Chiken, S., Hikida, T., Kobayashi, K., & Nambu, A. (2013). Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J Neurosci, 33, 7583-7594.\r\nSano, H., Yasoshima, Y., Matsushita, N., Kaneko, T., Kohno, K., Pastan, I., & Kobayashi, K. (2003). Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J Neurosci, 23, 9078-9088.\r\nSantini, E. (2009). Molecular Basis of L-DOPA-induced Dyskinesia: Studies on Striatal Signaling: Karolinska institutet.\r\nSantini, E., Sgambato-Faure, V., Li, Q., Savasta, M., Dovero, S., Fisone, G., & Bezard, E. (2010). Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS One, 5, e12322.\r\nSantini, E., Valjent, E., Usiello, A., Carta, M., Borgkvist, A., Girault, J. A., Herve, D., Greengard, P., & Fisone, G. (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci, 27, 6995-7005.\r\nSchneider, J. S. (1989). Levodopa-induced dyskinesias in parkinsonian monkeys: relationship to extent of nigrostriatal damage. Pharmacol Biochem Behav, 34, 193-196.\r\nSchrag, A., & Quinn, N. (2000). Dyskinesias and motor fluctuations in Parkinson`s disease. A community-based study. Brain, 123 ( Pt 11), 2297-2305.\r\nSgambato-Faure, V., Buggia, V., Gilbert, F., Levesque, D., Benabid, A. L., & Berger, F. (2005). Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats. J Neuropathol Exp Neurol, 64, 936-947.\r\nSheikh, S. N., & Martin, D. L. (1998). Elevation of brain GABA levels with vigabatrin (gamma-vinylGABA) differentially affects GAD65 and GAD67 expression in various regions of rat brain. J Neurosci Res, 52, 736-741.\r\nSirinathsinghji, D. J., Kupsch, A., Mayer, E., Zivin, M., Pufal, D., & Oertel, W. H. (1992). Cellular localization of tyrosine hydroxylase mRNA and cholecystokinin mRNA-containing cells in the ventral mesencephalon of the common marmoset: effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res Mol Brain Res, 12, 267-274.\r\nSmith, Y., & Villalba, R. (2008). Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord, 23 Suppl 3, S534-547.\r\nSpokes, E. G., Garrett, N. J., Rossor, M. N., & Iversen, L. L. (1980). Distribution of GABA in post-mortem brain tissue from control, psychotic and Huntington`s chorea subjects. J Neurol Sci, 48, 303-313.\r\nStephens, B., Mueller, A. J., Shering, A. F., Hood, S. H., Taggart, P., Arbuthnott, G. W., Bell, J. E., Kilford, L., Kingsbury, A. E., Daniel, S. E., & Ingham, C. A. (2005). Evidence of a breakdown of corticostriatal connections in Parkinson`s disease. Neuroscience, 132, 741-754.\r\nStipanovich, A., Valjent, E., Matamales, M., Nishi, A., Ahn, J. H., Maroteaux, M., Bertran-Gonzalez, J., Brami-Cherrier, K., Enslen, H., Corbille, A. G., Filhol, O., Nairn, A. C., Greengard, P., Herve, D., & Girault, J. A. (2008). A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature, 453, 879-884.\r\nSudhof, T. C. (1995). The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature, 375, 645-653.\r\nSvenningsson, P., Nishi, A., Fisone, G., Girault, J. A., Nairn, A. C., & Greengard, P. (2004). DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol, 44, 269-296.\r\nSvenningsson, P., Tzavara, E. T., Carruthers, R., Rachleff, I., Wattler, S., Nehls, M., McKinzie, D. L., Fienberg, A. A., Nomikos, G. G., & Greengard, P. (2003). Diverse psychotomimetics act through a common signaling pathway. Science, 302, 1412-1415.\r\nTanaka, H., Kannari, K., Maeda, T., Tomiyama, M., Suda, T., & Matsunaga, M. (1999). Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport, 10, 631-634.\r\nTreisman, R. (1996). Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol, 8, 205-215.\r\nValjent, E., Pascoli, V., Svenningsson, P., Paul, S., Enslen, H., Corvol, J. C., Stipanovich, A., Caboche, J., Lombroso, P. J., Nairn, A. C., Greengard, P., Herve, D., & Girault, J. A. (2005). Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci U S A, 102, 491-496.\r\nVarastet, M., Riche, D., Maziere, M., & Hantraye, P. (1994). Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson`s disease. Neuroscience, 63, 47-56.\r\nVillalba, R. M., Lee, H., & Smith, Y. (2009). Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys. Exp Neurol, 215, 220-227.\r\nVillalba, R. M., & Smith, Y. (2010). Striatal spine plasticity in Parkinson`s Disease. Frontiers in Neuroanatomy, 4.\r\nWalaas, S. I., Aswad, D. W., & Greengard, P. (1983). A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature, 301, 69-71.\r\nWalaas, S. I., & Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J Neurosci, 4, 84-98.\r\nWei, J., Davis, K. M., Wu, H., & Wu, J. Y. (2004). Protein phosphorylation of human brain glutamic acid decarboxylase (GAD)65 and GAD67 and its physiological implications. Biochemistry, 43, 6182-6189.\r\nWestin, J. E., Vercammen, L., Strome, E. M., Konradi, C., & Cenci, M. A. (2007). Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry, 62, 800-810.\r\nWinkler, C., Kirik, D., Bjorklund, A., & Cenci, M. A. (2002). L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson`s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis, 10, 165-186.\r\nWong, C. G., Bottiglieri, T., & Snead, O. C., 3rd. (2003). GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol, 54 Suppl 6, S3-12.\r\nZachariou, V., Sgambato-Faure, V., Sasaki, T., Svenningsson, P., Berton, O., Fienberg, A. A., Nairn, A. C., Greengard, P., & Nestler, E. J. (2006). Phosphorylation of DARPP-32 at Threonine-34 is required for cocaine action. Neuropsychopharmacology, 31, 555-562.\r\nZaja-Milatovic, S., Milatovic, D., Schantz, A. M., Zhang, J., Montine, K. S., Samii, A., Deutch, A. Y., & Montine, T. J. (2005). Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology, 64, 545-547.\r\nZesiewicz, T. A., Sullivan, K. L., Arnulf, I., Chaudhuri, K. R., Morgan, J. C., Gronseth, G. S., Miyasaki, J., Iverson, D. J., Weiner, W. J., & Quality Standards Subcommittee of the American Academy of, N. (2010). Practice Parameter: treatment of nonmotor symptoms of Parkinson disease: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 74, 924-931.\r\nZhang, T. Y., Hellstrom, I. C., Bagot, R. C., Wen, X., Diorio, J., & Meaney, M. J. (2010). Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J Neurosci, 30, 13130-13137.\r\nZhang, Y., Svenningsson, P., Picetti, R., Schlussman, S. D., Nairn, A. C., Ho, A., Greengard, P., & Kreek, M. J. (2006). Cocaine self-administration in mice is inversely related to phosphorylation at Thr34 (protein kinase A site) and Ser130 (kinase CK1 site) of DARPP-32. J Neurosci, 26, 2645-2651.
描述: 碩士
國立政治大學
神經科學研究所
100754007
102
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0100754007
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File SizeFormat
index.html128 BHTML2View/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.