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摘  要 
演化策略(evolution strategies)通常應用於目標變數為實數值的最佳化問題上，其主要是利用突變

(mutation)的方式於解答空間中搜尋出最好的滿足解，利用類似的演化過程有許多組合最佳化的問題

合適且成功地被解決，如二次指派問題 (quadratic assignment problems)，工程設計最佳化問題

(engineering design optimization problems)等等，但一般的演化計算技術應用於這些問題時，將會浪費

很多的時間於處理在演化過程中獲得無效解的情形上，以致於造成演算法效率不彰。 

本研究提出一種新的染色體編碼方式，稱為路徑編碼法(the path-encoding method)，其修改動態規

劃的路徑搜尋概念於組合演化策略(combinatorial evolution strategies)上，以提高其演化效能，並以

NP-hard的生產分派問題(production allocation problems)來當成測試的實例，在實驗中對路徑編碼法、

組合編碼法(combination-encoding method)、懲罰編碼法(penalty-encoding method)和整數規劃法(integer 

programming)等四種方法做一比較，結果顯示出本研究所提之路徑編碼法效果最好，其次是組合編碼

法，再者是懲罰編碼法，最後是整數規劃法，其主要的原因是路徑編碼法可以有效地縮小搜尋解答空

間的範圍，以加快收斂的速度。 

 

關鍵字：演化策略、生產分派問題、動態規劃式演化策略、路徑編碼法、路徑突變法 

 
Abstract 

Evolution strategies are applied to optimize real-valued vectors of objective variables. These 
strategies rely primarily on mutation to explore the solution search space. Many combinatorial 
optimization problems such as quadratic assignment problems, engineering design optimization 
problems, and others can be successfully solved by analog evolution. This evolutionary algorithm 
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wastes much time in managing invalid solutions and is typically less efficient.  
This paper presents a new approach, called the path-encoding method, which modifies the 

path searching idea of dynamic programming for combinatorial evolution strategies to enhance the 
performance of evolutionary process. The NP-hard production allocation problem is used to 
evaluate the effectiveness of the approach. This experiment compares the proposed approach to the 
combination-encoding method, the penalty-encoding method and integer programming. The 
computed results show that the proposed approach is always feasible and outperforms the others 
because it narrows the solution search space. 

 
Keywords: Evolution Strategies, Production Allocation Problems, DP Variant Evolution Strategies, 

Path Encoding Method, Path Mutation 
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1. Introduction 

Using conventional algorithms to find an 
optimal solution for NP-hard problems, such 
as combinatorial optimization problems, is 
troublesome. Therefore, some other 
approaches such as approximation algorithms 
and evolutionary algorithms have been 
developed to find sufficiently good solutions 
to these NP-hard problems. In which, the 
evolutionary algorithms are probabilistic 
search algorithms that mimic biological 
evolution to produce better offspring solutions. 
A chromosome, which represents an instance 
of the population, encodes a solution to a 
given problem. This chromosome may be a 
string of bits, a string of real numbers or a 
tree-like string.  Evolutionary algorithms 
assign fitness to every individual. According 
to the quality of the solution that each 
individual represents, fitter individuals in the 
population are more likely to survive to the 
next generation, and vice versa. Every 
generation must pass through all or some of 
the main operations - selection, crossover and 
mutation. This evolutionary cycle is repeated 
until a satisfactory solution is found. Nissen 
(1994), Yagiura et al (1996), Cai et al (1996), 
Li et al (1996), Chu et al (1997), Ahuja et al 
(2000)…and other researchers have proposed 
several evolutionary algorithm modifications, 
for specific problems. Evolutionary algorithms 
based on the principles of evolution and 
natural selections have successfully been 
applied to many complex problems in the 
areas of optimization, system identification, 
data mining and others (Biethahn et al. 1995). 

Dynamic programming (DP) is a method 
that can solve several optimization problems. 
In most applications, it splits a complex 
problem into many simpler sub-problems, and 
then determines the optimum solution stage by 
stage. Dynamic programming restricts the 
acquisition of a good solution from the 
starting point to the goal point, obeying all 

constraints. It can yield valid solutions which 
slowly become better and better. The 
shortcoming is that dynamic programming 
typically wastes much time in finding all 
sub-solutions and generally expands in 
non-polynomial time to solve complex 
problems. Conventional dynamic 
programming is therefore inefficient to solve 
complex problems. Evolution strategies use 
the basic principles of replication, variation 
and selection from Darwin’s evolutionary 
theory, but with some adjustment on solution’s 
representation, selection scheme, strategic 
parameter adaptation and sequence of 
evolutionary operators. The most important 
characteristic of evolution strategies is that 
they explore the solution search space 
simultaneously from several points, as in 
parallel processing. Useful information 
derived from the objective function is used to 
find good solutions within the search space. 

This study presents a variant of evolution 
strategies that can accelerate evolution. The 
proposed approach encodes the dynamic 
programming decision path into a 
chromosome to solve production allocation 
problems. The evolution of these paths can 
quickly determine a good solution. We 
provide an efficient resolution that proposes a 
new encoding method for evolution strategies. 
This new encoding method can greatly reduce 
the solution search space and more effectively 
find optimal solutions. A specialized mutation 
operator is proposed to enable this efficient 
encoding method to run smoothly. The 
production allocation problem, which is 
NP-hard, is used to evaluate the effectiveness 
of this approach.  Using this test problem, the 
approach is compared to combination 
encoding (Hou et al. 2002), penalty encoding  
(Garavelli et al. 1996) and integer 
programming (Winston 1991). Computational 
experiments confirm that the new resolution 
model is always feasible and outperforms the 
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others. 
 
2. Evolution Strategies 

Rechenberg (1973, 1994) and Schwefel 
(1977, 1995) developed evolution strategies to 
solve engineering optimization problems. The 
method resembles genetic algorithms but with 
some differences. These two kinds of 
evolutionary algorithm differ in the 
representation of the solution, selection 
scheme, strategic parameter adaptation and 
sequence of evolutionary operators. Evolution 
strategies usually use real-valued vectors to 
represent the solution, while genetic 
algorithms usually use binary vectors 
(Goldberg 1989). Evolution strategies rely 
primarily on mutation operations to explore 
the solution search space, while the dominant 
operator of evolutionary processes for genetic 
algorithms is crossover. 

Evolution strategies randomly set an 
initial population and then calculate the fitness 
of individuals. The reproduction step can be 
implemented if the population cannot satisfy 
the objective function. In this step, λ children 
are created as an intermediate population by 
mutating µ parents, where the mutation 
operation uses normally distributed random 
variables. The fitness of all individuals in the 
population is then evaluated. The next step 
selects µ best individuals from intermediate 
population ((µ,λ)-selection) or selects µ best 
individuals from the set of parents and 
children ((µ+λ)-selection) as the new 
generation. This cycle is repeated until the 
termination criterion applies. Evolution 
strategies differ from traditional search and 
optimization techniques in that the former 
simultaneously explore the solution search 
space from several points. Information derived 
from the objective function (fitness) is 
required to guide the search for good solutions 
within the search space. Moreover, evolution 

strategies rapidly complete optimization 
because the random distribution of new trials 
concentrates the computational effort on 
solutions that were previously proven 
successful, reducing the computational effort 
(Cai et al. 1996; Nissen 1994). 

General evolution strategies are typically 
applied to real-valued vectors of the objective 
variables to be optimized. Many combinatorial 
optimization problems can be solved through 
analog evolution, which is the combinatorial 
variant of evolution strategies (Chang 2000; 
Nissen 1994). Solving the different 
combinatorial optimization problems usually 
depends on a problem-specific encoding 
method and self-adaptive correlated mutations 
to guide the search process more efficiently. 
 
3. Production Allocation Problems 

Production allocation problems concern 
the assignment of global demand for a product 
to a multinational company characterized by 
subsidiaries located in different geographical 
areas (Garavelli et al. 1996). They involve 
allocating plant output among many markets 
to minimize the costs to the multinational 
company subject to capacity constraints and 
market demand (Bhatnagar et al. 1993; 
Lootsma 1994). Figure 1 represents such a 
production allocation problem. 

The left side nodes represent the plants (i) 
that produce products to meet the demands of 
all of the markets (j) on the right side. The 
manufacturing costs per unit production in 
plant i are expressed by mij. tij represents the 
transportation costs per unit. dij represents the 
import duties and taxes per unit for a product 
shipped from plant i to market j. qij represents 
the quantity of product produced by plant i to 
support market j.Ci is the maximal production 
capacity of plant i, and Dj denotes the 
minimum demand of market j. Hence, the 
costs of plant i to produce a unit of product to 
supply to market j can be written as, 
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where inequality (1) states that the total 

quantity that each plant supplies to each 
market must be less than the production 
capacity of each plant. Inequity (2) specifies 
that the demand of each market must be met 
by the total production from all plants. The 
variable qij is a discrete nonnegative integer 
variable. 

This problem is a combinatorial 
optimization problem and can be recognized 
as an NP-hard problem (Garavelli et al. 1996), 
such that solving this problem within 
polynomial time using general algorithms is 
impossible. Using iterative and random search 
methods, which involve parallel processing, 
an evolutionary process has a powerful 
solution searching capability. These features 
characterize the general-purpose search and 
optimization techniques that are applicable to 
several difficult problems (Nissen 1994). 

Dj

D1

D0

Ds-1

Ci

C1

C0

Cr-1

qij

Costij=(mij+tij+dij)

Figure 1. Production allocation model 
 

This study used evolution strategies to 
solve the production allocation problem. An 
efficient new encoding method, called path 
encoding, is proposed along with a specialized 
mutation operation, called path mutation. The 
following section introduces the DP variant 
evolution strategies encoding method with 
self-adaptive correlated mutations, to guide 
more efficiently the search process in 
combinatorial optimization problems. 
 
4. DP Variant Evolution Strategies to 

Solve Production Allocation Problems 

This paper presents a new encoding 
method and a mutation operator that is 
abstracted from the benefits of dynamic 
programming to perform the evolutionary 
procedure of evolution strategies, called DP 
variant evolution strategies. This encoding 
method and the corresponding mutation 
operator can restrict the evolutionary process 
to check only valid solutions. This solution 
procedure involves parallel processing, which 
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In DP variant evolution strategies, path 
encoding is applied to the population to 
generate valid individuals. A problem-specific 
mutation operator is proposed to match the 
evolutionary procedure to ensure that the 
intermediate chromosomes are always valid. 

is the advantage of evolution strategies. 
Incorporating the idea that a dynamic 
programming decision path must obey all 
constraints of the problem and obtain only 
valid solution from all evolutionary processes, 
evolution strategies are become more efficient 
when solving complex problems. The DP 
variant evolution strategies proceed as 
follows. 

Figure 2 shows the approach. In the 
initial stage, DP variant evolution strategies 
generate p (p is the population size) valid 
individuals. After the problem-specific 
mutation operator is applied to individual 1, 
2, …, i,…, p and the selection operator is 
implemented, the second generation acquires 
new individuals 1´, 2´,…, i´,…, p´. Using the 
analog evolutionary process, a better solution 
is rapidly obtained after a few generations. 
This new approach is suited to combinatorial 
problems. 

 
DP variant Evolution Strategies(  ) 
  {  Applying path encoding method to 

generate initial population 
    Evaluate the initial individuals 
    Repeat 
      {  Reproduction (path mutation) 
        Selection  } 
    Until (termination criterion holds)  } 

 

. . . . . 
. . . . .

Goal 

Chromosome p’

Chromosome i’ 

Chromosome 3’

Chromosome 2’
Chromosome 1’

Chromosome 2 

Chromosome 3 

Chromosome i 

Chromosome 1 

Generation 1        2        3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chromosome p 

Start

Solution Space 

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

 

Figure 2. The evolution process of DP Variant Evolution Strategies 
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Initialization and Path Encoding 
Method 

The production allocation model 
allocates output from each of the international 
company’s plants to the different markets. 
Consider  markets and r plants. The new 
path encoding method is developed for this 
problem to enhance the evolution performance 
and yield better offspring for DP variant 
evolution strategies. Assuming s markets, M

s

0, 
M1, …, Mj, …, Ms-1, a corresponding market 
demand of D0, D1, …, Dj, …, Ds-1 and r plants, 
P0, P1, …, Pi, …, Pr-1, the corresponding 
production capacity of the plants is C0, C1, …, 
Ci, …, Cr-1. Figure 3 depicts how the encoding 
of the chromosome. 

Each segment j (j=0 ~ s-1) represents the 
demand in a market. The integer number in 
each subsegment, qij, is the quantity or 

quantity percentage of products supplied 
by plant i (i=0~r-1) to market j. If the 
demands are quite large, then qij’s are used to 
represent the percentage supplied. This will 
restrict the length of the chromosome to a 
reasonable size. Markets’ demands are 
sequentially assigned by plants to prevent 
an invalid chromosome from being 
obtained, which occur when the total 
products supplied by plant i exceeds the 
plants’ production capacity, or when the 
demand in some markets cannot be 
satisfied. qij (i=0 ~ r-1) of segment j 
continues to be processed until segment j is 
completely assigned. Then, segment j+1 mod 
s begins to be processed. This assignment 
process can be started from any markets. 
Figure 4 describes the above procedure. 

 
 

q0j qij q(r-1)j

|….|   |….|………… …………………… ………… 

Segment 0 Segment j Segment s-1 

M0 (D0) Mj (Dj) Ms-1 (Ds-1) 

 
Figure 3. Chromosome in the production allocation problem 
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Segment 0

Segment j

Segment 1

P1 q10

P0 q00

Pi qi0

P1 q21

P0 q01

Pi qi1

P1 q1j

P0 q1j

Pi qij

 
Figure 4. DP variant Evolution Strategies encoding procedure 

 
There are some restrictions on the 

assignment of qij for plant i to market j. 
Because plant i can’t supply more than its 
capacity Ci, in the mean time, and the demand 
of market j should be satisfied. The value of qij 
should lie within a condition-specific region. 
The upper bound is the minimum value of 
surplus capacity of plant i or the remaining 
demand of market j. The lower bound is the 
difference between the remaining demand of 
market j and the remaining product capacity of 
other plants. They are expressed as follows. 
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in which,  represents the 

present surplus capacity of plant i, and 

 is the remaining demand of 

market j, and  

is the remaining demand of market j minus the 
maximum remaining production from other 
plants. When q
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ij is between these two limited 
values, inequalities (1) and (2) of the 
production allocation model are always 
satisfied by the chromosomes of the evolution 
strategies.  
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This method can reduce the solution 
search space, allowing effective solutions to 
be more rapidly obtained in the evolutionary 
process. Applying the upper and lower bounds 
can generate chromosomes when initializing 
the population, and ensures that the 
chromosomes do not violate inequalities (1) 
and (2) of the production allocation model. An 
example is presented below: 

Suppose three plants (P0, P1, P2), meet 
the demand of two markets (M0, M1). The 
corresponding production capacity of these 
three plants is C0=50, C1=40, C2=50. The 
demand of the two markets is D0=70 and 
D1=60. Figure 5-(1) depicts a valid 
chromosome since each qij falls between its 

all plants support to these two markets can 
meet their demand, that is )70(00 ==∑ Dqi  

upper and lower bounds. The total quantity of 

and 
i

)60(11 ==∑ Dq
i

i

production quantity

. Besides, the 

 of each plant doesn’t 
violate its production capacity, that is 

)50(00 =≤∑ Cq j , )40(11 =≤
j

∑ Cq j  and 
j

)50(22 =≤∑ Cq
j

j . Figure 5-(2) shows an 

invalid chromosome. Although all plants can 
satisfy the demand of these two markets, 
q10+q11 (=50) exceeds the production capacity 
of plant 1 (C1=40). 

 

Figure 5. Examples of valid and invalid chromosomes 
 

q21q11

q20q10

q01

q10 + q11 > C1 => invalid 
( 40 + 10 > 40 ) 

q00

(2)

M1(D1=60)

10 30 201020 

M0(D0=70)

40  

q21q11

q20q10

q01

qi0 + qi1 < Ci for i = 0, 1, 2 => valid

q00

(1)
M0(D0=70)

40  10 20 10 30 20 

M1(D1=60)
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Evaluation 

Once qij satisfies equation 3 and 4, the 
path encoding method directly codes 
inequalities (1) and (2) of the production 
allocation model into the chromosome. 
Consequently, the chromosome will satisfies 
the required constraints, i.e. the quantity 
provided by each plant to all markets is less 
than that plant’s production capacity, and the 
demand of each market can be satisfied. The 
total cost to each plant of supplying products 
to a market can be used to evaluate of each 
chromosome. The chromosome has a higher 
probability to survive in the next generation 
when it has a higher fitness. This approach can 
improve the performance of the evolution 
strategies in searching for effective solutions, 
because all constraints are encoded into 
individuals. 
 
Selection 

Two general methods exist for 
maintaining a population of solutions in the 
evolution strategies - (µ+λ)-selection and 
(µ,λ)-selection. The (µ+λ)-selection involves 
µ parents that generate λ offspring and puts 
µ+λ individuals in competition to survive. 
Only the best µ individuals survive to the 
subsequent generation. The (µ,λ)-selection 
excludes the parents of each generation, such 
that only the children compete for survival. 
The best µ children remain to form the 
subsequent generation. Generally, 
(µ,λ)-selection is preferable because it allows 
for a temporal deterioration of the 
population’s best solution (Schwefel 1995). 
This deterioration may be required to 
overcome a local optimum and prevent 
premature convergence. Hence, this study uses 
(µ,λ)-selection. 
 

Path Mutation 

The general mutation method for 
evolution strategies is inadequate for the 
combination problem because it may yield 
invalid results. Therefore, a suitable mutation 
operator is proposed herein for production 
allocation problem. This new mutation 
operator first arbitrarily selects a segment, say 
j, which represents the demand of market j and 
then chooses any subsegment, say i. The 
number of qij in segment j represents the 
quantity or quantity percentage of a 
product provided by plant i to meet 
demand in market j. After a subsegment is 
randomly selected, a few number (δ ) are 
added to this subsegment, and the same 
number (δ ) are deleted from the adjacent, 
i+1, subsegment in order to satisfy the 
demand of market j. And the small random 
number, δ, is normally distributed. If the 
inequalities (1) and (2) are still met 
following this mutation operation, the 
mutation process is completed. However, 
this action may cause one of these two 
subsegments to violate the production 
capacity of the corresponding plants. If 
such a violation occurs, the production 
value of the corresponding two plants in 
the next segment, j+1, must be deleted for 
an equal number (δ ) in subsegment i and 
added for an equal number ( δ ) in 
subsegment i+1, until chromosome is 
valid. After mutation, the new 
chromosome is generated and continues to 
satisfy to the constraints. 

Figure 6 depicts a valid chromosome 
that underwent mutation. Segment j may 
undergo mutation by adding two units’ 
products in the Pi block and deleting two 
units’ products from the Pi+1 block for a 
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chromosome. When the corresponding 
plants i and i+1 does not violate the 
production capacity of the plants after the 
blocks Pi and Pi+1 in segment j are 
mutated, segment j+1 is not altered. The 
new chromosome may become 

chromosome´. Otherwise, the new 
chromosome resembles chromosome´´, in 
which the part that is blocked in segment 
j+1 may delete two units’ products from 

 and add two units’ products to . iP 1+iP

Figure 6. Chromosome mutation 
 
5. Illustrative Examples 

Three highly complex scenarios were 
built and tested using the following four 
methods - the new path encoding method, 
combination encoding (Hou et al. 2002), 
penalty encoding (Garavelli et al. 1996) and 
integer programming (Winston 1991), to show 
that the new path encoding method is highly 
efficient when applied to combinatorial 

problems. These scenarios were modified 
from Garavelli et al (1996), and involve 
characterized by demand from three, four and 
five markets for a product supplied from five, 
six and seven plants of a global manufacturing 
company. The three cases are (three markets, 
five plants), (four markets, six plants) and 
(five markets, seven plants). Table 1 shows a 
simple example of the (three markets, five 
plants) case. The other two scenarios are 

Pi Pi+1Pi

Mj Mj+1

Pi+1

Pi Pi+1Pi Pi+1

Pi Pi+1Pi Pi+1

-2 +2+2 -2 

+2 -2 

chromosome’’: 

chromosome: …    5    …… 

Segmen j Segment j+1

chromosome’:

…… 

…   5   …   5    …… 

Segmen j Segment j+1

…… 

…   5   …   3    …… 

Segment j Segment j+1

…   3   

…… 
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similar. 
Pi (i=0 ~ 4) represents the five plants. 

The quantity of product produced at each plant 
is given. The corresponding value Cijq (j=0 ~ 2) 
represents the cost to plant i of producing q 
units of the product to meet the demand of 
market j. The demand of the three markets is 
70, 60 and 80 respectively. The production 
capacities of the five plants are 50, 40, 50, 45 

and 50. Each plant must produce qij number 
products to satisfy the demand of all markets, 
while minimizing the cost of the company. 
The computational complexity of this scenario 
is 3.24559×1033, and that of the other two 
scenarios is 5.9368×1040 and 3.65631×1047, 
making them high complexity problems. 

 
Table 1. Configuration for the test scenarios 

Cost
Units P0 P1 P2 P3 P4 Pi Pi

0 xx xx xx xx xx xx xx
1 xx xx xx xx xx xx xx
2 xx xx xx xx xx xx xx
3 xx xx xx xx xx xx xx

q C20q Ci 1q Ci 2q

Demand of Market 0 Demand of Market 1 Demand of Market 2

 
 

The new path encoding method encodes 
two constraints into the chromosome. These 
are the demand of markets and the production 
capacity of plant. The combination encoding 
method encodes one constraint (market 
demand) into the chromosome. The second 
constraint is limited by the penalty function. 
The penalty encoding method must exploit the 
penalty function to cause the evolutionary 
algorithm to meet these two constraints and 
yield good solutions. 

These algorithms were coded in C and 
run on an IBM compatible PC. This new path 
encoding method can encode all constraints 
into the chromosomes such that the search 
space is smaller than that of other encoding 
methods that can encode only one constraint 
into the chromosome, or use only the penalty 
function to guide the evolutionary algorithms. 
Figure 7 shows the search space of these three 
encoding methods. 
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Constraint 1

Constraint 2

Problem Space

Intersection
(Search Space of Path Encoding Method)

(1)

Constraint 1

Constraint 2

Problem Space
(2)

Gray part
(Search Space of Combination Encoding Method)

Constraint 1

Constraint 2

Problem Space(3)

All
(Search Space of Penalty Encoding Method)

 
Figure 7. Search space of three encoding 

 
Figure 7-(a) reveals that the intersection 

of constraints (1) and (2) specifies the search 
space of the path encoding method. Figure 
7-(b) shows that the shaded region of 
constraints (1) is the search space of the 
combination encoding method. The whole 
shaded part in Fig. 7-(c) is the search space of 
the penalty encoding method. This figure 
reveals that the path encoding method may 
search in a smaller solution search space than 
other methods. As the constraint number is 
over than two, we can take advantage of 
penalty function to guide the evolution 
process to get sufficient good solutions. 

Table 2 compares the results achieved by 

the three encoding methods and integer 
programming applied to the test problem. The 
first column gives the generation that leads 
these three encoding methods and integer 
programming to converge to good solutions. 
Ten trials were performed for each experiment. 
The (s markets, r plants) subcolumn shows the 
fitness (total cost) of the best chromosomes 
from the experiments. If the value of the (s 
markets, r plants) sub-column is invalid, then 
the evolutionary algorithm cannot yield a 
feasible solution until the corresponding 
number of generations has reached. A value is 
valid if the evolutionary algorithm begins to 
find feasible solutions. 
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Table 2. Computational results of the test scenario 
Cost

Generations (3M, 5P) (4M, 6P) (5M, 7P) (3M, 5P) (4M, 6P) (5M, 7P) (3M, 5P) (4M, 6P) (5M, 7P)
120 Valid Valid Valid Valid Invalid Invalid Invalid Invalid Invalid
200 219

350 269 Valid
500 310 Valid
3000 Valid
8000 219 Valid Valid
17000 269

30000 310

40000 223

90000 277

150000 319

Path Encoding Combination Encoding Penalty Encoding

(3M, 5P) (4M, 6P) (5M, 7P)

252 309 363

Integer Programming

Integer Programming only can
get feasible solutions but not

good solutions
feasible
solution

feasible
solution

feasible
solution

 

 
For the (three markets, five plants) case, 

Table 2 shows that the new path encoding 
method significantly outperforms the other 
two encoding methods and integer 
programming, requiring just 200 generations 
and finding good solutions (total cost=219). 
This performance is good because the 
solutions of the new encoding method in the 
search space are always feasible. The result 
matches the assumption that the suitable path 
mutation operators do not generate infeasible 
chromosomes such that good solutions are 
obtained more quickly. The combination 
encoding method must run for around 120 
generations to gain valid solutions and reach 
8000 generations to yield good solutions (total 
cost=219). This many generations are required 
because the combination encoding method 

encodes only a single constraint (market 
demand) into the chromosomes. Before 120 
generations, the evolutionary algorithm tends 
to yield valid chromosomes with the help of 
the penalty function. A valid chromosome may 
be invalidated when the crossover and 
mutation operators are implemented. This 
situation may delay obtaining feasible 
solutions by evolutionary algorithms. The 
penalty encoding method takes even more 
time than the combination encoding method to 
obtain valid chromosomes up approximately 
3000 generations and also requires more effort 
to find good solutions. It is also likely to result 
in local optimization (total cost=223). Good 
solutions are slowly obtained because this 
encoding method merely exploits the penalty 
function to cause the evolutionary algorithms 
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not to violate these two constraints. This test 
scenario is highly complex so the penalty 
encoding may fail due to local optima. 
Therefore, these two encoding methods are 
always less likely to find good solutions than 
the path encoding method and require more 
time to converge. The LINGO package was 
used to solve these three scenarios by integer 
programming. For the (three markets, five 
plants) case, only LINGO can find feasible 
solutions (total cost=252) because the 
scenarios are all highly complex. The 
interpretations of the other two scenarios are 
as above. 

 
6. Conclusions 

The effectiveness of an algorithm can be 
roughly determined by the size of the solution 
search space (Hou et al. 2002). A smaller 
search space corresponds to a more effective 
algorithm. Hence, one of the most important 
ways to improve the performance of an 
algorithm is to narrow the solution search 
space explored by the algorithm. The general 
evolution strategies applied to combinatorial 
problems waste much time in managing 
invalid solutions during evolution. This study 
proposed dynamic programming variant 
evolution strategies, employing the path 
encoding method and mutation operator, to 
solve this problem. 

The concept of upper and lower bound is 
used to restrict the valid decision path that 
satisfies the constraints and thus yields a good 
solution from the initial to final states of 
decision process. A combinatorial problem, 
the production allocation problem, was used 
as a benchmark to test the feasibility and 
effectiveness of this new approach.  
Computational experiments tested the new 
method, combination encoding, penalty 
encoding and integer programming. The 
experimental results prove that our new path 
encoding method and mutation operator 

perform better than other methods in finding 
good solutions. Our new approach greatly 
narrows the search space, accelerating 
convergence to a solution. In the future, this 
new approach will be applied to other 
combinatorial problems. 
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