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Abstract—The behavior of the solutions of nonlinear partial difference equations of fourth order
is discussed. We give some sufficient conditions for the oscillation of nontrivial solutions of the given
equation by using the weighted techniques. © 2003 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

In this paper, we are concerned with oscillatory behavior of the solutions of nonlinear difference
equations. For self-adjoint second-order linear difference equation

A (PoAzy) + Quzy, =0, vneN={1,2,...}, (1.1)

where
P,>0, V¥n=12,.... (1.2)

The oscillatory behavior of (1.1)‘ has been extensively discussed by several authors (see [1-4]).
However, they deal with (1.1) under the assumption

> Qi=oo. (1.3)

Therefore, it is interesting to discuss (1.1) without the required assumption (1.3). Some oscil-
lation results for ordinary differential equations are obtained in [5,6]. Following this direction,
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we establish. some oscillation results for (1.1) in (7], and as an application, we can discuss the
oscillation in the discrete analogue for second-order nonlinear wave equations.

The principal objective of this paper is to establish some oscillation theorems for partial dif-
ference equations of fourth order which extend the results of [7].
_ Let Aq, Ay, A’f be partial difference operators defined as Ajtim n = Um+1,n — Um,n, Dolmpn =
U, 41 — Um,ns a0d A¥uy, o = AF"1(Aju,y, ). We shall consider the following partial difference
equation which is the discrete analogue for the nonlinear wave equation of fourth order:

A2(C“n—1A2U"m,n—l) + ﬂn—1A2um,n-—1 + 'YnA%AO(n; u)um—2,n
- énAf(A(m — 1,0 wum—1n) + 0(m, %, Umn)tma =0, -
“VYme Q, n €N,

2 2
Uon = UM+1,n =0, Afu-1n=Afum,n =0, VneN,

(1.4)

where M € N, Q = {1,2,..., M}, S = {0,1,2,...}, an,¥n,0n > 0, Bn € R, ¥n € N. Here,
b is a function of m, n, and u. A is a function in {m,n) and depends on some quantities related
t0 U, itself or its difference. For example,

M
Alm,nsu) = p+ 0, > (Augy)?

t=1

and
b(m,n,u) = u??, peN.

And Ay is a function of n only and depends on some quantities related to um, , or its difference.

The contents of this paper are organized as follows. In Section 2, we give some preliminaries
including two oscillation results for ordinary difference equations and discrete Green'’s formula. In
Sections 3 and 4, we shall discuss oscillations of the solution of some partial difference equations
based on some results for the self-adjoint second-order linear equation given in Section 2. Two
different kinds of average techniques are used in later sections, respectively. The main results are
given in Theorems 3.3 and 4.4.

2. PRELIMINARIES

In this section, we shall give two oscillation theorems for self-adjoint linear equation (1.1) which
will be used later. A nontrivial solution {z,}32; of the difference equation (1.1) is oscillatory if
for every n € N, there exists ny,ny > n such that z,,z,, < 0. Otherwise, it is nonoscillatory.
The difference equation (1.1) is said to be oscillatory if it has no nonoscillatory nontrivial solution.

THEOREM A. (See [3].) If

and

hold, then (1.1) is oscillatory.

THEOREM B. (See [7].) Assume that the following assumptions hold.

(A1) P, >0,Yn=1,2,....
(A2) There exists a nonnegative integer No such that

P, <1 and @, >0, Vn > Np.
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(A3) There exists a nonnegative integer k such that the series

o0 o0
HP =3 Q and H{M=Y iQH™™", m21,
i=n i=n
converges form =0,1,2,...,k, and
oo

ST iQH® = 0.

i=1

Then (1.1) is oscillatory.
LEMMA C. (See [1,8].) Consider the following Sturm-Liouville system:

A% + Adn = 0, Vn € Q,

$o = ¢pm+1 =0. @1)

Let A\, be the smallest eigenvalue of system (2.1) and ¢$L1) be an eigenfunction corresponding
to Ar. Then A\; >0 and ¢ >0, Vn € 2.

Let -Lyn = Alan_1AYn-1) + bnyn. The discrete version of Green'’s formula is given as follows.

LEMMA D. (See [1,3].) Let {ys}M4! and {z,}M4! be two sequences. Then we have

M
Z ZnLyn — YynLzn = {anW |2y, yn]}rltio )

n=1

where W (zy,, yn] is called the Casoratian of z, and y,, and is denoted by the determinant

Zn Yn
Az, Ay,

w [Z'IH yn] =

LEMMA E. (See [7].) Let N € N and {Upn}nes be a sequence such that
U, 20, Vn >N,
and
A(an_lAU _.1) + bn_lAU -1+ C;Un S 0, vn 2 N,

where
an,Cp, >0, VneS.

If we assume
b < ap, VneSs,

then we have

(2)
U,>0, Vn>N;

(b) there exists {V5}52 )y such that
Vo2 Up >0, Vn>N,

and
Alan_1AVp_1) + b 1AV + 6V, = 0, VYn>N+1.
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3. OSCILLATION RESULT (I)

In this section, we shall follow {9] to discuss oscillation of solutions for the fourth-order partial
differential equation (1:4). A nontrivial solution u, , of (1.4) is said to be oscillatory if for every
N € N, there exists m; my € € and ny,n2 > N such that tm; n, Um,n, < 0. Otherwise, it is
nonoscillatory.

We shall obtain sufficient conditions for the oscillation of a nontrivial solution of (1.4) under
the following conditions.

(B1) b is nonnegative in £2 x N x R.
(B2) There exists a constant a > 0 such that A(m,n;u) > ain & x N x R.
(B3) There exists a constant ag > 0 such that Ap(n;u) > ap 2 0in N x R.

THEOREM 3.1. Consider the difference equation
A(an-1AVn_1) + Bn-1AVaoy + (Mao¥n + M1adn) V=0,  VneN, (3.1)

where Gy, Bn, Yn, 0n are defined as in (1.4) and Ay is the smallest eigenvalue of system (2.1).
Assume that (B1)-(B3) hold, and

Brn < an, Vne€S. (3.2)

Then every nontrivial solution of system (1.4) is oscillatory provided that every solution of equa-
tion (3.1) is oscillatory.

PROOF. Suppose (1.4) has an eventually positive nontrivial solution ty, , S8y ttm n > 0,Ym € Q,
n > N, for some N € N. We set

M
Un=Y umadll), Vnes, (3.3)
m=1

where ¢$,P is an eigenfunction of system (2.1) corresponding to its smallest eigenvalue A\;. Then U,
is an eventually positive solution. If we multiply equation (1.4) by d),(,;) and sum from m =1
to M, then the following expression is obtained:

M M
Z A?(an—1A2um,n—1)¢$yll) + Z ﬁn—lAZ'um,n—lqb:E,l;)
m=1

m=1
M M
+ Z 'YnAO(n; U)A%um—-zn‘bg) - Z JnA%(A(m -1Ln; u)um—l,n)‘ﬁg) (3'4)
m=1 m=1
M
+ Z b(m,n, Um,n)“m,n‘ﬁg) =, Yyme&, nelN.
m=1

By Lemma D, the boundary conditions
Uon = UM+1,n =0, A%"—l,n = A%'UfM,n =0, VneN

and

1y _ 1y
0 —¢5\/t+1“0’
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we then have

M M
Z A‘IIAO('n; u)um—2,n¢$rlz) = Z A%(AO("'; “)A%um—ln) 5711)

m=1 m=1

M M
= Y A2 Ap(n; u)um_12A%05) , + W [¢5,13, Ao(m; U)A%um—l,n] .
m=1 m=

M
= Z A2 Ap(n; u)um—l,nA2¢1(111)—l

m=1

M
L= —Ar Z A%AO(n;u)u’m'lvn¢£’{)

m=1

M M
==\ {Z Ao(n; u’)ummAquSr];)—l +W {459,), Ao(n;u)um'"] m=0}

m=1

M
= =21 Y Ao(n; ) 1 A7)

m=1

M
=2 )" Ao(n;u)umndly).

m=1

Hence, by Assumption (B3), we get

M
3 AL Ao(n w)um 2,85 2 Mao¥aUn. (3.5)
m=1
Similarly, we see that
M .
Z A%(A(m -1, u)um—lyn)¢1(11)
m=1

M= 1M

M
A(m,n; u)um,nAquf,?_l +W [¢$,P,A(m, n; u)um’"]m-—o

A{m,n; u)um,nAchg)_l
1

M
= -\ Z A(m, 1 u)um ¢,

m=1

-3
I

By Assumption (B2), we then obtain

M
3" 6 AY(A(M - 1,n5u)tm-1,)8%) S ~MabaUn, YR EN. (3.6)

m=1
From (3.4)—(3.6), we get
A(@n_1AUn1) + Bn_1AUn_1 + (Magys + A1ad,) Un < 0.

By Lemma E, equation (3.1) has an eventually positive solution. Finally, by replacing ., » With
—Upmn if system (1.4) has an eventually negative solution, we obtain that equation (3.1) has an
eventually negative solution.
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Note that equation (3.1) can be written in the self-adjoint form

A(Pac1AVu 1)+ QnVa =0, VneN,

where
Pn=anR,
and
Qn = (Maomm + A1aby) Ry, (3.7)
where .
. o
= . 3.8
Fn E, a; — s o (3:8)

Therefore, by Theorems A and B, we get the following sufficient conditions for the oscillation of
equation (1.4).

THEOREM 3.2. Assume that (B1)-(B3) and (3.2) hold. If

=1
ngl an R, =
and
o0
Z (/\%ao’yn + Alaén) R, = 00,
n=1

then every solution of (1.4) is oscillatory.

THEOREM 3.3. Suppose that (B1)-(B3) and (3.2) hold. Assume that

(C1) there exists a nonnegative integer N such that

anRn <1, Vn > N;

(C2)
o
Z (Mfaoys + A1adn) Ry < o0.
n=1
Let oo
HT(IO) = Z ()\%ao'yj + /\laéj) R;, .. ¥neN,
j=n
and

o0
H{™ =" 5 (Magy; + Mady) RRH™ D, ¥m> 1

j=n
Assume further that

(C3) there exists a nonnegative integer k such that the series
H™ < oo

converges form = 1,2, ...k, and

o0
>3 (Maoy; + Mad;) BH® = co.
j=1

Then every solution of (1.4) is oscillatory.
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As a consequence of Theorems 3.2 and 3.3, we have the following result.
ExAMPLE 3.4. Consider the system

1 1
Adumn-1 + EA%um—Zn - 'n—quum—l,n +ud =0,
vme{l,2,...,M}, n € N,
Ugn = UM+1n =0, A%u_l,n = A%’LLM,” =0, VneN.
If p <1orq <1, by Theorem 3.2, the system is oscillatory. Furthermore, since all assumptions

of Theorem 3.3 are valid under the condition 1 < p < 2 or 1 < g < 2, hence, the system is
oscillatory if p < 2 or ¢ < 2.

ExXAMPLE 3.5. The discrete analogue of the Woinowsky-Krieger nonlinear elastic model [10]

L
Uy + OUzzas — (ﬂ +k / ul d:c) Ugz +uPT1 =0
0
is given by

AZ(an—1A2um,n—l) + '7nA%um—2,n - ‘snA(n; U)Agum—l,n + (um,n)2p+1 =0,
vme {1,2,...,M}, n,p €N,

2
Uop = upt1n =0, Adu_y, = Adupy, =0, VneN,

here

M
A(n; U) =p + on Z (Alum,'n)2 s

m=1

for p > 0 and 6,, > 0. The oscillatory criteria can be obtained by Theorems 3.2 and 3.3.

4. OSCILLATION RESULT (II)

In this section, we shall use another kind of averaging method given in [11] to find some
oscillation criteria for the following partial difference equation with different boundary conditions:

A2(an-—1A2um,n—l) + ,Bn—lA2um,n—1 + 'YnA%um—Zn
- 5nA¥ (A(m -1,n; u)um—l,n) + nlmn + b(m,n, um,n)um,n =0,

4.1)
vm € ny ne N,
Uon = UM+1,n =0, Arugn = Ajumn =0, VneN,
where M e N, Q= {1,2,...,M},8={0,1,2,...}, @n, Yn:0p,7m >0, B € R, Vn € N.
LEMMA 4.1. Let {wn},]f’:*()l be a given sequence and let
(ﬂ_—t_l_l)'?’ 0 S] S 7:,
9ij = (MﬂiiF : j)i (4.2)
T i< i< M4
M+1 1=y M
Then we have
(1)
9.5 20, for0<i,j<M+1,
(i)
M
Zgi,jAz’lUj—l = —w; + gi, MWM+1 + g:,1Wo, (4.3)

J=1
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(iii)
M

Z gi,jA4wj—2 = ~wi—1 + 2w; — wiy1 + (~2gi,M + g M—1) WM +1

pot (4.4)

— gi, MwWM — giaw1 + (gi2 — 2gi1) wo.
PRrROOF. By Lemma D.

Hereafter, we shall find some sufficient conditions for the oscillation of a nontrivial solution
of (4.1) under the following conditions:

(C1) b is a nonnegative function in 2 x N x R;

(C2) np >0,Vne N;

(C3) B < ap, VneN;

(C4) there exists a constant ¢ > 0 such that A(m,n ;u) > e in 2 x N xR.

THEOREM 4.2. Consider the difference equation
A(an-lAVn_l) + Bp1AVu_1 + M Vn =0, VneN (4.5)

Assume that (C1)-(C4) hold. Then every nontrivial solution of system (4.1) is oscillatory, if
every solution of equation (4.5) is oscillatory.

PROOF. Suppose (4.1) has an eventually positive nontrivial solution t, , 88y Um , > 0,Vm € §2,
n > N, for some N € N. Let

M
U, = Z gt,mUm,n VneSs. (4.6)
t,m=1

Then U, is an eventually positive function. If we multiply equation (4.1) by g; ,, and sum on m
and t from 1 to M, then the following expression is obtained:

M M
Z A2(an—1A2um,n—1)gt,m + Z ﬁn~lA2um,n—lgt,m

tym=1 tm=1 -

M M )

+ Z 'YnA‘llum—ant,m - Z 5nAg(A(m - 1,n; u)uma-l,n)gt,m (4-7)
t,m=1 t,m=1 . -
M M
+ Z NMnUmnGt,m + Z b(m,n, Um,n)um,ngt,m =0, Vmefl, neN.
t,m=1 © o tm=1 :

By Lemma 4.1 and the boundary condition

Uo,n = UM41n =0,

we have
M
D gtmAl (A(m - 1,05 u)um_1,n) = —A(t, 7 u)usn < 0. (4.8)
m=1

And from the boundary condition
Arupn = Aruyn =0, VneN,

we also have

M M
Z gt,mA%um—Zn = Z (_ut—l,n + 2ugpn — “t+1,n)

t,m=1 t=1
= Al’U,gm - AIUM,n = 0.

(4.9)
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Note that
M
Z MmUmnGt,m = 77nUn (4-10)
t,m=1
and
M
> b(m, U ), ntm > 0. (4.11)
t,m=1
In view of (4.7)—(4.11), we get
Alopn_1AUp-1) + Bn-1AUp_1 + 1 U, <0. (4.12)

By Lemma E, equation (4.5) has an eventually positive solution. Finally, if system (4.1) has
an eventually negative solution, replacing %, n by —Um n, We obtain that equation (4.5) has an
eventually negative solution.

Equation (4.5) can be written in the self-adjoint form
A (Po_1AV, -1) + QnVn =0, VneN,

where
P, =anR,

and

Qn =M Rn, (4.13)

where R, is given in (3.8).
Since Theorems A and B are applicable, hence, we get the following sufficient conditions for
the oscillation of equation (4.1).

THEOREM 4.3. Assume that (C1)—(C4) hold. If

= 1
- ; anR, =%
and
o0
> Ry = o0,
n=1

then every solution of (4.1) is oscillatory.

THEOREM 4.4. Assume that (C1)—(C4) hold. Suppose that

(D1) there exists a nonnegative integer N such that
aan S la vn 2 N )

and

(D2)

[o<]

MRy < c0.

n=1
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Let

and
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oo
H® =% "n;R;, VneN,
j=n

00
H™ =" jn;RH™Y, vm> 1.

j=n

Assume further that

(D3) there exists a nonnegative integer k such that the series

H{™ < o

converges for m = 0,1,2,...,k, and

— k
ZjanjH](- ) = 0.
Jj=1

Then every solution of (4.1) is oscillatory.

As a consequence of Theorems 4.3 and 4.4, we have the following result.

ExXAMPLE 4.5. The system

1
A%'Ufm,n——l + JnA‘lium—Zn - 'YnA%um——l,n + T_L"jum,n + u::n,n =0,
vme{l,2,...,M}, n €N,
Uon = UM+1,n = 0, Aluo,n = Al'UlM,n = 0, Vne N,

is oscillatory if p < 2 for any 6,, v, > 0, for n € N.

10.

11.
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