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1. INTRODUCTION 

In this paper, we are concerned with oscillatory behavior of the solutions of nonlinear difference 
equations. For self-adjoint second-order linear difference equation 

A @‘n&z) + Qnz, = 0, Vn E N = {1,2,. . . } , (1.1) 

where 
pn >o, Vn= 1,2,.... (1.2) 

The oscillatory behavior of (1.1) has been extensively discussed by several authors (see [l-4]). 
However, they deal with (1.1) under the assumption 

Qi = co. 
i=l 

(1.3) 

Therefore, it is interesting to discuss (1.1) without the required assumption (1.3). Some oscil- 
lation results for ordinary differential equations are obtained in [5,6]. Following this direction, 
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we establish. some oscillation results for (1.1) in [7], and as an application, we can discuss the 
oscillation in the discrete analogue for second-order nonlinear wave equations. 

The principal objective of this paper is to establish some oscillation theorems for partial dif- 
ference equations of fourth order which extend the results of [7]. 
r Let Ai, As, At be partial difference operators defined as Aiu,,, = u,,,.+l,,, - urn,,,, A2um,,, = 

%D,7I+1 -u,,,, and A$+? = Af’(Alu m,n). We shall consider the following partial difference 
equation which is the discrete analogue for the nonlinear wave equation of fourth order: 

Ad~n--1A2um,n--1 ) + A-1A2wn,n-I + n(nA:Aoh 4wn-2,n 

- 4&(A(m - 1, n; +m-1,n) i- b(m, n, um,n)um,n = 0, - 

“Vm E 52, n E N, 
(1.4) 

UO,n = UM+l,n = 0, f&l,n = A&M+ = 0, VnEN, 

where M E N, Cl = {1,2,. . . , M}, S = (0, 1,2,. . . }, CX~,T~,~~ > 0, ,& E R, Vn E N. Here, 
b is a function of m, n, and u. A is a function in (m, n) and depends, on some quantities related 
to u,,,,,, itself or its difference. For example, 

A(m, n; 4 = P + em5 (AU&~ 
t=1 

and 
b(m, 72, u) = u2p, p E N. 

And A0 is a function of n only and depends on some quantities related to u,,,,~ or its difference. 
The contents of this paper are organized as follows. In Section 2, we give some preliminaries 

including two oscillation results for ordinary difference equations and discrete Green’s formula. In 
Sections 3 and 4, we shall discuss oscillations of the solution of some partial difference equations 
based on some results for the self&joint second-order linear equation given in Section 2. Two 
different kinds of average techniques are used in later sections, respectively. The main results are 
given in Theorems 3.3 and 4.4. 

2. PRELIMINARIES 
In this section, we shall give two oscillation theorems for self-adjoint linear equation (1.1) which 

will be used later. A nontrivial solution {z,}~!, of the difference equation (1.1) is oscillatory if 
for every n E N, there exists nr, ns 1 n such that x n1 x n2 5 0. Otherwise, it is nonoscillatory. 
The difference equation (1.1) is said to be oscillatory if it has no nonoscillatory nontrivial solution. 

THEOREM A. (See [3J) If 

and 

hold, then (1 .l) is oscillatory. 

THEOREM B. (See /7].) A ssume that the following assumptions hold. 

(Al) P,, > 0, Vn = 1,2,. . . . 
(A2) There exists a nonnegative integer NO such that 

P,, 5 1 and Q,, >O, Vn 1 NO. 
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(A3) There exists a nonnegative integer k such that the series 

converges for m = 0, 1,2, . . . , k, and 

Then (1.1) is oscillatory. 

LEMMA C. (See [1,8].) C onsider the following Sturm-Liouville system: 

A2q5,,-~ + X4, = 0, VnES1, 

40 = h4+1 = 0. 
(2.1) 

Let X1 be the smallest eigenvalue of system (2.1) and &’ be an ejgenfunction corresponding 
to XI. Then X1 > 0 and & > 0, V n E 52. 

Let Ly, = A(u,+lAy,+1) + b,y,. The discrete version of Green’s formula is given as follows. 

LEMMA D. (See [1,3].) Let {yi}~~’ and {z,,}~$’ be two sequences. Then we have 

5 GJYn - Yd% = {f&w [&I, Y&L), 
n=l 

where W [zn, y,,] is called the Cssoratian of z,, and y,,, and is denoted by the determinant 

LEMMA E. (See [7].) Let N E N and {IFJ~}~~~ be a sequence such that 

and 
A(a,-,A&,-I) + b,-lAU,-1+ c;Un I o, Vn > N, 

where 
%,c; > 0, VnES. 

If we assume 
bn < an, VnES, 

then we have 

(4 
UT& > 0, Vn>N; 

(b) there exists {K}:!,, such that 

v, 2 un > 0, Vn>N, 

and 
A(%-,AK-I) + b,-,AV,-, + c;v, = o, Vnl N+l. 
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3. OSCILLATION RESULT (I) 

In this section, we shall follow [9] to discuss oscillation of solutions for the fourth-order partial 
differential equation (1.4). A nontrivial solution u,,, of (1.4) is said to be oscillatory if for every 
N E N, there exists mi,m2 E Cl and ni, ns 2 N such that u~~,~~u~~,,,~ 5 0. Otherwise, it is 
nonoscillatory. 

We shall obtain sufficient conditions for the oscillation of a nontrivial solution of (1.4) under 
the following conditions. 

(Bl) b is nonnegative in 51 x N x R. 
(B2) There exists a constant a > 0 such that A(m, n; u) 1 a in 52 x N x R. 
(B3) There exists a constant as 2 0 such that Ao(n; u) > a0 2 0 in N x R. 

THEOREM 3.1. Consider the difference equation 

A(c+lAv,-I) + P~-IAK-I + (X&,~, + X&J v, = o, VnEN, (3.1) 

where Q,, ,&, ^fn, S,, are defined as in (1.4) and Xi is the smallest eigenvalue of system (2.1). 
Assume that (Bl)-(B3) hold, and 

Pn < %I, VnES. (3.2) 

Then every nontrivial solution of system (1.4) is oscillatory provided that every solution of equa- 
tion (3.1) is oscillatory. 

PROOF. Suppose (1.4) has an eventually positive nontrivial solution u~,~, say u,,,,,, > 0, Vm E 0, 
n > N, for some -N E N. We set 

un = 5 um,nd?% VnES, 
m=l 

(3.3) 

where 4%’ is an eigenfunction of system (2.1) corresponding to its smallest eigenvalue Ai. Then U,, 
is an eventually positive solution. If we multiply equation (1.4) by 4:’ and sum from m = 1 
to M, then the following expression is obtained: 

5 Az(c+~Azu,,,-~)&’ + 2 Pn-~Azum,n-~&) 
m=l m=l 

M M 

+ c y,Ao(n; +~u~-z,~& - c &AS(A(m - 1, n; u)um-&?$,? 
m=l m=l 

+ -&( m, n, urn+ )urn,n$g) = O, VmEQ neN. 
m=l 

(3.4) 

By Lemma D, the boundary conditions 

uo,n = UM+I,~ = 0, A&-I,, = A$M,, = 0, VncN 

and 
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5 A:A,,(n; u)u,,+&) = 5 A:(A,(n; u)A:w+&$,? 
m=l m=l 

= -x1 5 A:A,-,(n; ~)um-~,n&) 
m=l 

= -xl *Gl Ao(n; ~)um,nA~&:~ + W [&), Ao(n;u)um,n 

= -X1 5 Ao(n; ~)u,,nA”&, 
m=l 

= XT 5 Ao(n;u)um,,,g$$). 
m=l 

Hence, by Assumption (B3), we get 

Similarly, we see that 

M 

c A:(A(m - 1, n; ~)w,+&#J$,? 
m=l 

M 

= c A(m, n; u)u,,~A”&‘_, + W [~$,?,A(w n; u)u~,~ 1 
M 

m=O 
m=l 

M 

= c A(m, n; u)u,,~A~&LI 
m=l 

= -x1 e A( m, n; 21)%&C’- 

(3.5) 

By Assumption (B2), we then obtain 

M 

c G,A:(A(m - 1, n; u)u,,+I,,@~) I -xla&,U,, VneN. (34 
m-1 

From (3.4)-(3.6), we get 

A(G,-IAU,-I) + &IAU,-I + (~:ar,~n + XC&,) U,, 5 0. 

By Lemma E, equation (3.1) has an eventually positive solution. Finally, by replacing ‘~l~,~ with 
--UrnpI if system (1.4) has an eventually negative solution, we obtain that equation (3.1) has an 
eventually negative solution. 
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Note that equation (3.1) can be written in the self-adjoint form 

A (pn-lAv,-1) + Qnv, = 0, VnEN, 

where 

and 
Qn = (+o, + h&) %, (3.7) 

where 

Therefore, by Theorems A and B, we get the following sufficient conditions for the oscillation of 
equation (1.4). 

THEOREM 3.2. Assume that (Bl)-(B3) and (3.2) hold. If 

and 

n=l 

then every solution of (1.4) is oscillatory. 

THEOREM 3.3. Suppose that (Bl)-(B3) and (3.2) hold. Assume that 

(Cl) there exists a nonnegative integer N such that 

and 

Him) = gj (XTUO7j + XlUbj) RjH~m-l), Vm>l. 
j=n 

Assume further that 

(c3) there exists a nonnegative integer k such that the series 

Him) < 00 

converges for m = 1,2, . . . , k, and 

ej (XTao7j + Xlabj) RjHi’) = CO. 
j=l 

Then every solution of (1.4) is oscillatory. 
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As a consequence of Theorems 3.2 and 3.3, we have the following result. 

EXAMPLE 3.4. Consider the system 

A&n,,-1 + -$.+m-z,, - -$Afu,-~,~ +uf,+= 0, 

VmE {1,2 ,..., M}, n E N, 

UO+ = UM+I,~ = 0, A&-l+ = ARUMS, = 0, VnEN. 

If p 5 1 or q < 1, by Theorem 3.2, the system is oscillatory. F’urthermore, since all assumptions 
of Theorem 3.3 are valid under the condition 1 < p < 2 or 1 < q < 2, hence, the system is 
oscillatory if p < 2 or q < 2. 

EXAMPLE 3.5. The discrete analogue of the Woinowsky-Krieger nonlinear elastic model [lo] 

is given by 

A~(Q~-I&w~,~-I) + x&urn-2,n - &A(n; +:wm-l,n + (~rn,n)~~+~ = 0, 

VmE {1,2 ,..., M}, WP E N, 

uo,n = UM+l,n = 0, A:w,,t = A:uM,, = 0, VnEN, 

here 

4~ 4 = P + en 5 (&~m,n)~, 
m=l 

for p > 0 and en 2 0. The oscillatory criteria can be obtained by Theorems 3.2 and 3.3. 

4. OSCILLATION RESULT (II) 

In this section, we shall use another kind of averaging method given in [ll] to find some 
oscillation criteria for the following partial difference equation with different boundary conditions: 

A~(G-IA~u~,~--I) + Pn-1A,u,,,-1+ “1,&um-2,n 

- &A: (A(m - 1, n; 4um--l,,d + WJ~,~ + b(m, n, u~,,,)u~,~ = 0, 

VmESl, n E N, 
(4.1) 

UO,n = UM+I,~ = 0, Aluo,, = &u~,n = 0, VnEN, 

where M E N, n = {1,2, . . . , M}, S = (0, 1,2, . ..I, an,m,&,sn > 0, A E R, Vn E N. 

LEMMA 4.1. Let {wn}~=$,’ be a given sequence and let 

l 

W+l-i)j o<j<i 

Si,j = 
M+1 ’ - -’ 

W+l-j)i i<j<M+l 
M+1 ’ - 

Then we have 

(9 

(ii) 

.¶i,j 1 09 forOsi,jI:M+l, 

M 

C gi,jA2Wj-1 = -% + gi,MwM+l i- Qi,lWI 

j=l 

(4.4 

(4.3) 
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(iii) 

gi,jA4wj-2 = -Wi-I + 2Wi - Wi+l + (-2$&M +&M-l) WM+l 
j=i (4.4) 

- gi,MWM - S’i,l’W + (&‘i,Z - %%,l) WO. 

PROOF. By Lemma D. 
Hereafter, we shall find some sufficient conditions for the oscillation of a nontrivial solution 

of (4.1) under the following conditions: 

(Cl) b is a nonnegative function in 51 x N x R; 
(C2) qn > 0, Vn E N; 
(C3) p,, < Q,, Vn E N; 
(C4) there exists a constant a > 0 such that A(m, n ; u) 2 a in 51 x N x R. 

THEOREM 4.2. Consider the difference equation 

ACan-IALI) + Pn-lAVn-1 + v,K = 0, VnEN (4.5) 

Assume that (Cl)-(C4) hold. Then every nontrivial solution of system (4.1) is oscillatory, if 
every solution of equation (4.5) is oscillatory. 

PROOF. Suppose (4.1) has an eventually positive nontrivial solution u~,~, say u,,, > 0, V m E a, 
n 2 N, for some N E N. Let 

un = 5 Qt,m%,n> VnES. 
t,m=1 

(4.6) 

Then U, is an eventually positive function. If we multiply equation (4.1) by gt,,,, and sum on m 
and t from 1 to M, then the following expression is obtained: 

M M 

c &(a,+lAzum,n-l)gt,m + c A-l&urn,,,-mm 
t,m=1 t,m71 
M M 

+ C TnA&m-z,ngt,m - C &Af(A(m - 1, n; U)Um-l,n)gt,m 
t,m=l t,m=l 

+ 5 Tnum,ngt,m + 5 b(m, n, Um,n)Um,ngt,m = 0, ‘dmE52, ncN. 
t,m=l t,m=l 

By Lemma 4.1 and the boundary condition 

UO,n = ‘11M+l,n = 0, 

we have 
M 

c st,,A: Mm - 1, n; u)u,-~,~) = -A(t, n; u)ut,n 5 0. (4.3) 
m=l 

And from the boundary condition 

AIUO,~ = &UMJZ = 0, VnEN, 

(4.7) 

we also have 

gt,mAhm-2,n = 5 (-Ut--l,n + Zut,, - ut+l,n) 
t,m=l t=1 (4.9) 

= A~uO,~ - ALUM,,, = 0. 
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Note that 
M c 77n”m,n9t,m = %ura 

t,m=1 

5 b(m, n, %ivhn,ngt,m 2 0% 
t,m=1 

(4.10) 

(4.11) 

In view of (4.7)-(4.11), we get 

A(~~-IAU~--I) + Pn-&4x-I + qnun I 0. (4.12) 

By Lemma E, equation (4.5) has an eventually positive solution. Finally, if system (4.1) has 
an eventually negative solution, replacing u,,& by -urn,+, we obtain that equation (4.5) has an 
eventually negative solution. 

Equation (4.5) can be written in the self-adjoint form 

A (Pn-IAK-1) + Qnv, = 0, VnEN, 

where 

and 

Qn = rln%, (4.13) 

where R, is given in (3.8). 
Since Theorems A and B are applicable, hence, we get the following sufficient conditions for 

the oscillation of equation (4.1). 

THEOREM 4.3. Assume that (Cl)--(C4) hold. If 

and 

then every solution of (4.1) is oscillatory. 

THEOREM 4.4. Assume that (Cl)--(C4) hold. Suppose that 

(Dl) there exists a nonnegative integer N such that 

and 
(W 

2 q&n < cm. 
n=l 
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Let 

HL”’ = C VjRj, VnEN, 
j=n 

j=n 

Assume further that 

(D3) there exists a nonnegative integer lc such that the series 

converges for m = 0, 1,2, . . . , k, and 

j=l 

Then every solution of (4.1) is oscillatory. 

As a consequence of Theorems 4.3 and 4.4, we have the following result. 

EXAMPLE 4.5. The system 

A&n,n-I + 4&u,-~,n - Y&U,-I,,, + -$um,n + u:,,, = 0, 
Vmc {1,2 ,..., M}, n E N, 

uo,n = u~+l,n = 0, Alug,,, = Alw,n = 0, VneN, 

is oscillatory if p < 2 for any 6,, -yn > 0, for n E N. 
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