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1 Introduction

Many economic and econometric models are represented by conditional moment restrictions,

for example, the rational expectation model, the market disequilibrium model, the condi-

tional probability model, the discrete choice model and the nonlinear simultaneous equations

model. The validity of these types of model is determined by testing conditional moment

restrictions. Examples of such tests include conditional moment tests or M-test developed by

Newey (1985), Tauchen (1985), and White (1987). However, such conditional moment tests

may not be consistent because only necessary conditions of conditional moment restrictions

are checked. There is an abundance of literature on constructing consistent conditional mo-

ment tests. One technique is to employ a nonparametric test. See, for example, Delgado

and González Manteiga (2001), Li, Hsiao, and Zinn (2003), Horowitz and Spokoiny (2001),

Tripathi and Kitamura (2003), and Zheng (2000), among others. The nonparametric tests

are usually subjective in choosing smoothing parameters and may be computationally costly.

Another technique for constructing a consistent conditional moment test is based on infinitely

many unconditional orthogonality restrictions with uncountably many weighted functions in-

dexed by continuous nuisance parameters (Stichcombe and White, 1998). This technique is

called the integrated function approach because it uses the integrated measures of dependence

of orthogonal restrictions. For these types of tests, when determining the weighted functions,

Bierens (1982, 1984, 1990), Bierens and Ploberger (1997), Bierens and Ginther (2001), and

de Jong (1996), employ the exponential function, while Koul and Stute (1999), Stute (1997),

Stute, Thies and Zhu (1998), and Stute and Zhu (2002) employ the indicator function.

It is noted, that generally, tests based on integrated function approach are not asymptoti-

cally pivotal. That is, their limiting distributions depend on model characteristics and critical

values cannot be tabulated. For example, the limiting distribution for tests employing the

exponential weight function depend on the data generating process (DGP) of the auxiliary

nuisance parameters. Although Bierens and Ploberger (1997) have derived case-independent

upper bounds of critical values to solve the limiting distribution problem, their test may be too

conservative in practice. Meanwhile, the limiting distribution for tests employing the indica-

tor weight function is not asymptotically pivotal because of estimation effects (Durbin, 1973)

and being case dependent. Dominguez and Lobato (2006), Stute, González Manteiga and

Presedo Quind̈ımil (1998), and Whang (2000, 2001, 2004) try to avoid the problem by using

bootstrapping techniques to approximate the limiting distribution. Specifically, Khmaladze

and Koul (2004), Stute, Thies and Zhu (1998), Koul and Stute (1999), Stute and Zhu (2002),

and Song (2009) employ the martingale transformation technique of Khmaladze (1981) to

obtain asymptotically distribution-free test statistics. However, these tests usually encounter
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the poor finite sample performance due to the curse of dimensionality. Recently, Excanciano

(2006) and Lavergne and Patilea (2008) propose tests breaking the curse of dimensionality.

The former test is based on the integrated function technique and uses projections, while the

latter test is based on the smoothing nonparametric technique.

Accordingly, this paper proposes a consistent conditional moment test that is asymptot-

ically pivotal. The proposed test is based on the integrated function approach and the test

statistic is obtained through a subsampling marked empirical process, using sample size b

instead of the whole sample size n such that b < n. Subsampling, as defined by Politis and

Romano (1994) and Politis, Romano and Wolf (1999) is a method for estimating the distribu-

tion of an estimator or test statistic by drawing subsamples from the original data. Andrews

and Guggenberger (2005), Chernozhukov and Fernández-Val (2005), Guggenberger and Wolf

(2004), Hong and Scailet (2006), Linton, Massoumi and Whang (2005) and Whang (2004)

have employed subsampling techniques for estimating the distribution of estimators. Instead

of computing the sample average of the conditional moment function with the whole sample,

the test statistic is obtained by the subsampling marked empirical process with subsample

size b. The estimation effect disappears when the relative sample size of subsampling to that

of the whole sample is zero asymptotically. Therefore, the proposed test does not suffer from

the estimation effect problem and is asymptotically pivotal. Further, multiple regressors may

be employed in the test. Thus, the proposed test can be viewed as the complement of Es-

canciano (2006) and Lavergne and Patilea (2008) for breaking the curse of dimensionality.

Additionally, any
√
n-consistent estimator and different estimation methods may be employed

to compute the test statistic. Bootstrapping, martingale transformation or nonparametric

techniques are not required, thus, simplifying computation of test statistics. However, the

proposed test is powerful against local alternatives at rates b−1/2, but the proposed test is

incapable of detecting local alternatives at rate n−1/2. When performing Monte Carlo sim-

ulation, it was shown that good finite sample performances were obtained and the proposed

test was robust with respect to different values of b.

Following arrangement of this paper is as follows. Section 2 presents the conditional

moment restriction and the proposed test. Section 3 shows the consistency of the proposed

test and the asymptotic behavior given different local alternatives. Section 4 shows the results

of Monte Carlo simulation. Lastly, Section 5 is the conclusion. All proofs are presented in

the Appendix.
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2 A New Test

2.1 Conditional Moment Restrictions

Consider the general conditional moment restrictions

IE[m(Y,X, θo)
∣∣X] = 0, (1)

where IE[·|X] denotes the expectation conditional on the information set of X, the function

m(·) is well-defined, {Y,X} is a sequence of random variables with X = (X1, · · · , Xk)′ and

parameters θ ∈ Θ with Θ ∈ Rk. The conditional moment restrictions can be obtained from

existing models such as the parametric nonlinear regression model where m(Y,X, θo) is the

difference between Y and g(X ′, θ), with g(·) being a nonlinear function. To test the condition

moment restrictions, the null and alternative hypotheses are as follows. The null hypothesis

is the conditional moment function being equal to zero:

H0 : P
{

IE(m(Y,X, θo)
∣∣X) = 0

}
= 1, for some θo ∈ Θ,

and the alternative hypothesis is, for all θ ∈ Θ, IE(m(Y,X, θ)
∣∣X) 6= 0 with a positive proba-

bility:

H1 : P
{

IE(m(Y,X, θ)
∣∣X) = 0

}
< 1, for all θ ∈ Θ,

with Θ ∈ Rk a compact set.

As previously proposed by Stinchcombe and White (1998), the conditional moment con-

dition (1) equals infinitely many unconditional moment functions

IE[m(Y,X, θo)ω(X,x)] = 0,∀x ∈ Rk, (2)

where ω(·) is an infinite set indexed by continuous parameters x and ω(·) may be any analytic

function that is not polynomial. A consistent conditional moment test can be constructed

by testing (2). For example, Bierens (1982, 1984, 1990), de Jong (1996) and Bierens and

Ploberger (1997) and Bierens and Ginther (2001) employ the exponential weighted function

ω(X,x) = exp(X ′x) for their integrated conditional moment test. Meanwhile, Stute (1997),

Stute, Thies and Zhu (1998), Koul and Stute (1999) and Stute and Zhu (2002) employ the

indicator function

ω(X,x) = 11{X≤x} := 11{X1≤x1} · · · 11{Xk≤xk},

where 11A denotes the indicator function of even A. This paper proposes employing the indi-

cator function and the conditional moment restrictions (1) can be rewritten by the infinitely

many unconditional moment functions as follows:

IE[m(Y,X, θo)11{X≤x}] = 0, ∀x = (x1, · · · , xk)′ ∈ Rk, (3)
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wherein multivariate regressors may be employed; see Khmaladze and Koul (2004), Escan-

ciano (2006), and Song (2009).

2.2 Test Statistics

The specification test employed in this paper examines infinitely many unconditional moment

functions (3) that are equivalent to the conditional moment restriction (1). Thus, the spec-

ification test is a consistent conditional moment test. To test whether the moment function

IE[m(Y,X, θo)11{X≤x}] equals to zero, the normalized sample average of the moment function:

Mn(x; θo) :=
1√
n

n∑
t=1

m
(
Yi, Xi, θo

)
11{Xi≤x},

with {Yi, Xi}ni=1 a sequence of random variable, and 11{Xi≤x} = 1{Xi1≤x1} · · · 1{Xik≤xk}, is

employed. The function m
(
Yi, Xi, θ

)
11{Xi≤x} is the marked empirical process with the marks

given by the moment function m. The function Mn is the average of the marked empirical

process with sample size n. If Mn(x; θo) is close to zero, then the null hypothesis is not

rejected. Otherwise, the null hypothesis is rejected and the conditional moment restriction

does not hold.

Since the true parameter θo is unknown, we replace θo by its consistent estimator, θ̂n.

Thus the sample average of the marked empirical process is:

Mn(x; θ̂n) =
1√
n

n∑
i=1

m(Yi, Xi, θ̂n)11{Xi≤x}.

By rewriting the process Mn based on

Mn(x; θ̂n) = Mn(x; θo) +
1√
n

n∑
i=1

(
m(Yi, Xi, θ̂n)−m(Yi, Xi, θo)

)
11{Xi≤x},

if m(Yi, Xi, θ) is once differentiable with first derivative ∇θm(Yi, Xi, θo), then

Mn(x; θ̂n) = Mn(x; θo) +
1√
n

n∑
i=1

∇θm(Yi, Xi, θo)(θ̂n − θo)11{Xi≤x} + op(1)

= Mn(x; θo) +
√
n(θ̂n − θo)

1
n

n∑
i=1

∇θm(Yi, Xi, θo)11{Xi≤x} + op(1).

Thus, Mn(x; θ̂n) and Mn(x; θo) are not asymptotically equivalent due to the presence of the

second term on the right hand side of the second equality. This term is the estimation

effect presented in Durbin (1973), wherein the presence of the second term depends on a

model characteristic that makes the test based on Mn(x; θ̂n) not asymptotically pivotal.

To obtain an asymptotically distribution-free test, Stute, Thies and Zhu (1998), Koul and
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Stute (1999) and Stute and Zhu (2002) employ the martingale transformation technique for

univariate regressors and Khmaladze and Koul (2004) and Song (2009) employ the same

technique for multivariate regressors. Note that because using a nonparametric estimation of

the conditional moment function is required, it is complicated to compute a high dimensional

nonparametric estimation and is subjective to user-chosen parameters employing martingale

transformation technique. In addition, the finite sample performance is poor due to the

curse of dimensionality. To solve the subjective choice of parameters problem and the curse

of dimensionality, Escanciano (2006) proposes a consistent conditional moment test using

the projections technique and his test presents excellent empirical powers in finite sample.

However, the limiting distribution of Escanciano’s test should be obtained by bootstrapping

technique and is not asymptotically pivotal.

Thus, this paper employs a subsampling version of the Mn process to construct a con-

sistent conditional moment test which is asymptotically pivotal. Instead of employing the

whole sample size n to compute the marked empirical process, a subsample size b is employed

to compute the sample average and construct the process, for b < n:

Mb(x; θ̂n) :=
1√
b

b∑
i=1

m
(
Yi, Xi, θ̂n

)
11{Xi≤x},

where θ̂n can be any
√
n-consistent estimator associated with the model of interest with

sample size n. Thus, by employing Mb the following equation is provided:

Mb(x; θ̂n) = Mb(x; θo) +
1√
b

b∑
i=1

∇θm(Yi, Xi, θo)(θ̂n − θo)11{Xi≤x} + op(1)

= Mb(x; θo) +

√
b

n

√
n(θ̂n − θo)

[
1
b

b∑
i=1

∇θm(Yi, Xi, θo)11{Xi≤x}

]
+ op(1).

(4)

If b→∞, n→∞ and b/n→ 0, and there exist some regularity conditions, then the second

term on the right-hand-side of the second equality of (4) converges to zero. Thus, Mb(x; θ̂n)

and Mb(x; θo) are asymptotically equivalent. Subsampling the marked empirical process

eliminates the estimation effect. Assume D(Rk) to be the space of the cadlag function on Rk

endowed with the Skorohod topology. Here, Mb is in D(Rk). Assume also, that ⇒ denotes

the convergence in distribution, and
p→ denotes the convergence in probability. The following

assumptions are sufficient for the weak convergence of the subsampling marked empirical

process.

[A1] {Yi, Xi}ni=1 is independent and identically distributed (i.i.d.) where Xi has the bounded

and continuous distribution function F and the density function is f .
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[A2] (i) IE[m(Yi, Xi, θ)2|Xi] <∞,

(ii) IE[m(Yi, Xi, θ)4] = κ <∞,

(iii) IE[m(Yi, Xi, θ)4||Xi||1+η] <∞, for some η > 0.

[A3] m(·) is once continuously differentiable in a neighborhood θo and satisfies

IE
[

sup
θ∈Θo

|∇θm(Yi, Xi, θ)|
]
<∞,

where Θo denotes a neighborhood of θo.

[A4] θ̂n is a
√
n-consistent estimator; that is

√
n
(
θ̂n − θo

)
= Op(1).

The assumptions in [A2] restrict the dependence of the moment function. Given [A2] (i),

the conditional variance function σ2(Xi) of m(Yi, Xi, θ) is defined with

σ2(u) := var
[
m(Yi, Xi, θ)

∣∣Xi = u].

For xi = (x1, · · · , xk)′ and u = (u1, · · · , uk)′:

V (x) := IE
[
σ2(Xi)11{Xi≤x}

]
=
∫ x

−∞
σ2(u)F (du),

is defined with
∫ x
−∞ :=

∫ x1

−∞ · · ·
∫ xk

−∞. Assumptions [A1] together with [A2] are required to

obtain the uniform tightness in the space D[−∞,∞]. Assumption [A3] is a standard smooth-

ness assumption. [A3] can be relaxed as a non-smooth moment function when considering

the stochastic equicontiunity of m. Assumption [A4] is weak and may be applied to most

existing estimation methods. Following, the weak convergence of Mb is obtained.

Theorem 2.1. Under H0 and given assumptions [A1]-[A4], if b→∞, n→∞ and b/n→ 0,

then one has:

Mb(x; θ̂n)⇒ B
(
V (x)

)
,

where B(·) is a Gaussian process with mean zero and covariance function V (x1 ∧ x2).

The limiting distribution of Mb is a centered Gaussian process which is a multi-parameter

Brownian motion process on [0, 1]k with covariance function

V (x1 ∧ x2) =
∫ x1∧x2

−∞
σ2(u)F (du),

where
∫ x1∧x2

−∞ =
∫ x11∧x21

−∞ · · ·
∫ x1k∧x2k

−∞ . In particular, when Xi is univariate, the process B

is the standard Brownian motion process. The limit of Mb(x; θo) and that of Mb(x; θ̂n)

are the same and the estimation effect problem of Durbin (1973) is eliminated because the
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convergence rate of b to infinity is slower that of n to infinity. Note that V (x) plays an

important role in the proposed test. Since V (x) still depends on the distribution of Xi and

σ2, the process Mb(x; θ̂n) is not asymptotically distribution-free. For a general conditional

heteroskedasticity case, the scaled invariant version of subsampling marked empirical process

is considered as follows:

M̃b(x; θ̂n) :=
1√
b

b∑
i=1

σ̂(Xi)−1m
(
Yi, Xi, θ̂n

)
11{Xi≤x},

where σ̂(Xi)2 is a consistent estimator of σ(Xi)2. The scaled version of the statistic is also

considered in many research, such as Khmaladze and Koul (2004), Koul and Stute (1999),

Stute (1997), Stute, Thies and Zhu (1998), and Song (2009). When σ2(Xi) = σ2
0 (the

conditional homoskedasticity case), which is a constant, M̃b(x; θ̂n) simplifies to

1√
b
σ̂−1
b

b∑
i=1

m
(
Yi, Xi, θ̂n

)
11{Xi≤x},

with σ̂2
b = b−1

∑b
i=1m(Yi, Xi, θ̂n)2 a consistent estimator for σ2

0.

Theorem 2.2. Under H0 and given assumptions [A1]-[A4], if b→∞, n→∞, b/n→ 0 and

σ̂(Xi)2 − σ(Xi)2 = op(b−1/2), then

M̃b(x; θ̂n)⇒ B
(
F (x)

)
,

with B(·) a Gaussian process with mean zero and covariance function F (x1 ∧ x2).

The computational counterpart of the scaled invariant version of M̃b(x; θ̂) is as follows:

M̃b(Xj ; θ̂n) :=
1√
b

b∑
i=1

σ̂(Xi)−1m
(
Yi, Xi, θ̂n

)
11{Xi≤Xj}, j = 1, · · · , n,

where each realization Xj is used as an x in the indicator function. Consider two goodness-

of-fit statistics, the Kolmogorov-Smirnov and Cramer-von Mises test statistics:

KSn = sup
Xj∈Rk

∣∣M̃b(Xj ; θ̂n)
∣∣,

and

CMn =
1
n

n∑
j=1

M̃b(Xj ; θ̂n)2.

Employing Theorem 2.2 and the continuous mapping theorem, for a large n, with τ ∈ [0, 1]k,

then

KSn ⇒ sup
x∈Rk

∣∣B(F (x)
)∣∣ = sup

τ∈[0,1]k

∣∣B(τ)
∣∣,
7



and

CMn =
∫ ∞
−∞

M̃b(X; θ̂n)2F (dx)⇒
∫ ∞
−∞

B
(
F (x)

)2
F (dx) =

∫
[0,1]k

B(τ)2dτ.

The critical values of the test statistics KSn and CMn can be found in existing literature such

as Shorack and Wellner (1986) and Khmaladze and Koul (2004).1 Note that the proposed

test of this paper is asymptotically pivotal and the limiting distribution of the proposed test

does not depend on a DGP. Therefore, the following corollary is as follows.

Corollary 2.3. Under all the assumptions in Theorem 2.2.

KSn ⇒ sup
τ∈[0,1]k

∣∣B(τ)
∣∣,

and

CMn ⇒
∫

[0,1]k
B(τ)2dτ,

where B(·) is a Gaussian process with mean zero and covariance (τ1 ∧ τ2).

3 Power of the Tests

To investigate the power performance of the proposed test, two types of alternatives are

considered. One is the general alternative:

H1 : IE[m(Y,X, θo)|X] = µ(X) 6= 0,

and the other is the local alternatives:

HL
1 : IE

[
m(Y,X, θo)

∣∣X] =
δ(X)√
b
,

with δ(X) 6= 0. Under H1, the limiting distribution of the proposed test statistic diverges, in

which the power of the test is obtained.

Theorem 3.1. Assume all the conditions of Theorem 2.2 hold and b → ∞, n → ∞ and

b/n→ 0. Therefore:

(i) Under the fixed alternative H1:

M̃b(x; θ̂n)→∞.
1See also www.mcs.vuw.ac.nz/ ray/Brownian.
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(ii) Under the local alternatives HL
1 :

M̃b(x; θ̂n)⇒ B(F (x)) + IE[σ(Xi)−1δ(Xi)11{Xi≤x}].

Employing Theorem 3.1 and the continuous mapping theorem, then under the fixed al-

ternative H1: KSn →∞, and CMn →∞. Therefore, the consistency of the proposed test is

obtained. Moreover, under the local alternatives HL
1 ,

KSn ⇒ sup
x∈Rk

∣∣B(F (x)) + IE[σ(Xi)−1δ(Xi)11{Xi≤x}]
∣∣,

and

CMn ⇒
∫

[0,1]k

(
B(F (x)) + IE[σ(Xi)−1δ(Xi)11{Xi≤x}]

)2
dτ.

This shows that the proposed test has nontrivial powers against local alternatives HL
1 at rate

b−1/2. Note that there may exist local alternatives at rate n−1/2 as follows.

HL
2 : IE

[
m(Y,X, θo)

∣∣X] =
δ(X)√
n
.

Under the local alternatives HL
2 , the limiting distribution of M̃b(x; θ̂n) is the same as that

under the null hypothesis (see Theorem 2.1). The proposed test is not powerful against local

alternatives at rate n−1/2.

Theorem 3.2. Assume assumptions [A1]-[A4] hold and b → ∞, n → ∞ and b/n → 0.

Under the local alternatives HL
2 :

M̃b(x; θ̂n)⇒ B(F (x)).

4 Monte Carlo Simulations

The finite sample performance of the test statistic KSn is examined. The following null

DGPs is as follows.

(A) yi = xi1 + ei,

(B) yi = xi1 + 5 + ei,

(C) yi = xi1 + exp(zi) + ei,

(D) yi = xi2 + xi3 + ei,
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(E) yi = xi2 + xi3 + 5 + ei,

(F) yi = xi2 + xi3 + exp(zi) + ei.

Here xi1, xi2, xi3 and zi are i.i.d. N(0, 1) distribution and ei is i.i.d. N(0, σ2
0) with σ2

0 =

1, 2, 3, 4. The test statistic KSn for one regressor is:

KS1 = max
j

∣∣∣∣ 1√
b
σ̂−1

1

b∑
i=1

(yi − x′i1β̂1)11{xi1≤xj}

∣∣∣∣,
for DGPs (A), (B) and (C) and the test statistic for two regressors is:

KS2 = max
j

∣∣∣∣ 1√
b
σ̂−1

2

b∑
i=1

(yi − x′i2β̂2 − x′i3β̂3)11{xi2≤xj1}11{xi3≤xj2}

∣∣∣∣,
for DGPs (D), (E) and (F) where β̂1, β̂2, β̂3 are least square estimates, σ̂2

1 = b−1
∑b

i=1(yi −
x′i1β̂1)2 and σ̂2

2 = b−1
∑b

i=1(yi−x′i2β̂2−x′i3β̂3)2. In each simulation experiment, the number of

replications is 2000 and the significance level is 0.05. Different values of b are employed in this

simulation. The choice of b is considered for the formula b = np with p = 0.5, 0.55, · · · , 0.95.

Table 1, given σ2
0 = 1, reports the rejection frequencies of the tests for different values of

n and p. For DGPs (A) and (D), the rejection values are finite sample sizes of the test. In

the column of DGP (A), all values are close to the significance level 0.05 except for the values

of p = 0.5. However, in the column of DGP (D), the proposed test is under-sized for a large

p. Thus, when the number of regressors of the regression increases, or if b increases, then

the finite sample sizes of the test are lower. For DGPs (B), (C), (E) and (F), the rejection

rates are the finite sample powers of the proposed test. In columns of DGPs (B) and (E)

that have fixed alternatives, the finite sample powers are 1. Thus, the test has good power

performances with different values of n and b(or p). In addition, the values in the columns of

DGPs (C) and (F) determine that the test performs well when the alternatives are a random

variable. For DGP (C), there are good power performances of the test for large values of p.

When n increases, the powers of the test are closer to 1. For DGP (F), finite sample powers

are lower for n = 100, and as n and b(or p) increase, the finite sample powers increase. Thus,

the proposed test has correct finite sample sizes for one regressor and is slightly under-sized

for two regressors in the regression model. When there are fixed alternatives, the power

performances are very good. The finite sample powers of the test increase along with both

n and b. Table 2 reports the rejection frequencies of the test for six DGPs with different σ2
0

and p. The sample size is 500. The finite sample performances in Table 2 are similar to those

in Table 1. Moreover, when the variety of error term increases, the finite sample powers of

the test decrease.
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Table 1: Rejection frequencies of the conditional moment tests

KS1 KS2

n p (A) (B) (C) (D) (E) (F)

100 0.50 0.076 1.000 0.742 0.057 1.000 0.596

0.55 0.067 1.000 0.817 0.043 1.000 0.661

0.60 0.057 1.000 0.877 0.037 1.000 0.775

0.65 0.048 1.000 0.947 0.038 1.000 0.847

0.70 0.044 1.000 0.977 0.036 1.000 0.919

0.75 0.047 1.000 0.992 0.031 1.000 0.968

0.80 0.049 1.000 0.999 0.024 1.000 0.985

0.85 0.042 1.000 1.000 0.021 1.000 0.995

0.90 0.046 1.000 0.999 0.025 1.000 0.999

0.95 0.041 1.000 1.000 0.018 1.000 0.999

200 0.50 0.063 1.000 0.863 0.046 1.000 0.783

0.55 0.045 1.000 0.937 0.038 1.000 0.867

0.60 0.051 1.000 0.978 0.040 1.000 0.950

0.65 0.053 1.000 0.992 0.031 1.000 0.981

0.70 0.039 1.000 0.997 0.035 1.000 0.990

0.75 0.054 1.000 1.000 0.023 1.000 0.998

0.80 0.048 1.000 1.000 0.028 1.000 1.000

0.85 0.043 1.000 1.000 0.023 1.000 1.000

0.90 0.042 1.000 1.000 0.025 1.000 1.000

0.95 0.049 1.000 1.000 0.022 1.000 1.000

500 0.50 0.068 1.000 0.964 0.057 1.000 0.950

0.55 0.042 1.000 0.989 0.030 1.000 0.982

0.60 0.047 1.000 0.998 0.035 1.000 0.994

0.65 0.044 1.000 0.999 0.036 1.000 0.998

0.70 0.045 1.000 1.000 0.040 1.000 0.999

0.75 0.040 1.000 1.000 0.030 1.000 1.000

0.80 0.055 1.000 1.000 0.028 1.000 1.000

0.85 0.040 1.000 1.000 0.029 1.000 1.000

0.90 0.036 1.000 1.000 0.019 1.000 1.000

0.95 0.035 1.000 1.000 0.028 1.000 1.000

Note: The significant level is 0.05. b = np. The values in the

3rd and 6th columns are the finite sample sizes and the values

in the 4th, 5th, 7th and 8th columns are the finite sample

powers of the proposed test.
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Table 2: Rejection frequencies of the conditional moment tests

KS1 KS2

σ2
0 p (A) (B) (C) (D) (E) (F)

2 0.50 0.058 1.000 0.906 0.037 1.000 0.862

0.55 0.053 1.000 0.972 0.041 1.000 0.955

0.60 0.043 1.000 0.995 0.036 1.000 0.984

0.65 0.044 1.000 0.999 0.037 1.000 0.998

0.70 0.049 1.000 1.000 0.039 1.000 0.999

0.75 0.044 1.000 1.000 0.029 1.000 1.000

0.80 0.052 1.000 1.000 0.030 1.000 1.000

0.85 0.040 1.000 1.000 0.033 1.000 1.000

0.90 0.040 1.000 1.000 0.022 1.000 1.000

0.95 0.036 1.000 1.000 0.023 1.000 1.000

3 0.50 0.060 1.000 0.843 0.050 1.000 0.797

0.55 0.050 1.000 0.942 0.039 1.000 0.915

0.60 0.054 1.000 0.987 0.037 1.000 0.972

0.65 0.051 1.000 0.999 0.039 1.000 0.994

0.70 0.048 1.000 1.000 0.034 1.000 0.999

0.75 0.037 1.000 1.000 0.033 1.000 1.000

0.80 0.046 1.000 1.000 0.038 1.000 1.000

0.85 0.052 1.000 1.000 0.030 1.000 1.000

0.90 0.040 1.000 1.000 0.023 1.000 1.000

0.95 0.041 1.000 1.000 0.027 1.000 1.000

4 0.50 0.048 1.000 0.776 0.042 1.000 0.703

0.55 0.053 1.000 0.897 0.042 1.000 0.845

0.60 0.044 1.000 0.969 0.037 1.000 0.949

0.65 0.042 1.000 0.992 0.031 1.000 0.988

0.70 0.048 1.000 0.999 0.033 1.000 0.999

0.75 0.046 1.000 1.000 0.035 1.000 1.000

0.80 0.053 1.000 1.000 0.038 1.000 1.000

0.85 0.047 1.000 1.000 0.027 1.000 1.000

0.90 0.043 1.000 1.000 0.024 1.000 1.000

0.95 0.042 1.000 1.000 0.029 1.000 1.000

Note: The significant level is 0.05. b = np. The values in the

3rd and 6th columns are the finite sample sizes and the values

in the 4th, 5th, 7th and 8th columns are the finite sample

powers of the proposed test.
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Table 3: Empirical powers of tests

n 100 200 500

KS2 ES KS2 ES KS2 ES

(G) 0.970 0.949 0.973 0.953 0.965 0.947

(H) 0.980 0.944 0.979 0.944 0.947 0.949

Note: The significant level is 0.05. b = n0.8. The values are the finite sample

powers of the proposed test and Escanciano’s (2006) test.

Then the finite sample powers of the proposed test and Escanciano’s (2006) test are

compared. In Escanciano’s test, the wild bootstrapping technique is required and the number

of the wild bootstrapping in the simulation is 500. In addition, to make the computation

simpler, A(0)
ijr = π is employed. Two DGPs with two regressors considered are:

(G) yi = (xi1 + xi2) + (xit + xi2)exp(−0.1(xi1 + xi2)2) + ei,

(H) yi = (xi1 + xi2) + xitxi2 + ei,

with xi1, xi2, ei i.i.d. N(0, 1). The finite sample powers of the proposed test and Escanciano’s

test are reported in Table 3 with different sample sizes n = 100, 200, and 500. The finite

sample powers of the proposed test are higher than those of Escanciano’s test in all scenarios,

except when n = 500 for DGP (H). This result shows that the proposed test has good finite

sample power.

5 Conclusions

This paper proposes a consistent conditional moment test based on infinitely many uncondi-

tional moment restrictions. The test statistic is a subsampling marked empirical process and

an asymptotically pivotal test is obtained. The proposed test is consistent against a general

type of alternatives and is powerful against local alternatives at rates b−1/2. In addition, the

test performs well in finite sample simulations and the power performances are good with

most values of b. However, the proposed test still suffers from choosing b and a future work

might consider an optimal choice for b.
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Appendix

Proof of Theorem 2.1. Given assumption [A3], the subsampling marked empirical process

Mb permits the Taylor expansion:

1√
b

b∑
i=1

m
(
Yi, Xi, θ̂n

)
11{Xi≤x}

=
1√
b

b∑
i=1

m
(
Yi, Xi, θo

)
11{Xi≤x} +

1√
b

b∑
i=1

∇θm
(
Yi, Xi, θo

)
(θ̂n − θo)11{Xi≤x} + op(1).

Because b/n→ 0 and given assumption [A4],

√
b(θ̂n − θo) =

√
b

n

√
n(θ̂n − θo)

p→ 0.

In addition, given assumptions [A1] and [A4], and Hölder’s inequality, the following law of

large numbers of i.i.d. sequence is:

1
b

b∑
i=1

∇θm
(
Yi, Xi, θo

)
11{Xi≤x}

p→ IE
[
∇θm

(
Yi, Xi, θo

)
11{Xi≤x}

]
,

Then we obtain

1√
b

b∑
i=1

∇θm
(
Yi, Xi, θo

)
(θ̂n−θo)11{Xi≤x} =

[
1
b

b∑
i=1

∇θm
(
Yi, Xi, θo

)
11{Xi≤x}

]
√
b(θ̂n−θo)

p→ 0.

Therefore,

1√
b

b∑
i=1

m
(
Yi, Xi, θ̂n

)
11{Xi≤x} =

1√
b

b∑
i=1

m
(
Yi, Xi, θo

)
11{Xi≤x} + op(1).

Mb(x; θ̂n) and Mb(x; θo) are asymptotically equivalent. Thus, the estimating parameter θ

does not affect the limiting distribution of the statistic and the estimation effect problem

does not appear.

The process Mb belongs to the Shorohod space D(Rk) and the weak convergence of

Mb(x; θo) in the space D(Rk) to a continuous limit is determined by the tightness of Mb

and the finite dimensional convergence of Mb(x; θo). In the following, Bickel and Wichura

(1971), Koul and Stute (1999) and Domı́nguez and Lobato (2006) are employed to show the

tightness of Mb and then the weak convergence of Mb(x; θo). I1 = (s1, t1] = ×kj=1(s1
j , t

1
j ],

and I2 = (s2, t2] = ×kj=1(s2
j , t

2
j ] are defined as the two subsets in Rk. Then I1 and I2 are

neighbor subsets if and only if for some j∗ ∈ {1, 2, · · · , k}, (s1
j∗ , t

1
j∗ ] 6= (s2

j∗ , t
2
j∗ ], ×kj 6=j∗(s1

j , t
1
j ] =

×kj 6=j∗(s2
j , t

2
j ] and t1j∗ = s2

j∗ . That is, they are next to each other and share the j∗th face.
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Thus, the process Mb indexed by a parameter in Rk has an associated process indexed by

the intervals as follows, wherein h = 1, 2,

Mb(Ih; θ) :=
1√
b

b∑
i=1

m(Yi, Xi; θ)11{Xi∈Ih}

=
1∑

e1=0

· · ·
1∑

ek=0

(−1)k−
∑

j=1,··· ,k ejMb(sh1 + e1(th1 − sh1), · · · , shk + ek(thk − shk); θ),

which is the increment of Mb around Ih. Denote m(Yi, Xi; θ) = mi. Employing Bickel and

Wichura (1971, Theorem 3 and example II), if

IE
(
Mb(I1; θ)2,Mb(I2; θ)2

)
=

1
b2

IE

[ b∑
i=1

mi11{Xi∈I1}

]2 [ b∑
i=1

mi11{Xi∈I2}

]2
 .

is bounded, then for any λ > 0 and γ > 1,

P (Mb ≥ λ) ≤ λ−4µ(I1 ∪ I2)γ ,

with some measure µ. Thus, as show the process Mb is tight.

Under H0 and given assumption [A1], when a subindex appears once in the summation,

the corresponding term is zero by the law of iterated expectation and the i.i.d. assumption.

Moreover, since I1 and I2 are disjoint sets, when a subindex appears more than twice, the

corresponding term is zero. Therefore,

IE
(
Mb(I1; θ)2,Mb(I2; θ)2

)
=

1
b2

IE

 b∑
i=1

m2
i 11{Xi∈I1}

 i−1∑
j=1

mj 11{Xj∈I2}

2+
1
b2

IE

 b∑
i=1

m2
i 11{Xi∈I2}

 i−1∑
j=1

mj 11{Xj∈I1}

2 .
The first and the second terms in the above equation are similar and the only difference is

the indexing set Ih; we then focus on the first term. Under H0 and given assumption [A2](i),

1
b2

b∑
i=1

IE

m2
i 11{Xi∈I1}

 i−1∑
j=1

mj 11{Xj∈I2}

2
=

1
b2

b∑
i=1

IE

σ2(Xi)11{Xi∈I1}

 i−1∑
j=1

mj 11{Xj∈I2}

2
=

1
b2

b∑
i=1

IE

∫
I1

σ2(u)f(u)du

 i−1∑
j=1

mj 11{Xj∈I2}

2 .
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Given Fubini’s Theorem, the above equation equals to:

1
b2

b∑
i=1

∫
I1

IE

σ2(u)f(u)

 i−1∑
j=1

mj 11{Xj∈I2}

2 du.
Given Cauchy-Schwarz’s inequality, the following is

1
b2

b∑
i=1

∫
I1

IE

σ2(u)f(u)

 i−1∑
j=1

mj 11{Xj∈I2}

2 du
≤ 1
b2

b∑
i=1

∫
I1

{IE
[
σ2(u)f(u)

]2}1/2

IE

 i−1∑
j=1

mj 11{Xj∈I2}

4
1/2
 du.

Given Burkholder’s inequality and the moment inequality yield, with some constant C,

IE

 i−1∑
j=1

mj 11{Xi∈I2}

4

≤ C IE

 i−1∑
j=1

m2
j 112
{Xi∈I2}

2

≤ C(i− 1)2 IE(m4
1 11{X1∈I2}).

Thus,

1
b2

b∑
i=1

IE

m2
i 11{Xi∈I1}

 i−1∑
j=1

mj 11{Xj∈I2}

2
≤ 1
b2

b∑
i=1

∫
I1

[{
IE
[
σ2(u)f(u)

]2}1/2 {
C(i− 1)2 IE(m4

1 11{X1∈I2})
}1/2

]
du

=
1
b2
[
C IE(m4

1 11{X1∈I2})
]1/2 b∑

i=1

(i− 1)
∫
I1

{
IE
[
σ2(u)f(u)

]2}1/2
du.

IE(m4
1 11{X1∈I2}) ≤ IE(m4

1) which is bounded by assumption [A2] (ii). In addition, from Koul

and Stute (1999),
∫
I1
{IE[σ2(u)f(u)]2}1/2du is bounded by assumptions [A1] and [A2](iii).

Therefore, under H0 and given assumptions [A1]–[A2], the process Mb is tight. Note that our

assumption [A2] (ii) and (iii) are similar to the assumption (A)(a) in Koul and Stute (1999).

Given assumptions [A1] and [A2] (i), and by a central limit theorem for i.i.d. sequence,

we have for any x ∈ Rk,

Mb(x; θo)⇒ N(0, V (x)).
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For x1, x2 ∈ Rk,

Cov
(
Mb(x1; θo),Mb(x2; θo)

)
=

1
b

b∑
i=1

IE
[
m(Yi, Xi; θo)2 11{Xi≤x1}11{Xi≤x2}

]
p→
∫ x1∧x2

−∞
σ2(u)F (du)

= V (x1 ∧ x2),

where the first equality holds by the property of i.i.d. sequence. Since V (x) is nondecreas-

ing and nonnegative, Mb is an asymptotically distributed B(V (x)), where B(·) is a multi-

parameter Brownian motion process. 2

Proof of Theorem 2.2. Herein, it is shown that a consistent estimator σ̂(Xi)2 to replace

σ(Xi)2 does not affect the asymptotics of the scale invariant subsampling marked empirical

process. Thus, the process M̃b(x; θ̂n) may be rewritten as:

1√
b

b∑
i=1

σ̂(Xi)−1m
(
Yi, Xi, θ̂n

)
11{Xi≤x}

=
1√
b

b∑
i=1

(
σ̂(Xi)−1 − σ(Xi)−1

)
m
(
Yi, Xi, θ̂n

)
11{Xi≤x} +

1√
b

b∑
i=1

σ(Xi)−1m
(
Yi, Xi, θ̂n

)
11{Xi≤x}.

The first term of the above equation∣∣∣∣∣ 1√
b

b∑
i=1

(
σ̂(Xi)−1 − σ(Xi)−1

)
m
(
Yi, Xi, θ̂n

)
11{Xi≤x}

∣∣∣∣∣
≤
√
b sup
Xi

|σ̂(Xi)−1 − σ(Xi)−1| sup
Yi,Xi

|m
(
Yi, Xi, θ̂n

)
|.

Therefore, given σ̂(Xi)− σ(Xi) = op(b−1/2) and assumption [A2] (i),

1√
b

b∑
i=1

σ̂(Xi)−1m
(
Yi, Xi, θ̂n

)
11{Xi≤x} =

1√
b

b∑
i=1

σ(Xi)−1m
(
Yi, Xi, θ̂n

)
11{Xi≤x} + op(1).

Let M̃σ
b (x; θ) := b−1/2

∑b
i=1 σ(Xi)−1m(Yi, Xi, θ)11{Xi≤x}. Similar to the proof of Theorem 2.1,

replacing θo by θ̂n in M̃σ
b (x; θ̂n) does not affect its asymptotics. It suffices to focus on the

limiting behavior of M̃σ
b (x; θo). The tightness of the process can be obtained in Theorem 2.1

as σ(Xi)2 is continuous. Using Lindeberg-Lévy central limit theorem for i.i.d. sequence,

we obtain the limiting distribution, which is a Gaussian process with zero mean and for
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x1, x2 ∈ Rk,

Cov
(
M̃σ
b (x1, θo), M̃σ

b (x2, θo)
)

=
1
b

b∑
i=1

IE
[
σ(Xi)−2m(Yi, Xi; θo)2 11{Xi≤x1}11{Xi≤x2}

]
p→
∫ x1∧x2

−∞
F (du)

= F (x1 ∧ x2).

Hence, M̃b(x; θ̂n)⇒ B(F (x)), with B a multi-parameter Brownian motion process. 2

Proof of Theorem 3.1. Following Theorem 2.2, M̃b(x; θ̂n) and M̃σ
b (x; θo) are asymptot-

ically equivalent. It suffices to discuss the limit of M̃σ
b (x; θo) under two different types of

alternatives.

For part (i), M̃σ
b (X; θo) may be rewritten as:

1√
b

b∑
i=1

σ(Xi)−1m
(
Yi, Xi, θo

)
11{Xi≤x}

=
1√
b

b∑
i=1

σ(Xi)−1
[
m
(
Yi, Xi, θo

)
− µ(Xi)

]
11{Xi≤x} +

1√
b

b∑
i=1

σ(Xi)−1µ(Xi)11{Xi≤x}.

Under H1 and given assumptions [A1]–[A4], by the previous proofs, the first part of the above

equation converges to B(F (x)). In addition, if IE|σ(Xi)−1µ(Xi)11{Xi≤x}| <∞ from the i.i.d.

assumption, the probability limit of b−1/2
∑b

i=1 σ(Xi)−1µ(Xi)11{Xi≤x} will be
√
bIE[σ(Xi)−1µ(Xi)11{Xi≤x}].

As b→∞, M̃σ
b (X; θo)→∞, thus

M̃b(x; θ̂n)→∞.

For part (ii), M̃σ
b (X; θo) may be rewritten as:

1√
b

b∑
i=1

σ(Xi)−1m
(
Yi, Xi, θo

)
11{Xi≤x}

=
1√
b

b∑
i=1

σ(Xi)−1

[
m
(
Yi, Xi, θo

)
− δ(Xi)√

b

]
11{Xi≤x} +

1
b

b∑
i=1

σ(Xi)−1δ(Xi)11{Xi≤x}.

Under HL
1 and given assumptions [A1]–[A4], if IE|σ(Xi)−1δ(Xi)11{Xi≤x}| < ∞, the prob-

ability limit of b−1
∑b

i=1 σ(Xi)−1δ(Xi)11{Xi≤x} will be IE[σ(Xi)−1δ(Xi)11{Xi≤x}]. Therefore,
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under HL
1 , M̃b(x; θ̂n) converges to a multiparameter Brownian motion process plus a non-zero

constant term IE[σ(Xi)−1δ(Xi)11{Xi≤x}]. 2

Proof of Theorem 3.2. Proof of Theorem 3.2 is similar to the proof of Theorem 3.1 wherein

M̃σ
b (X; θo) may be rewritten as:

1√
b

b∑
i=1

σ(Xi)−1m
(
Yi, Xi, θo

)
11{Xi≤x}

=
1√
b

b∑
i=1

σ(Xi)−1

[
m
(
Yi, Xi, θo

)
− δ(Xi)√

n

]
11{Xi≤x} +

1√
b
√
n

b∑
i=1

σ(Xi)−1δ(Xi)11{Xi≤x}.

The probability limit of the second term on the right-hand-side of the above equation will be

1√
b
√
n

b∑
i=1

σ(Xi)−1δ(Xi)11{Xi≤x} =

√
b√
n

[
1
b

b∑
i=1

σ(Xi)−1δ(Xi)11{Xi≤x}

]
p→ 0,

with b/n → 0 and b−1
∑b

i=1 σ(Xi)−1δ(Xi)11{Xi≤x}
p→ IE[σ(Xi)−1δ(Xi)11{Xi≤x}]. Therefore,

M̃b(x; θ̂n) converges to a multi-parameter Brownian motion process under both H0 and HL
2 . 2
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