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1 Introduction

Many economic and econometric models are represented by conditional moment restrictions,
for example, the rational expectation model, the market disequilibrium model, the condi-
tional probability model, the discrete choice model and the nonlinear simultaneous equations
model. The validity of these types of model is determined by testing conditional moment
restrictions. Examples of such tests include conditional moment tests or M-test developed by
Newey (1985), Tauchen (1985), and White (1987). However, such conditional moment tests
may not be consistent because only necessary conditions of conditional moment restrictions
are checked. There is an abundance of literature on constructing consistent conditional mo-
ment tests. One technique is to employ a nonparametric test. See, for example, Delgado
and Gonzalez Manteiga (2001), Li, Hsiao, and Zinn (2003), Horowitz and Spokoiny (2001),
Tripathi and Kitamura (2003), and Zheng (2000), among others. The nonparametric tests
are usually subjective in choosing smoothing parameters and may be computationally costly.
Another technique for constructing a consistent conditional moment test is based on infinitely
many unconditional orthogonality restrictions with uncountably many weighted functions in-
dexed by continuous nuisance parameters (Stichcombe and White, 1998). This technique is
called the integrated function approach because it uses the integrated measures of dependence
of orthogonal restrictions. For these types of tests, when determining the weighted functions,
Bierens (1982, 1984, 1990), Bierens and Ploberger (1997), Bierens and Ginther (2001), and
de Jong (1996), employ the exponential function, while Koul and Stute (1999), Stute (1997),
Stute, Thies and Zhu (1998), and Stute and Zhu (2002) employ the indicator function.

It is noted, that generally, tests based on integrated function approach are not asymptoti-
cally pivotal. That is, their limiting distributions depend on model characteristics and critical
values cannot be tabulated. For example, the limiting distribution for tests employing the
exponential weight function depend on the data generating process (DGP) of the auxiliary
nuisance parameters. Although Bierens and Ploberger (1997) have derived case-independent
upper bounds of critical values to solve the limiting distribution problem, their test may be too
conservative in practice. Meanwhile, the limiting distribution for tests employing the indica-
tor weight function is not asymptotically pivotal because of estimation effects (Durbin, 1973)
and being case dependent. Dominguez and Lobato (2006), Stute, Gonzédlez Manteiga and
Presedo Quindimil (1998), and Whang (2000, 2001, 2004) try to avoid the problem by using
bootstrapping techniques to approximate the limiting distribution. Specifically, Khmaladze
and Koul (2004), Stute, Thies and Zhu (1998), Koul and Stute (1999), Stute and Zhu (2002),
and Song (2009) employ the martingale transformation technique of Khmaladze (1981) to

obtain asymptotically distribution-free test statistics. However, these tests usually encounter



the poor finite sample performance due to the curse of dimensionality. Recently, Excanciano
(2006) and Lavergne and Patilea (2008) propose tests breaking the curse of dimensionality.
The former test is based on the integrated function technique and uses projections, while the

latter test is based on the smoothing nonparametric technique.

Accordingly, this paper proposes a consistent conditional moment test that is asymptot-
ically pivotal. The proposed test is based on the integrated function approach and the test
statistic is obtained through a subsampling marked empirical process, using sample size b
instead of the whole sample size n such that b < n. Subsampling, as defined by Politis and
Romano (1994) and Politis, Romano and Wolf (1999) is a method for estimating the distribu-
tion of an estimator or test statistic by drawing subsamples from the original data. Andrews
and Guggenberger (2005), Chernozhukov and Fernédndez-Val (2005), Guggenberger and Wolf
(2004), Hong and Scailet (2006), Linton, Massoumi and Whang (2005) and Whang (2004)
have employed subsampling techniques for estimating the distribution of estimators. Instead
of computing the sample average of the conditional moment function with the whole sample,
the test statistic is obtained by the subsampling marked empirical process with subsample
size b. The estimation effect disappears when the relative sample size of subsampling to that
of the whole sample is zero asymptotically. Therefore, the proposed test does not suffer from
the estimation effect problem and is asymptotically pivotal. Further, multiple regressors may
be employed in the test. Thus, the proposed test can be viewed as the complement of Es-
canciano (2006) and Lavergne and Patilea (2008) for breaking the curse of dimensionality.
Additionally, any y/n-consistent estimator and different estimation methods may be employed
to compute the test statistic. Bootstrapping, martingale transformation or nonparametric
techniques are not required, thus, simplifying computation of test statistics. However, the

1/2

proposed test is powerful against local alternatives at rates b=/, but the proposed test is

incapable of detecting local alternatives at rate n~1/2

. When performing Monte Carlo sim-
ulation, it was shown that good finite sample performances were obtained and the proposed

test was robust with respect to different values of b.

Following arrangement of this paper is as follows. Section 2 presents the conditional
moment restriction and the proposed test. Section 3 shows the consistency of the proposed
test and the asymptotic behavior given different local alternatives. Section 4 shows the results
of Monte Carlo simulation. Lastly, Section 5 is the conclusion. All proofs are presented in

the Appendix.



2 A New Test

2.1 Conditional Moment Restrictions

Consider the general conditional moment restrictions
E[m(Y, X, 0,)| X] =0, (1)

where IE[-|X] denotes the expectation conditional on the information set of X, the function
m(-) is well-defined, {Y, X} is a sequence of random variables with X = (Xy,---, X})" and
parameters 6 € © with © € RF. The conditional moment restrictions can be obtained from
existing models such as the parametric nonlinear regression model where m(Y, X, 0,) is the
difference between Y and g(X’, 6), with g(-) being a nonlinear function. To test the condition
moment restrictions, the null and alternative hypotheses are as follows. The null hypothesis

is the conditional moment function being equal to zero:
Hy : P{IE(m(Y,X,0,)|X) =0} =1, for some 6, € ©,
and the alternative hypothesis is, for all § € O, E(m(Y, X, 9)|X ) # 0 with a positive proba-
bility:
Hy : P{E(m(Y,X,0)|X) =0} <1, forall§ € O,
with © € R* a compact set.

As previously proposed by Stinchcombe and White (1998), the conditional moment con-

dition (1) equals infinitely many unconditional moment functions
E[m(Y, X, 0,)w(X,z)] = 0,Vz € RF, (2)

where w(+) is an infinite set indexed by continuous parameters = and w(-) may be any analytic
function that is not polynomial. A consistent conditional moment test can be constructed
by testing (2). For example, Bierens (1982, 1984, 1990), de Jong (1996) and Bierens and
Ploberger (1997) and Bierens and Ginther (2001) employ the exponential weighted function
w(X,z) = exp(X'x) for their integrated conditional moment test. Meanwhile, Stute (1997),
Stute, Thies and Zhu (1998), Koul and Stute (1999) and Stute and Zhu (2002) employ the

indicator function

w(X,2) = lix<a} = Yxi<a} LXp<anhs

where 14 denotes the indicator function of even A. This paper proposes employing the indi-
cator function and the conditional moment restrictions (1) can be rewritten by the infinitely

many unconditional moment functions as follows:

E[m(Y, X, 00)1{x<s] =0,z = (21, -+ ,23)' € RF, (3)
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wherein multivariate regressors may be employed; see Khmaladze and Koul (2004), Escan-
ciano (2006), and Song (2009).

2.2 Test Statistics

The specification test employed in this paper examines infinitely many unconditional moment
functions (3) that are equivalent to the conditional moment restriction (1). Thus, the spec-
ification test is a consistent conditional moment test. To test whether the moment function

E[m(Y, X, 0,) 1{x<z)] equals to zero, the normalized sample average of the moment function:

Z (Y3, Xi,00) 1 x, <0}

with {Y;, Xi}7, a sequence of random variable, and 1ix,<;y = lix, <o} Lix,<ap)s 19
employed. The function m(Yg, Xi, 9) 1¢x,<s} is the marked empirical process with the marks
given by the moment function m. The function M, is the average of the marked empirical
process with sample size n. If M, (x;0,) is close to zero, then the null hypothesis is not
rejected. Otherwise, the null hypothesis is rejected and the conditional moment restriction
does not hold.

A~

Since the true parameter 6, is unknown, we replace 8, by its consistent estimator, 6,,.

Thus the sample average of the marked empirical process is:

Mn(x§ n Zm S/;aXz,H )l{X <z}+
\/>
By rewriting the process M,, based on

n

X 1 X
My (x;0n) = Mp(x;0,) + ﬁ Z (m(}/zsz,gn) - m(Y;, X, 90)) I{Xigm}a

if m(Y;, X;,0) is once differentiable with first derivative Vgm(Y;, X;,6,), then
M, (x;6,) = My (2:0,) Zng Y;, Xi,00) (0n — 00)1(x,<0) + 0p(1)

= M, (2;0,) + /n(6,, — 90); Z Vom(Y;, Xi,00) 1 x,<z} + 0p(1).
i=1
Thus, M, (z; én) and M, (z;0,) are not asymptotically equivalent due to the presence of the
second term on the right hand side of the second equality. This term is the estimation
effect presented in Durbin (1973), wherein the presence of the second term depends on a
model characteristic that makes the test based on Mn(:v,én) not asymptotically pivotal.
To obtain an asymptotically distribution-free test, Stute, Thies and Zhu (1998), Koul and
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Stute (1999) and Stute and Zhu (2002) employ the martingale transformation technique for
univariate regressors and Khmaladze and Koul (2004) and Song (2009) employ the same
technique for multivariate regressors. Note that because using a nonparametric estimation of
the conditional moment function is required, it is complicated to compute a high dimensional
nonparametric estimation and is subjective to user-chosen parameters employing martingale
transformation technique. In addition, the finite sample performance is poor due to the
curse of dimensionality. To solve the subjective choice of parameters problem and the curse
of dimensionality, Escanciano (2006) proposes a consistent conditional moment test using
the projections technique and his test presents excellent empirical powers in finite sample.
However, the limiting distribution of Escanciano’s test should be obtained by bootstrapping

technique and is not asymptotically pivotal.

Thus, this paper employs a subsampling version of the M,, process to construct a con-
sistent conditional moment test which is asymptotically pivotal. Instead of employing the
whole sample size n to compute the marked empirical process, a subsample size b is employed

to compute the sample average and construct the process, for b < n:
1 b
Vb i=1

where 6, can be any /n-consistent estimator associated with the model of interest with

sample size n. Thus, by employing M, the following equation is provided:

b
1 A
— 3 Vom(Yi, Xi,00) (6 — 00) 1 x,<01 + 0p(1)

Mb(x§én) = My(;0,) + NG, =

i=1 b (4)
= My(x;0,) + \/E\/ﬁ(én — o) [ll) Zlan(YmXi, 90)1{Xi§a:} + Op(1)~
1=

If b — 00, n — oo and b/n — 0, and there exist some regularity conditions, then the second
term on the right-hand-side of the second equality of (4) converges to zero. Thus, M(z; én)
and My(z;0,) are asymptotically equivalent. Subsampling the marked empirical process
eliminates the estimation effect. Assume D(R") to be the space of the cadlag function on R*
endowed with the Skorohod topology. Here, Mp is in D(Rk). Assume also, that = denotes
the convergence in distribution, and 2, denotes the convergence in probability. The following
assumptions are sufficient for the weak convergence of the subsampling marked empirical

process.

[A1] {Y;, X;}, is independent and identically distributed (i.i.d.) where X; has the bounded

and continuous distribution function F' and the density function is f.



[AQ] (1) E[m(E,XZ,9)2‘XZ] < 00,
(il) E[m(Yi, X;, 0)*] = £ < oo,
(iii) E[m(Yi, X;, 0)4]|X;||*T] < oo, for some 7 > 0.

[A3] m(-) is once continuously differentiable in a neighborhood 6, and satisfies

E | sup |v9m(Y;7XZ>9)‘ < 00,
€O,

where O, denotes a neighborhood of 6,,.
[A4] 6, is a \/n-consistent estimator; that is \/n (én —0,) = Op(1).

The assumptions in [A2] restrict the dependence of the moment function. Given [A2] (i),

the conditional variance function o?(X;) of m(Y;, X;, ) is defined with
o?(u) == var [m(Yi, X;,0)|X; = ul.

For z; = (z1, -+ ,x) and u = (ug, - ,ug)":
x

V(z):=E [0*(X:)1{x,<s}] :/ o?(u)F(du),

—0o0

is defined with [* = [l ... [® _ Assumptions [A1] together with [A2] are required to
obtain the uniform tightness in the space D[—00, 0o]. Assumption [A3] is a standard smooth-
ness assumption. [A3] can be relaxed as a non-smooth moment function when considering
the stochastic equicontiunity of m. Assumption [A4] is weak and may be applied to most

existing estimation methods. Following, the weak convergence of M, is obtained.

Theorem 2.1. Under Hy and given assumptions [A1]-[A4], if b — oo, n — oo and b/n — 0,

then one has:
My(a;0,) = B(V(z)),

where B(+) is a Gaussian process with mean zero and covariance function V(x1 A x2).

The limiting distribution of M, is a centered Gaussian process which is a multi-parameter
Brownian motion process on [0, 1]¥ with covariance function

T1\T2

V(g Azs) = / o2 (u) F(du),

— 00

T1N\T T11/N\T 1\ . . . .
where [T17%2 = [TUSTH L [TIERER C In particular, when X is univariate, the process B

is the standard Brownian motion process. The limit of Mp(x;6,) and that of My(x;6,)

are the same and the estimation effect problem of Durbin (1973) is eliminated because the



convergence rate of b to infinity is slower that of n to infinity. Note that V(z) plays an
important role in the proposed test. Since V (z) still depends on the distribution of X; and
o2, the process My(z; én) is not asymptotically distribution-free. For a general conditional
heteroskedasticity case, the scaled invariant version of subsampling marked empirical process

is considered as follows:

where 6(X;)? is a consistent estimator of o(X;)?. The scaled version of the statistic is also
considered in many research, such as Khmaladze and Koul (2004), Koul and Stute (1999),
Stute (1997), Stute, Thies and Zhu (1998), and Song (2009). When o02(X;) = o2 (the

conditional homoskedasticity case), which is a constant, Mj(z; 9n) simplifies to

S

*Ub 127” n) LX<}

with 67 = b~! 2?21 m(Y;i, X;,0,)? a consistent estimator for o3.

Theorem 2.2. Under Hy and given assumptions [A1]-[A4], if b — oo, n — o0, b/n — 0 and
6(X:)? — 0(Xi)? = 0,(b"1/2), then

My(x;0,) = B(F(x)),
with B(+) a Gaussian process with mean zero and covariance function F(x1 A x3).

The computational counterpart of the scaled invariant version of Mb(x; é) is as follows:

b
~ A 1 Z . _ A .
Mb(X],H’rl) = \/5 U(XZ) 1m(}/i7Xi39n) ]'{X,LSX]}7.] = 17 s, N,
i=1

where each realization X is used as an x in the indicator function. Consider two goodness-

of-fit statistics, the Kolmogorov-Smirnov and Cramer-von Mises test statistics:

KS, = sup ‘Mb(Xj;én)
X;ERF

Y

and
1 -
- 13 ix
n-
7j=1
Employing Theorem 2.2 and the continuous mapping theorem, for a large n, with 7 € [0, 1]%,
then

KS, = sup |B(F(z))| = sup |B(1)|,
zERF T€[0,1)*



and
_ * - WRY x = €T 2 €T) = 7'2 T
CMn—/OOMb(X,M F(d )j/mB(F( ))"F(dx) /[0,1]'€B( )dr.

The critical values of the test statistics K.S,, and C'M,, can be found in existing literature such
as Shorack and Wellner (1986) and Khmaladze and Koul (2004).! Note that the proposed
test of this paper is asymptotically pivotal and the limiting distribution of the proposed test

does not depend on a DGP. Therefore, the following corollary is as follows.

Corollary 2.3. Under all the assumptions in Theorem 2.2.

KS, = sup |B(1)
T€[0,1]F

)

and

CM, = B(r)%dr,
[0,1]

where B(+) is a Gaussian process with mean zero and covariance (71 N T2).

3 Power of the Tests

To investigate the power performance of the proposed test, two types of alternatives are

considered. One is the general alternative:
Hy: Em(Y, X,6,)|X] = u(X) #0,

and the other is the local alternatives:

HE : E[m(Y, X, 0,)|X] = 5%),

with 6(X) # 0. Under Hj, the limiting distribution of the proposed test statistic diverges, in
which the power of the test is obtained.

Theorem 3.1. Assume all the conditions of Theorem 2.2 hold and b — oo, n — oo and
b/n — 0. Therefore:

(i) Under the fized alternative Hy:

My(z;0,,) — oo.

!See also www.mcs.vuw.ac.nz/ ray/Brownian.



(ii) Under the local alternatives HE:

~ ~

Mb(IL’; 9n) = B(F(IL’)) + ]E[O’(Xi)flts(Xi)l{Xigx}].

Employing Theorem 3.1 and the continuous mapping theorem, then under the fixed al-
ternative Hy: K S, — oo, and C'M,, — oo. Therefore, the consistency of the proposed test is

obtained. Moreover, under the local alternatives H{,

KS, = Squ ‘B(F(:z:)) + IE[U(XZ-)_I(S(Xi)l{XiSm}H,
TER

and

oM [ (B + Bio () 305010 )

This shows that the proposed test has nontrivial powers against local alternatives H{ at rate

b—1/2. Note that there may exist local alternatives at rate n=1/2 as follows.
Hy : B[m(Y, X, 0,)|X] = —=.

Under the local alternatives HZ. the limiting distribution of My (z; én) is the same as that

under the null hypothesis (see Theorem 2.1). The proposed test is not powerful against local

alternatives at rate n=1/2.

Theorem 3.2. Assume assumptions [Al]-[A4] hold and b — oo, n — oo and b/n — 0.

Under the local alternatives H2L :

~ ~

My(z;6,) = B(F(x)).

4 Monte Carlo Simulations

The finite sample performance of the test statistic K'S,, is examined. The following null
DGPs is as follows.

(A) yi = i1 + e,
(B) yi=xn +5+ei,
(C) yi = mi1 + exp(z;) + e,

(D) yi = wio + xiz + €5,



(E) yi = zio +xi3 + 5+ €4,
(F) yi = 2o + w43 + exp(z;) + e;.
Here z;1, %9, 23 and z; are i.i.d. N(0,1) distribution and e; is i.i.d. N(0,02) with o} =

1,2,3,4. The test statistic K.S, for one regressor is:

KS, = max —ollz — 2l f1) Liwi<a}]s

for DGPs (A), (B) and (C) and the test statistic for two regressors is:

b

1 . .
%02 ! Z(yi — Ty — T}3[3) Vzin<ay Yais<ajo}|»

K S5 = max
J ,
i=1

for DGPs (D), (E) and (F) where By, B2, B3 are least square estimates, 62 = b1 Z?:l(yi -
2/, 61)? and 63 = b1 S0 (yi — )y B2 — x5 33)2. In each simulation experiment, the number of
replications is 2000 and the significance level is 0.05. Different values of b are employed in this

simulation. The choice of b is considered for the formula b = nP with p = 0.5,0.55,---,0.95.

Table 1, given 03 = 1, reports the rejection frequencies of the tests for different values of
n and p. For DGPs (A) and (D), the rejection values are finite sample sizes of the test. In
the column of DGP (A), all values are close to the significance level 0.05 except for the values
of p = 0.5. However, in the column of DGP (D), the proposed test is under-sized for a large
p. Thus, when the number of regressors of the regression increases, or if b increases, then
the finite sample sizes of the test are lower. For DGPs (B), (C), (E) and (F), the rejection
rates are the finite sample powers of the proposed test. In columns of DGPs (B) and (E)
that have fixed alternatives, the finite sample powers are 1. Thus, the test has good power
performances with different values of n and b(or p). In addition, the values in the columns of
DGPs (C) and (F) determine that the test performs well when the alternatives are a random
variable. For DGP (C), there are good power performances of the test for large values of p.
When n increases, the powers of the test are closer to 1. For DGP (F), finite sample powers
are lower for n = 100, and as n and b(or p) increase, the finite sample powers increase. Thus,
the proposed test has correct finite sample sizes for one regressor and is slightly under-sized
for two regressors in the regression model. When there are fixed alternatives, the power
performances are very good. The finite sample powers of the test increase along with both
n and b. Table 2 reports the rejection frequencies of the test for six DGPs with different 0(2)
and p. The sample size is 500. The finite sample performances in Table 2 are similar to those
in Table 1. Moreover, when the variety of error term increases, the finite sample powers of

the test decrease.
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Table 1: Rejection frequencies of the conditional moment tests

KSl KSQ
np (A B (© O (E (F

100 0.50 0.076 1.000 0.742 0.057 1.000 0.596
0.55 0.067 1.000 0.817 0.043 1.000 0.661
0.60 0.057 1.000 0.877 0.037 1.000 0.775
0.65 0.048 1.000 0.947 0.038 1.000 0.847
0.70 0.044 1.000 0.977 0.036 1.000 0.919
0.75 0.047 1.000 0.992 0.031 1.000 0.968
0.80 0.049 1.000 0.999 0.024 1.000 0.985
0.85 0.042 1.000 1.000 0.021 1.000 0.995
0.90 0.046 1.000 0.999 0.025 1.000 0.999
0.95 0.041 1.000 1.000 0.018 1.000 0.999

200 0.50 0.063 1.000 0.863 0.046 1.000 0.783
0.55 0.045 1.000 0.937 0.038 1.000 0.867
0.60 0.051 1.000 0.978 0.040 1.000 0.950
0.65 0.053 1.000 0.992 0.031 1.000 0.981
0.70 0.039 1.000 0.997 0.035 1.000 0.990
0.75 0.054 1.000 1.000 0.023 1.000 0.998
0.80 0.048 1.000 1.000 0.028 1.000 1.000
0.85 0.043 1.000 1.000 0.023 1.000 1.000
0.90 0.042 1.000 1.000 0.025 1.000 1.000
0.95 0.049 1.000 1.000 0.022 1.000 1.000

500 0.50 0.068 1.000 0.964 0.057 1.000 0.950

0.55 0.042 1.000 0.989 0.030 1.000 0.982

0.60 0.047 1.000 0.998 0.035 1.000 0.994

0.65 0.044 1.000 0.999 0.036 1.000 0.998

0.70 0.045 1.000 1.000 0.040 1.000 0.999

0.75 0.040 1.000 1.000 0.030 1.000 1.000

0.80 0.055 1.000 1.000 0.028 1.000 1.000

0.85 0.040 1.000 1.000 0.029 1.000 1.000

0.90 0.036 1.000 1.000 0.019 1.000 1.000

0.95 0.035 1.000 1.000 0.028 1.000 1.000
Note: The significant level is 0.05. b = nP. The values in the
3rd and 6th columns are the finite sample sizes and the values
in the 4th, 5th, 7th and 8th columns are the finite sample

powers of the proposed test.
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Table 2: Rejection frequencies of the conditional moment tests

KS KS,y

o0 p (A @B (© @O ([E) (F

2 0.50 0.058 1.000 0.906 0.037 1.000 0.862
0.55 0.053 1.000 0.972 0.041 1.000 0.955
0.60 0.043 1.000 0.995 0.036 1.000 0.984
0.65 0.044 1.000 0.999 0.037 1.000 0.998
0.70 0.049 1.000 1.000 0.039 1.000 0.999
0.75 0.044 1.000 1.000 0.029 1.000 1.000
0.80 0.052 1.000 1.000 0.030 1.000 1.000
0.85 0.040 1.000 1.000 0.033 1.000 1.000
0.90 0.040 1.000 1.000 0.022 1.000 1.000
0.95 0.036 1.000 1.000 0.023 1.000 1.000

3 050 0.060 1.000 0.843 0.050 1.000 0.797
0.55 0.050 1.000 0.942 0.039 1.000 0.915
0.60 0.054 1.000 0.987 0.037 1.000 0.972
0.65 0.051 1.000 0.999 0.039 1.000 0.994
0.70 0.048 1.000 1.000 0.034 1.000 0.999
0.75 0.037 1.000 1.000 0.033 1.000 1.000
0.80 0.046 1.000 1.000 0.038 1.000 1.000
0.85 0.052 1.000 1.000 0.030 1.000 1.000
0.90 0.040 1.000 1.000 0.023 1.000 1.000
0.95 0.041 1.000 1.000 0.027 1.000 1.000

4 0.50 0.048 1.000 0.776 0.042 1.000 0.703

0.55 0.053 1.000 0.897 0.042 1.000 0.845

0.60 0.044 1.000 0.969 0.037 1.000 0.949

0.65 0.042 1.000 0.992 0.031 1.000 0.988

0.70 0.048 1.000 0.999 0.033 1.000 0.999

0.75 0.046 1.000 1.000 0.035 1.000 1.000

0.80 0.053 1.000 1.000 0.038 1.000 1.000

0.85 0.047 1.000 1.000 0.027 1.000 1.000

0.90 0.043 1.000 1.000 0.024 1.000 1.000

0.95 0.042 1.000 1.000 0.029 1.000 1.000
Note: The significant level is 0.05. b = nP. The values in the
3rd and 6th columns are the finite sample sizes and the values
in the 4th, 5th, 7th and 8th columns are the finite sample

powers of the proposed test.
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Table 3: Empirical powers of tests

n 100 200 500

K5, ES KSy ES KS; ES

(G) 0.970 0.949 0973 0.953 0.965 0.947
(H) 0.980 0.944 0.979 0.944 0.947 0.949

Note: The significant level is 0.05. b = n%®. The values are the finite sample

powers of the proposed test and Escanciano’s (2006) test.

Then the finite sample powers of the proposed test and Escanciano’s (2006) test are
compared. In Escanciano’s test, the wild bootstrapping technique is required and the number

of the wild bootstrapping in the simulation is 500. In addition, to make the computation

(0)

simpler, Aijr = 7 is employed. Two DGPs with two regressors considered are:

(G) yi = (m + zi2) + (it + zi2)exp(—0.1(zi1 + 7i2)?) + €5,
(H) yi = (zi1 + xi2) + zitxio + €5,

with x;1, xi2, €; i.i.d. N(0,1). The finite sample powers of the proposed test and Escanciano’s
test are reported in Table 3 with different sample sizes n = 100,200, and 500. The finite
sample powers of the proposed test are higher than those of Escanciano’s test in all scenarios,
except when n = 500 for DGP (H). This result shows that the proposed test has good finite

sample power.

5 Conclusions

This paper proposes a consistent conditional moment test based on infinitely many uncondi-
tional moment restrictions. The test statistic is a subsampling marked empirical process and
an asymptotically pivotal test is obtained. The proposed test is consistent against a general
type of alternatives and is powerful against local alternatives at rates b=1/2. In addition, the
test performs well in finite sample simulations and the power performances are good with
most values of b. However, the proposed test still suffers from choosing b and a future work

might consider an optimal choice for b.
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Appendix

Proof of Theorem 2.1. Given assumption [A3], the subsampling marked empirical process

My, permits the Taylor expansion:

b
Z n) 1{xi<z)

b
72 m (Y3, Xi, 00 1{X<x}+\[2vem Yi, Xi,00) (0 — 00) Lix,<ay + 0p(1).

Because b/n — 0 and given assumption [A4],

) eo)z\/fﬁz(éneo)io

In addition, given assumptions [A1l] and [A4], and Holder’s inequality, the following law of

large numbers of i.i.d. sequence is:

—_

b
52 Vo (Yi, Xi, 00) 1 (x,<0) = B [V (Yi, X, 00) 1 x,20]
i=1

Then we obtain

b b
1 N 1 N
7 > Vorn(Yi, Xi,00) (0n—00) Lix,<ay = |3 D Vo (Yi, Xi 00) 1x, <0y | V(0 —00) = 0.

i=1
Therefore,

b

b
1 A 1
\/B;m(Yi,Xi,@n) Lix,<a) = 7 ;m(Yi?Xi?@o) Lix,<a} +0p(1).

Mb(x;én) and My(x;0,) are asymptotically equivalent. Thus, the estimating parameter 6
does not affect the limiting distribution of the statistic and the estimation effect problem

does not appear.

The process M belongs to the Shorohod space D(RF) and the weak convergence of
My(x;6,) in the space D(RF) to a continuous limit is determined by the tightness of M,
and the finite dimensional convergence of Mpy(x;0,). In the following, Bickel and Wichura
(1971), Koul and Stute (1999) and Dominguez and Lobato (2006) are employed to show the

tightness of M;, and then the weak convergence of My(z;0,). Iy = (s',t!] = xé?:l(sj,tjl]

and I, = (s2,1?] = xf 1(sj,t§] are defined as the two subsets in R*. Then I; and I, are

neighbor subsets if and only if for some j* € {1,2,--- , k}, (8], t}.] # (53, 13.], x;?;éj (s}, tj] =

x;?#j (s],tJQ] and tl* = 5?* That is, they are next to each other and share the j*th face.
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Thus, the process M, indexed by a parameter in RF has an associated process indexed by

the intervals as follows, wherein h = 1, 2,

b
My(Iy;0) = Z m(Yi, Xi;0)1(xe1,)

\f
1 1
= Z Z 1)F Szt My (sh + eq (0 — s2), -+ s+ en(th — s2);0),

which is the increment of M, around I;. Denote m(Y;, X;;0) = m,;. Employing Bickel and
Wichura (1971, Theorem 3 and example II), if

b 21 2
1
E (Mb(fl; 0)2, Mb(fg; 0)2) — b—zE [Z mil{Xieh}] [Z mil{Xielz}]
i=1 i=1
is bounded, then for any A > 0 and v > 1,
P(My > ) < A u(l U L)Y,

with some measure p. Thus, as show the process M, is tight.

Under Hy and given assumption [A1l], when a subindex appears once in the summation,
the corresponding term is zero by the law of iterated expectation and the i.i.d. assumption.
Moreover, since I; and Iy are disjoint sets, when a subindex appears more than twice, the

corresponding term is zero. Therefore,

E (M, (I1;0)%, My(I;6)?)
2

b i— b i—
1
2 2
domilpeny | Domilpgeny | |+ B | Do milieny | Do milixen)
i=1 =1 i=1 J=1

The first and the second terms in the above equation are similar and the only difference is

the indexing set Ij,; we then focus on the first term. Under Hp and given assumption [A2](i),

2
b i1
1
b2 Z 1 mgl{Xth} Z m; 1{Xj€I2}
i=1 j=1
L0 I i-1 2
= ﬁZE o*(Xi)Lix,eny ijl{xjeb}
i=1 i j=1
12 i i-1 2
— b—zz:]E /] 02(u)f(u)du ijl{XjeIQ}
i=1 |70 j=1
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Given Fubini’s Theorem, the above equation equals to:
. 2
1 b i—1
2
1)22/ E |o%(u)f(u) ijl{XjGIQ} du.
=171 j=1
Given Cauchy-Schwarz’s inequality, the following is
2

i—1
p 2 [ s [ Cmtien | | a

i=1 1 j:l
- 4N 1/2
i—

b
1 2 1/2
< Z/ {IE) [02(u)f(u)] } E ijl{Xjelg} du.
i=17h j=1
Given Burkholder’s inequality and the moment inequality yield, with some constant C,

. 4 . 2

i—1 i—1

]E ijl{XiEIz} S CIE Zm?l%XlEb} S C(Z— 1)2E(mzlll{X1612})'
j=1 j=1

Thus,

, 2
i—1

b

1

7 22 B milxeny | 2omilixen
i=1 j=1

b
: blzz/ [{]E [UQ(U)f(u)]Z}l/Z {06 - 1)2]E(m%1{xlelz})}l/2] du
=170
1/2

b
:1[01E(m;*1{X1612})}1/2Z(i1)/ (B [o*(u) @)} du

2
b i=1 h

E(mi1y,eny) < E(m]) which is bounded by assumption [A2] (ii). In addition, from Koul
and Stute (1999), fII{IE[Jz(u)f(u)P}l/zdu is bounded by assumptions [A1l] and [A2](iii).
Therefore, under Hy and given assumptions [A1]-[A2], the process M, is tight. Note that our
assumption [A2] (ii) and (iii) are similar to the assumption (A)(a) in Koul and Stute (1999).

Given assumptions [Al] and [A2] (i), and by a central limit theorem for i.i.d. sequence,

we have for any = € R,

My(z;6,) = N(0,V(x)).
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For z1,z9 € RF,

Cov (Mb(:rl; 00), My(z2; 90))

1 /\xz
i / F(du)

_VZL‘1/\$2)

where the first equality holds by the property of i.i.d. sequence. Since V(z) is nondecreas-
ing and nonnegative, M, is an asymptotically distributed B(V (z)), where B(-) is a multi-

parameter Brownian motion process. O

Proof of Theorem 2.2. Herein, it is shown that a consistent estimator &(X;)? to replace
o(X;)? does not affect the asymptotics of the scale invariant subsampling marked empirical

process. Thus, the process Mb(x; én) may be rewritten as:

b
7 D2 ) (Y5, X5, 6) L,
i=1
1 b R 1 b A
= . ; (6‘(Xi)_1 - U(Xi)_l)m(Y;,Xi, Hn) l{Xigzc} + % ;O‘(Xi)_lm(y;;, X, Gn) I{Xigac}'

(=

< Vbsup [6(X;) 7" = o(X;) 7| sup |m(Y;, X;,0,)].
X; Yi7Xi

Therefore, given 6(X;) — o(X;) = 0,(b~'/?) and assumption [A2] (i),

b b

1 A

= E &(X’L)ilm(}/zaX’uen) 1{X1§I} E U Y;7XZ79 )I{ngx} +0p(1)
2:1

=1

S

Let My (x;0) := b~1/2 S o (X5) (Y, X, 6) 1{x,<z}- Similar to the proof of Theorem 2.1,
replacing 6, by 6, in Mb (z; Gn) does not affect its asymptotics. It suffices to focus on the
limiting behavior of ]\Zfl‘)’ (2;0,). The tightness of the process can be obtained in Theorem 2.1
as 0(X;)? is continuous. Using Lindeberg-Lévy central limit theorem for i.i.d. sequence,

we obtain the limiting distribution, which is a Gaussian process with zero mean and for

17



x1,T2 € Rk,

Cov (]\;[b”(ajl, 0,), Mg’(:vg, 90)>

EZ]E YZ’XHQ ) 1{Xi§xl}1{Xi§I2}}
/x1/\cc2
F 5[31 AN Ig)
Hence, My(z;0,) = B(F(z)), with B a multi-parameter Brownian motion process. O

A~

Proof of Theorem 3.1. Following Theorem 2.2, Mj(x;60,) and M (x;6,) are asymptot-
ically equivalent. It suffices to discuss the limit of MbU (x;6,) under two different types of

alternatives.

For part (i), M{(X;6,) may be rewritten as:
12
—= > o(X) T m(Yi, X, 00) 1x, <o

1 b
JZ (¥ Xis ) = pXD] Lz + 7 Dol HED Loy

Under H; and given assumptions [A1]-[A4], by the previous proofs, the first part of the above
equation converges to B(F(z)). In addition, if IE|o(X;) ™" u(Xi)1;x,<z| < co from the i.id.
assumption, the probability limit of b—1/2 ZZ 10(X) (X)L x, <y will be

VOE[o(Xi) ™ 1(Xi) 1 x, <.
As b — oo, le(X;Ho) — 00, thus

My(x;0,) — .

For part (i), M (X;6,) may be rewritten as:
1
b}:a m (Y, Xi,00) 1ix,<z}

b b
o(X; 1
z [ (Yi X0.0,) — ;;] Lixiza + § 2000 ) oy

Under HY and given assumptions [A1]-[A4], if E|U(Xi)_15(Xi)1{Xi§z}| < 00, the prob-
ability limit of b= 320_ o(X;)16(X ) 1{x,<z} will be E[o(X;)7'6(X;)11x,<5}]. Therefore,
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~

under H 1L, My (z; 0,,) converges to a multiparameter Brownian motion process plus a non-zero

constant term E[o(X;) 16(Xi)1ix,<py]. O

Proof of Theorem 3.2. Proof of Theorem 3.2 is similar to the proof of Theorem 3.1 wherein

M{ (X;0,) may be rewritten as:

LD
ZU m(Yi, Xi, 00) 1{x, <z}

b

b .
Z [ (Vi, Xi,6,) — (SEFXZ)] Lix,<a} + \[\FZ o(Xi)7H0(Xi) 1 x,<a}-
i=1 =1

The probability limit of the second term on the right-hand-side of the above equation will be

R Vb [1¢ »
ﬂﬁZU(Xi)_l5(Xi)1{Xi§x} = n [bZU(Xi)_l(S(Xi)l{Xi<x} 2o,
=1

=1

with b/n — 0 and b~ ' 320 0(X;)710(X) 1 x<a) — E[0(X;)'6(X:)1(x,<zy]. Therefore,

]\Zfb(a;; én) converges to a multi-parameter Brownian motion process under both Hy and H 2L . g
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