Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/78091
題名: 蛋白磷酸水解酶PP1在蛋白激酶CK2a調控 抗凋亡蛋白Bcl-xL基因表現過程中的角色
The role of protein phosphatase 1 in the protein kinase CK2a-mediated anti-apoptotic Bcl-xL gene expression
作者: 許焙琹
貢獻者: 趙知章
許焙琹
關鍵詞: 蛋白激酶CK2
DARPP-32蛋白
蛋白磷酸水解酶PP1
抗細胞凋亡Bcl-xL蛋白
氧化壓力
細胞存活
Protein kinase CK2
DARPP-32
protein phosphatase PP1
Bcl-xL
oxidative stress
cell viability
日期: 2015
上傳時間: 1-Sep-2015
摘要: 蛋白激酶 CK2 是一種具有多功能的絲胺酸/蘇胺酸蛋白激酶,大量表現於哺乳類動物的腦中,對於調控細胞週期的發展、基因表現、訊息傳遞以及抗細胞凋亡機制扮演相當重要的角色。許多研究顯示 CK2 也參與調節許多神經系統功能,包括神經保護及神經存活,但是其中調控機制目前尚未釐清。DARPP-32 (dopamine- and cAMP- regulated phosphoprotein with a molecular mass of 32 kDa) 主要表現在紋狀體中型多刺狀神經元中,過去研究已證實 DARPP-32 Ser102 胺基酸是CK2 的磷酸化作用受質。雖然DARPP-32 被發現主要透過抑制蛋白磷酸水解酶 PP1 參與藥物成癮的細胞調控機制,但近年研究指出DARPP-32 也參與抗細胞凋亡作用。PP1 是真核細胞的絲胺酸/蘇胺酸磷酸水解酶,能調節多種細胞功能,如轉錄、細胞訊息傳遞及細胞凋亡。過去文獻已指出 PP1 可以調節 Bcl-x 基因的 pre-mRNA 選擇性剪切,再經由轉譯過程合成抗細胞凋亡 Bcl-xL 異構蛋白,研究也發現抑制 PP1 可以防止細胞週期的停滯及細胞凋亡,強調細胞在壓力的情況下,PP1 扮演了相當關鍵性的角色。因此論文以人類神經母細胞瘤 SH-SY5Y 為實驗模式,探討透過 CK2 調控 DARPP-32 Ser102 的磷酸化是否具有抑制 PP1 的活性並促進細胞存活的作用。實驗結果顯示,抑制 CK2或DARPP-32 蛋白含量會導致細胞存活率下降,轉染 CK2 siRNA 會降低 DARPP-32 Ser102 的磷酸化現象、Bcl-xL 的蛋白質表現;轉染DARPP-32 siRNA 及突變型DARPP-32 S102A DNA 質體也會降低 Bcl-xL 的蛋白質表現,PP1 活性則會因轉染突變型DARPP-32 S102A DNA 質體而增加;此外,給予 PP1 抑制劑的實驗結果發現會促進 Bcl-xL/Bcl-xS mRNA 的比例以及 Bcl-xL 的蛋白質表現量。利用過氧化氫誘導細胞造成氧化壓力狀況下,同時給予 PP1 抑制劑,發現 Bcl-xL 的蛋白質表現量會回復以及促進細胞存活。轉染 CK2-EGFP 或 DARPP-32 S102D DNA 質體可以顯著回復Bcl-xL 的蛋白質表現量及Bcl-xL/Bcl-xS mRNA 的比例,轉染 DARPP-32 S102D DNA 質體亦可降低 PP1 的活性。論文的實驗結果提供 CK2 調節抗細胞凋亡基因表現的新機制,是經由促進 DARPP-32 Ser102 磷酸化作用進而抑制 PP1 活性,此條細胞訊息傳遞路徑將可提供應用於在氧化壓力下提升神經存活的臨床治療。
Protein kinase casein kinase II (CK2) is a multifunctional serine/threonine protein kinase and is highly abundant expression in the mammalian brain. CK2 plays an important role in the regulation of the cell cycle, gene expression, signal transduction and anti-apoptotic mechanisms. A number of studies have indicated that CK2 is involved in several neuronal functions including the neuroprotection and neuron survival, but its cellular mechanisms are not well-studied. The DARPP-32 (dopamine- and cAMP-regulated phosphoprotein with a molecular mass of 32 kDa) is highly enriched in the striatal medium spiny neurons and the Ser102 residue is identified as the phosphorylation site for CK2. Although DARPP-32 is known as a prominent cellular mediator of drug abuse through the inhibition of protein phosphatase 1 (PP1), the recent studies indicate that DARPP-32 may also be involved in the anti-apoptotic effects. Protein phosphatase PP1 is a major eukaryotic serine/threonine phosphatase that regulates diverse cellular functions such as transcription, cell signaling and apoptosis. PP1 is indicated to regulate the pre-mRNA alternative splicing of Bcl-x gene to encode the anti-apoptotic Bcl-xL isoform. Inhibition of PP1 prevents the induction of cell cycle arrest and apoptosis, underlines the crucial role of PP1 in the cellular response to the stress. In my thesis study, the neuroblastoma SH-SY5Y cell line system was used to investigate whether the promotion of cell survival by PP1 inhibition is through the signaling pathway of DARPP-32 Ser102 phosphorylation by CK2. The current results reveals that the cell viability is decreased under down-regulations of CK2 and DARPP-32. The Ser102 phosphorylation status of DARPP-32, Bcl-xL mRNA and protein level are decreased by CK2 siRNA transfection. Transfection of either DARPP-32 siRNA or mutant DARPP-32 S102A plasmid DNA decreased the Bcl-xL protein level. The PP1 activity was increased by mutant DARPP-32 S102A plasmid DNA transfection. Furthermore, the PP1 inhibitor treatment increased the Bcl-xL/Bcl-xS mRNA ratio and Bcl-xL protein level. Under oxidative stress, inhibition of PP1 activity can reverse the H2O2-induced decrease in Bcl-xL protein level and promote the cell viability. The transfection of CK2-EGFP or DARPP-32 S102D plasmid DNA both can antagonize the effects of H2O2 on Bcl-xL protein level and the Bcl-xL/Bcl-xS mRNA ratio. The DARPP-32 S102D plasmid DNA transfection also attenuated the induction of PP1 activity under oxidative stress. These findings provide another insight for the regulation of anti-apoptotic gene expression by inhibition of PP1 activity through DARPP-32 phosphorylation on Ser102 by CK2. This signaling pathway might be applied in the clinical therapy for neuronal survival under oxidative stress.
參考文獻: Ahn J-H, McAvoy T, Rakhilin SV, Nishi A, Greengard P, Nairn AC (2007) Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56δ subunit. Proceedings of the National Academy of Sciences 104:2979-2984.\r\nAiken CT, Kaake RM, Wang X, Huang L (2011) Oxidative Stress-Mediated Regulation of Proteasome Complexes. Molecular & Cellular Proteomics 10.\r\nAksenova MV, Burbaeva GS, Kandror KV, Kapkov DV, Stepanov AS (1991) The decreased level of casein kinase 2 in brain cortex of schizophrenic and Alzheimer`s disease patients. FEBS Letters 279:55-57.\r\nAmoroso S, Gioielli A, Cataldi M, Di Renzo G, Annunziato L (1999) In the neuronal cell line SH-SY5Y, oxidative stress-induced free radical overproduction causes cell death without any participation of intracellular Ca2+ increase. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1452:151-160.\r\nApostol BL, Illes K, Pallos J, Bodai L, Wu J, Strand A, Schweitzer ES, Olson JM, Kazantsev A, Marsh JL, Thompson LM (2006) Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Human Molecular Genetics 15:273-285.\r\nAxton JM, Dombrádi V, Cohen PTW, Glover DM (1990) One of the protein phosphatase 1 isoenzymes in Drosophila is essential for mitosis. Cell 63:33-46.\r\nAyllón V, Martínez‐A C, García A, Cayla X, Rebollo A (2000) Protein phosphatase 1α is a Ras‐activated Bad phosphatase that regulates interleukin‐2 deprivation‐induced apoptosis.\r\nBales JW, Yan HQ, Ma X, Li Y, Samarasinghe R, Dixon CE (2011) The dopamine and cAMP regulated phosphoprotein, 32kDa (DARPP-32) signaling pathway: A novel therapeutic target in traumatic brain injury. Experimental Neurology 229:300-307.\r\nBelkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai We (2005) Darpp-32: a Novel Antiapoptotic Gene in Upper Gastrointestinal Carcinomas. Cancer Research 65:6583-6592.\r\nBelkhiri A, Zhu S, Chen Z, Soutto M, El-Rifai W (2012) Resistance to TRAIL Is Mediated by DARPP-32 in Gastric Cancer. Clinical Cancer Research 18:3889-3900.\r\nBibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai L-H, Kwon YT, Girault J-A, Czernik AJ, Huganir RL, Hemmings HC, Nairn AC, Greengard P (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402:669-671.\r\nBibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, Horiuchi A, Nairn AC, Messer A, Greengard P (2000) Severe deficiencies in dopamine signaling in presymptomatic Huntington`s disease mice. Proceedings of the National Academy of Sciences 97:6809-6814.\r\nBiedler JL, Helson L, Spengler BA (1973) Morphology and Growth, Tumorigenicity, and Cytogenetics of Human Neuroblastoma Cells in Continuous Culture. Cancer Research 33:2643-2652.\r\nBiedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple Neurotransmitter Synthesis by Human Neuroblastoma Cell Lines and Clones. Cancer Research 38:3751-3757.\r\nBoon-Unge K, Yu Q, Zou T, Zhou A, Govitrapong P, Zhou J (2007) Emetine regulates the alternative splicing of Bcl-x through a protein phosphatase 1-dependent mechanism. Chemistry & biology 14:1386-1392.\r\nBredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796-802.\r\nBuchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger O-G, Boldyreff B (2003) Disruption of the Regulatory β Subunit of Protein Kinase CK2 in Mice Leads to a Cell-Autonomous Defect and Early Embryonic Lethality. Molecular and Cellular Biology 23:908-915.\r\nCeulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiological reviews 84:1-39.\r\nCeulemans H, Stalmans W, Bollen M (2002) Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. BioEssays 24:371-381.\r\nChalfant CE, Kishikawa K, Mumby MC, Kamibayashi C, Bielawska A, Hannun YA (1999) Long Chain Ceramides Activate Protein Phosphatase-1 and Protein Phosphatase-2A: activation is stereospecific and regulated by phosphatidic acid. Journal of Biological Chemistry 274:20313-20317.\r\nChalfant CE, Rathman K, Pinkerman RL, Wood RE, Obeid LM, Ogretmen B, Hannun YA (2002) De Novo Ceramide Regulates the Alternative Splicing of Caspase 9 and Bcl-x in A549 Lung Adenocarcinoma Cells: dependence on protein phosphatase-1. Journal of Biological Chemistry 277:12587-12595.\r\nChang M-J, Zhong F, Lavik AR, Parys JB, Berridge MJ, Distelhorst CW (2014) Feedback regulation mediated by Bcl-2 and DARPP-32 regulates inositol 1,4,5-trisphosphate receptor phosphorylation and promotes cell survival. Proceedings of the National Academy of Sciences 111:1186-1191.\r\nChao CC, Chiang CH, Ma YL, Lee EHY (2006) Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiology of Aging 27:105-118.\r\nChao CC, Ma YL, Lee EHY (2011) Brain-Derived Neurotrophic Factor Enhances Bcl-xL Expression Through Protein Kinase Casein Kinase 2-Activated and Nuclear Factor Kappa B-Mediated Pathway in Rat Hippocampus. Brain Pathology 21:150-162.\r\nCharriaut-Marlangue C, Otani S, Creuzet C, Ben-Ari Y, Loeb J (1991) Rapid activation of hippocampal casein kinase II during long-term potentiation. Proc Natl Acad Sci U S A 88:10232-10236.\r\nChatfield K, Eastman A (2004) Inhibitors of protein phosphatases 1 and 2A differentially prevent intrinsic and extrinsic apoptosis pathways. Biochemical and biophysical research communications 323:1313-1320.\r\nCohen PT (2002) Protein phosphatase 1–targeted in many directions. Journal of Cell Science 115:241-256.\r\nDavis AR, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2007) FasL, Fas, and Death-Inducing Signaling Complex (DISC) Proteins are Recruited to Membrane Rafts after Spinal Cord Injury. Journal of Neurotrauma 24:823-834.\r\nDe Filippis L, Delia D (2011) Hypoxia in the regulation of neural stem cells. Cell Mol Life Sci 68:2831-2844.\r\nDesagher S, Osen-Sand A, Montessuit S, Magnenat E, Vilbois F, Hochmann A, Journot L, Antonsson B, Martinou J-C (2001) Phosphorylation of Bid by Casein Kinases I and II Regulates Its Cleavage by Caspase 8. Molecular Cell 8:601-611.\r\nDesdouits F, Cohen D, Nairn AC, Greengard P, Girault J-A (1995) Phosphorylation of DARPP-32, a Dopamine- and cAMP-regulated Phosphoprotein, by Casein Kinase I in Vitro and in Vivo. Journal of Biological Chemistry 270:8772-8778.\r\nDesdouits F, Siciliano J, NAIRN A, Greengard P, Girault J (1998) Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons. Biochem J 330:211-216.\r\nDi Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, Pinna LA, Ruzzene M (2005) Protein kinase CK2 phosphorylates and upregulates Akt//PKB. Cell Death Differ 12:668-677.\r\nDole MG, Clarke MF, Holman P, Benedict M, Lu J, Jasty R, Eipers P, Thompson CB, Rode C, Bloch C, Nuñez G, Castle VP (1996) Bcl-xS Enhances Adenoviral Vector-induced Apoptosis in Neuroblastoma Cells. Cancer Research 56:5734-5740.\r\nEischen CM, Woo D, Roussel MF, Cleveland JL (2001) Apoptosis Triggered by Myc-Induced Suppression of Bcl-XL or Bcl-2 Is Bypassed during Lymphomagenesis. Molecular and Cellular Biology 21:5063-5070.\r\nEngelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial Programmed Cell Death and Multicellular Behavior in Bacteria. PLoS Genet 2:e135.\r\nFang W, Rivard JJ, Mueller DL, Behrens TW (1994) Cloning and molecular characterization of mouse bcl-x in B and T lymphocytes. The Journal of Immunology 153:4388-4398.\r\nFienberg AA, Hiroi N, Mermelstein PG, Song W-J, Snyder GL, Nishi A, Cheramy A, O`Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J-A, Nestler EJ, Greengard P (1998) DARPP-32: Regulator of the Efficacy of Dopaminergic Neurotransmission. Science 281:838-842.\r\nFulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. International journal of cell biology 2010.\r\nGaki G, Papavassiliou A (2014) Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinson’s Disease. Neuromol Med 16:217-230.\r\nGarcía-Jiménez C, Zaballos MA, Santisteban P (2005) DARPP-32 (dopamine and 3′, 5′-cyclic adenosine monophosphate-regulated neuronal phosphoprotein) is essential for the maintenance of thyroid differentiation. Molecular Endocrinology 19:3060-3072.\r\nGenestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cellular Signalling 19:1807-1819.\r\nGilad GM, Gilad VH (1991) Polyamines can protect against ischemia-induced nerve cell death in gerbil forebrain. Experimental neurology 111:349-355.\r\nGirault JA, Hemmings HC, Williams KR, Nairn AC, Greengard P (1989) Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. Journal of Biological Chemistry 264:21748-21759.\r\nGonzalez-Garcia M, Perez-Ballestero R, Ding L, Duan L, Boise LH, Thompson CB, Nunez G (1994) bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development 120:3033-3042.\r\nGreen DR, Galluzzi L, Kroemer G (2014) Metabolic control of cell death. Science 345.\r\nGreen DR, Kroemer G (2004) The Pathophysiology of Mitochondrial Cell Death. Science 305:626-629.\r\nGreengard P (2001) The Neurobiology of Slow Synaptic Transmission. Science 294:1024-1030.\r\nGu Z, Nakamura T, Lipton S (2010) Redox Reactions Induced by Nitrosative Stress Mediate Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases. Mol Neurobiol 41:55-72.\r\nGuerra B, Issinger O-G (1999) Protein kinase CK2 and its role in cellular proliferation, development and pathology. ELECTROPHORESIS 20:391-408.\r\nGuerra B, Siemer S, Boldyreff B, Olaf G (1999) Protein kinase CK2: evidence for a protein kinase CK2β subunit fraction, devoid of the catalytic CK2α subunit, in mouse brain and testicles. FEBS Letters 462:353-357.\r\nHalliwell B, Hu M-L, Louie S, Duvall TR, Tarkington BK, Motchnik P, Cross CE (1992) Interaction of nitrogen dioxide with human plasma Antioxidant depletion and oxidative damage. FEBS Letters 313:62-66.\r\nHanif IM, Hanif IM, Shazib MA, Ahmad KA, Pervaiz S (2010) Casein Kinase II: An attractive target for anti-cancer drug design. The International Journal of Biochemistry & Cell Biology 42:1602-1605.\r\nHardy J (1999) Pathways to Primary Neurodegenerative Disease. Mayo Clinic Proceedings 74:835-837.\r\nHemmings HC, Nairn AC, Elliott JI, Greengard P (1990) Synthetic peptide analogs of DARPP-32 (Mr 32,000 dopamine- and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. Journal of Biological Chemistry 265:20369-20376.\r\nHemmings HC, Nairn AC, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. Journal of Biological Chemistry 259:14491-14497.\r\nHiroi N, Fienberg AA, Haile CN, Alburges M, Hanson GR, Greengard P, Nestler Eric J (1999) Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice. European Journal of Neuroscience 11:1114-1118.\r\nHu BR, Wieloch T (1993) Casein kinase II activity in the postischemic rat brain increases in brain regions resistant to ischemia and decreases in vulnerable areas. Journal of neurochemistry 60:1722-1728.\r\nIyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proceedings of the National Academy of Sciences 106:20388-20393.\r\nKeller DM, Lu H (2002) p53 Serine 392 Phosphorylation Increases after UV through Induction of the Assembly of the CK2•hSPT16•SSRP1 Complex. Journal of Biological Chemistry 277:50206-50213.\r\nKerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics. British Journal of Cancer 26:239-257.\r\nKim GS, Jung JE, Narasimhan P, Sakata H, Yoshioka H, Song YS, Okami N, Chan PH (2012) Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase. J Cereb Blood Flow Metab 32:720-730.\r\nKim HR, Kim K, Lee KH, Kim SJ, Kim J (2008) Inhibition of casein kinase 2 enhances the death ligand- and natural kiler cell-induced hepatocellular carcinoma cell death. Clinical & Experimental Immunology 152:336-344.\r\nKim MH (2008) Protein phosphatase 1 activation and alternative splicing of Bcl-X and Mcl-1 by EGCG + ibuprofen. Journal of Cellular Biochemistry 104:1491-1499.\r\nKroemer G (1998) The mitochondrion as an integrator/coordinator of cell death pathways. Cell death and differentiation 5.\r\nKuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 Domains of BH3-Only Proteins Differentially Regulate Bax-Mediated Mitochondrial Membrane Permeabilization Both Directly and Indirectly. Molecular Cell 17:525-535.\r\nLee J, Zhou J, Zheng X, Cho S, Moon H, Loh TJ, Jo K, Shen H (2012) Identification of a novel cis-element that regulates alternative splicing of Bcl-x pre-mRNA. Biochemical and Biophysical Research Communications 420:467-472.\r\nLee S, Pant HC, Shea TB (2014) Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. Journal of Cell Science 127:4064-4077.\r\nLetai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183-192.\r\nLiu CWY, Wang R-H, Dohadwala M, Schönthal AH, Villa-Moruzzi E, Berndt N (1999a) Inhibitory Phosphorylation of PP1α Catalytic Subunit during the G1/S Transition. Journal of Biological Chemistry 274:29470-29475.\r\nLiu G, Friggeri A, Yang Y, Park Y-J, Tsuruta Y, Abraham E (2009) miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proceedings of the National Academy of Sciences 106:15819-15824.\r\nLiu H, Wang X, Wang J, Wang J, Li Y, Yang L, Li G (2011) Structural Determinants of CX-4945 Derivatives as Protein Kinase CK2 Inhibitors: A Computational Study. International Journal of Molecular Sciences 12:7004-7021.\r\nLiu R, Page C, Beidler DR, Wicha MS, Núñez G (1999b) Overexpression of Bcl-xL Promotes Chemotherapy Resistance of Mammary Tumors in a Syngeneic Mouse Model. The American Journal of Pathology 155:1861-1867.\r\nLou DY, Dominguez I, Toselli P, Landesman-Bollag E, O`Brien C, Seldin DC (2008) The Alpha Catalytic Subunit of Protein Kinase CK2 Is Required for Mouse Embryonic Development. Molecular and Cellular Biology 28:131-139.\r\nMahajan SD, Aalinkeel R, Reynolds JL, Nair BB, Sykes DE, Hu Z, Bonoiu A, Ding H, Prasad PN, Schwartz SA (2009) Therapeutic targeting of “DARPP-32”: a key signaling molecule in the dopiminergic pathway for the treatment of opiate addiction. International review of neurobiology 88:199-222.\r\nMcCluskey A, Sim ATR, Sakoff JA (2002) Serine−Threonine Protein Phosphatase Inhibitors:  Development of Potential Therapeutic Strategies. Journal of Medicinal Chemistry 45:1151-1175.\r\nMEGGIO F, PINNA LA (2003) One-thousand-and-one substrates of protein kinase CK2? The FASEB Journal 17:349-368.\r\nNairn AC, Svenningsson P, Nishi A, Fisone G, Girault J-A, Greengard P (2004) The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology 47:14-23.\r\nNg FWH, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC (1997) p28 Bap31, a Bcl-2/Bcl-X(L)- and Procaspase-8–associated Protein in the Endoplasmic Reticulum. The Journal of Cell Biology 139:327-338.\r\nNishi A, Snyder GL, Nairn AC, Greengard P (1999) Role of Calcineurin and Protein Phosphatase-2A in the Regulation of DARPP-32 Dephosphorylation in Neostriatal Neurons. Journal of Neurochemistry 72:2015-2021.\r\nO’Loghlen A, Pérez-Morgado MI, Salinas M, Martı́n ME (2003) Reversible inhibition of the protein phosphatase 1 by hydrogen peroxide. Potential regulation of eIF2α phosphorylation in differentiated PC12 cells. Archives of Biochemistry and Biophysics 417:194-202.\r\nOlsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell 127:635-648.\r\nOyarce AM, Fleming PJ (1991) Multiple forms of human dopamine β-hydroxylase in SH-SY5Y neuroblastoma cells. Archives of biochemistry and biophysics 290:503-510.\r\nPadmanabha R, Chen-Wu JL, Hanna DE, Glover CV (1990) Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Molecular and Cellular Biology 10:4089-4099.\r\nPlowman GD, Sudarsanam S, Bingham J, Whyte D, Hunter T (1999) The protein kinases of Caenorhabditis elegans: A model for signal transduction in multicellular organisms. Proceedings of the National Academy of Sciences 96:13603-13610.\r\nProwald K, Fischer H, Issinger O-G (1984) Enhanced casein kinase II activity in human tumour cell cultures. FEBS Letters 176:479-483.\r\nQaiser F, Trembley JH, Kren BT, Wu J-J, Naveed AK, Ahmed K (2014) Protein Kinase CK2 Inhibition Induces Cell Death via Early Impact on Mitochondrial Function. Journal of Cellular Biochemistry 115:2103-2115.\r\nRebholz H, Zhou M, Nairn AC, Greengard P, Flajolet M (2013) Selective Knockout of the Casein Kinase 2 in D1 Medium Spiny Neurons Controls Dopaminergic Function. Biological Psychiatry 74:113-121.\r\nSalvesen GS, Dixit VM (1997) Caspases: Intracellular Signaling by Proteolysis. Cell 91:443-446.\r\nSassone J, Maraschi A, Sassone F, Silani V, Ciammola A (2013) Defining the role of the Bcl-2 family proteins in Huntington/`s disease. Cell Death Dis 4:e772.\r\nSchneider CC, Hessenauer A, Götz C, Montenarh M (2009) DMAT, an inhibitor of protein kinase CK2 induces reactive oxygen species and DNA double strand breaks. Oncology reports 21:1593-1597.\r\nShi Y (2009) Serine/Threonine Phosphatases: Mechanism through Structure. Cell 139:468-484.\r\nStoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366-368.\r\nSTUMM G, SCHLEGEL J, SCHÄFER T, WÜRZ C, MENNEL HD, KRIEG J-C, VEDDER H (1999) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. The FASEB Journal 13:1065-1072.\r\nSullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer & Metabolism 2:17.\r\nSusin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441-446.\r\nSvenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P (2004) DARPP-32: An Integrator of Neurotransmission. Annual Review of Pharmacology and Toxicology 44:269-296.\r\nTakahashi T, Deng Y, Maruyama W, Dostert P, Kawai M, Naoi M (1994) Uptake of a neurotoxin-candidate, (R)-1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline into human dopaminergic neuroblastoma SH-SY5Y cells by dopamine transport system. J Neural Transmission 98:107-118.\r\nValko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 39:44-84.\r\nVila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365-375.\r\nWalaas SI, Greengard P (1984) DARPP-32, a dopamine-and adenosine 3`: 5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. The Journal of neuroscience 4:84-98.\r\nWalaas SI, Hemmings HC, Greengard P, Nairn AC (2011) Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases. Frontiers in Neuroanatomy 5.\r\nWang X (2001) The expanding role of mitochondria in apoptosis. Genes & Development 15:2922-2933.\r\nWang Y, Schachner M (2015) The intracellular domain of L1CAM binds to casein kinase 2α and is neuroprotective via inhibition of the tumor suppressors PTEN and p53. Journal of Neurochemistry 133:828-843.\r\nWei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death. Science 292:727-730.\r\nWillimott S, Merriam T, Wagner SD (2011) Apoptosis induces Bcl-XS and cleaved Bcl-XL in chronic lymphocytic leukaemia. Biochemical and Biophysical Research Communications 405:480-485.\r\nWillis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DCS (2007) Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak. Science 315:856-859.\r\nXu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II [alpha][prime] catalytic subunit. Nat Genet 23:118-121.\r\nYang H, Sadda MR, Li M, Zeng Y, Chen L, Bae W, Ou X, Runnegar MT, Mato JM, Lu SC (2004) S-adenosylmethionine and its metabolite induce apoptosis in HepG2 cells: Role of protein phosphatase 1 and Bcl-xS. Hepatology 40:221-231.\r\nZheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, Bredel M, Benveniste EN (2013) k27. Clinical Cancer Research 19:6484-6494.\r\nZhu S, Belkhiri A, El-Rifai W (2011) DARPP-32 Increases Interactions Between Epidermal Growth Factor Receptor and ERBB3 to Promote Tumor Resistance to Gefitinib. Gastroenterology 141:1738-1748.e1732.
描述: 碩士
國立政治大學
神經科學研究所
102754007
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0102754007
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File SizeFormat
index.html128 BHTML2View/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.