
MIS Review Vol. 17, No. 2, March (2012), pp. 31-57
© 2012 Department of Management Information Systems, College of Commerce

 National Chengchi University & Airiti Press Inc.

Revisiting Software Requirements Specifications -- What
Could We Learn

Björn Johansson1, Tanja Rolandsson2

1Department of Informatics, School of Economics and Management, Lund University
2The Swedish Armed Forces

ABSTRACT: Software requirements specifications (SRSs) are important documentations that
reports results of system requirements determination (SRD) when developing
software. It forms a base for subsequent activities in a system development
process. In order to increase the knowledge of SRS and how such documentation
could be structured we present an analysis of nine SRSs. From the analysis of
similarities and differences in composition and requirements organization in the
SRSs we aim at giving some advice on how a SRS could be improved and thereby
supporting development of information systems better. The analysis shows that
the overall structure of the SRSs either follows the IEEE (Institute of Electrical
and Electronics Engineers) standard 830 with three main sections (introduction --
overview -- list of requirements), or another structure (introduction -- references
-- list of requirements). However, how specific requirements then are structured
and presented differ from SRS to SRS. The most frequent type of requirements is
functional requirements, which is not a big surprise. However, more unpredictable
is that non-functional requirements are getting less attention. One conclusion is
that even though using standards might not be the only way to formulate SRSs,
they are being used and serve their purposes, at least to some extent. However, it
can also be concluded that the high focus on functional requirements in standards
could be seen as an influential factor explaining why SRSs have such a high focus
on functional requirements. The main conclusion is that future SRSs should spend
more focus on non-functional requirements since these are both more difficult to
describe and will probably play an even more important role when developing
information systems in the future.

KEYWORDS: Software Requirements Specification, Requirements Engineering, Functional
Requirements, Non-functional Requirements, IEEE 830.

1. Introduction

Information systems development consists of a number of steps. The first one is
the system requirements determination (SRD) step. SRD is described by Duggan and
Thachenkary (2003) as the overall process of finding, analyzing, and documenting
requirements, and includes several activities. It can clearly be stated that the SRD is
important in the entire systems development process, since it forms a basis for subsequent

06-02-Johansson.indd 31 2012/5/29 下午 03:27:52

32 Björn Johansson, Tanja Rolandsson

activities, affects the design of the system architecture and contributes to the quality of
the system (Hull, Jackson & Dick, 2005; Wiktorin, 2003). Hull et al. (2005) describe
several reasons for project failure, and amongst those they state that having incomplete
requirements is one major reason for failed projects. However, even if projects succeed,
insufficient requirements can have several unwanted consequences, such as lower systems
quality, that development take longer time, become more expensive than expected as well
as unsatisfied users of the developed system (Eriksson, 2007; Jackson, 1995). In addition
to the benefit of overcoming unwanted consequences, another benefit of well-formulated
requirements is that they can be one of the most important reasons for project success
(Hull et al., 2005; Wiktorin, 2003). Apparently, the SRD is of great value to the systems
development process, and adequate requirements can be claimed being a necessity for
project success.

However, once requirements have been collected, they need to be documented in
such a way that they could be used successfully. This documentation usually results in a
requirements specification. As part of the SRD, the software requirements specification
(SRS) is an important document in the development project (Véras et al., 2010). The
SRS can be a channel of communication, conveying the characteristics of the system
between developers and users. It can also be part of a contract and as such be used to
evaluate performance of systems. Moreover, it can be used to estimate time and cost for
the development project (Daniels & Bahill, 2004; Smith, Lai & Khedri, 2007). Even
if there are templates available it is not obvious how SRSs should be formulated. For
example, the Institute for Electrical and Electronic Engineers (IEEE) has constructed a
standard called 830 which lines up a number of attributes SRSs should have in order to be
a well-formulated, understandable document (The Institute of Electrical and Electronics
Engineers [IEEE], 1998a). This standard is widely mentioned in the requirements
engineering literature (Eriksson, 2007; Smith et al., 2007; Wiegers, 1999; Wiktorin,
2003). However, Power (2002) claims that practitioners use a variety of methods, both
stylistically and structure-wise, when documenting requirements. In addition, Smith et al.
(2007) state that no universally accepted way of documenting requirements exist.

Research on requirements determination (Avison & Fitzgerald, 2006; Cysneiros
& do Prado Leite, 2004) has shown that functional requirements, as one certain type
of requirements, are specified more clearly and to a larger extent than nonfunctional
requirements in requirements specifications. The explanation stated is that nonfunctional
requirements are more difficult to identify than functional requirements. From the
discussion so far the following questions, that are the focus of this article, can be
formulated: (1) How are software requirements specifications structured, and how
are requirements in them organized, and (2) What is the most common category of
requirements in actual software requirements specifications, and (3) What could we learn
from an investigation of real SRSs?

06-02-Johansson.indd 32 2012/5/29 下午 03:27:52

Revisiting Software Requirements Specifications -- What Could We Learn 33

These questions lead to the purpose of the research, which is to gain knowledge on
how to compose and structure SRSs in order to be able to develop “better” software in the
future. This is done by identifying similarities and differences in SRS composition and
requirements organization, illustrating what types of requirements are most frequent, and
showing how requirements are formulated.

The next section presents a selection of literature on SRSs and requirements in order
to create a theoretical background for the analysis. Method is discussed in Section 3. In
Section 4 results from each analyzed SRS are presented, followed by an analysis and
discussion of the results. Finally, there are some concluding remarks on what we have
learnt from revisiting SRSs.

2. About specifications and requirements

Requirements specifications have been researched before. Besides the research
by Power (2002), Franko and Hansson (2006) did an examination of impact from
organizational rules when formulating a requirements specification and Dahlstrand,
Fredborg and Leandersson (2009) suggested a framework for developing a requirements
specification when using a particular systems development technique called Co-design.
These last two, however, focus on how to create well-formulated SRSs. This research
deals with the actual structure and composition of SRSs. In order to do so, the next section
presents information necessary to build a theoretical background for the analysis.

2.1 Fundamentals of software requirements specifications

SRSs are important documents for systems development, used by different groups
of people for different purposes; by customers, to know what to expect, by the software
developers, to know what to build and how, by test groups, to test and evaluate the
system and so forth (Hull et al., 2005; McIlroy & Stanton, 2011; Wiegers, 1999). The
SRS can act as a channel of communication between developers and customers and
help to ensure that the system satisfies customer needs (Adisa et al., 2010). Moreover,
it creates the baseline upon which following systems development activities are based
(Nicolás & Toval, 2009). It is obvious that every system has requirements, and the SRS
exists to make these requirements possible to build (Daniels & Bahill, 2004; Hull et al.,
2005).

It is quite clear that an SRS is one part of the overall systems requirements
determination process which in its turn is part of the entire systems development process.
However, this does not explain what an SRS is. Eriksson (2007) describes an SRS as a
document produced when a system is built from scratch, or if there are major changes

06-02-Johansson.indd 33 2012/5/29 下午 03:27:52

34 Björn Johansson, Tanja Rolandsson

being made to an existing system. That might be useful information, but it is a very brief
description. Wiktorin (2003) writes that “a requirements specification consists of several
parts.” That sounds rather unclear and not of help when trying to understand the concept
of requirements specifications. However, it does reveal that there needs to be more than
one activity when creating the document. Another description, also rather short, is given
by Duggan and Thachenkary (2003): “Requirements specification: representing the results
[of the previous steps in the SRD process] in a document.” This explains where an SRS
comes from, but not what information lies within an SRS.

One explanation of the SRS and its contents is given by Wieringa (1996), who
states the following: “A requirements specification consists of a specification of product
objectives and a specification of required product behavior.” In other words, an SRS
shows the purpose of the system, and how it is supposed to behave -- its functionality,
which is described by De Carvalho, Johansson and Parthasarathy (2010) in the following
way: an SRS should describe the “what” of a system, not the “how.” Wiegers (1999)
states that since the SRS is important for the following activities in systems development
, it needs to have a detailed description of system behavior. Smith et al. (2007) use a
similar definition as Wieringa; they state that the SRS should describe essential system
requirements of the software and its external interfaces, such as functions, performance,
constraints and quality attributes. Another similar description of the SRS is given by
IEEE in standard 12207: “the systems requirements specification shall describe: functions
and capabilities of the system; business, organizational and user requirements; safety,
security, human-factors engineering (ergonomics), interface, operations, and maintenance
requirements; design constraints and qualification requirements (The Institute of Electrical
and Electronics Engineers [IEEE], 1998b).” To sum up, an SRS is a document created
when a system is built or rebuilt, containing purpose and behavior of the system as well as
descriptions of the system and its desired functions.

2.2 Recommended contents of requirements specifications

The IEEE (Institute of Electrical and Electronics Engineers) standard 830 called
Recommended Practice for Software Requirements Specification is a standard where
an outline for a requirements specification structure is given (IEEE, 1998a; Wiktorin,
2003). IEEE 830 is also mentioned recurrently in other literary works (Eriksson,
2007; Smith et al., 2007; Wiegers, 1999; Wiktorin, 2003). According to this standard,
requirements specification should contain three sections; introduction, overview and list of
requirements.

Wiegers (1999) presents a modified version of the IEEE standard 830, extending
the list of requirements into (a) external interface requirements; (b) system features; (c)
other non-functional requirements and finally (d) other requirements. Paragraphs (1),

06-02-Johansson.indd 34 2012/5/29 下午 03:27:52

Revisiting Software Requirements Specifications -- What Could We Learn 35

introduction and (2), overview are, with a couple of minor modifications, the same as
presented by Wiktorin (2003). There are most likely a large number of other templates
available as well, but since IEEE 830 has been frequently mentioned, it acts as the base
for the analysis in this research.

Wiktorin (2003) as well as Wiegers (1999) suggests that requirements should
be organized in different groups. Wiktorin (2003) also states that since functional
requirements usually are numerous, it is necessary to have several sub-categories of
functional requirements, making interpretation and understanding of requirements easier.
Wiegers (1999) points out that it is necessary to give each requirement a unique identifier.
The simplest way is to use a sequential number showing both type of requirement and
number. Another way is hierarchical numbering, which is claimed by Wiegers (1999) to be
the most common way to label requirements.

From a language point of view, requirements can be documented in different ways.
Both formal methods, where mathematically formal syntax and semantics is used to
describe the requirements, and informal methods, where the requirements are described
in natural language exists (Smith et al., 2007). One example of a formal language is the
Vienna Development Method Specification Language (VDM-SL). Figure 1 gives one
example when such a language has been used to formulate requirements.

Figure 1 Example of VDM-SL in Use (Droschl, 2000)

The natural language approach, is arguably the most common one in contemporary
SRSs (Nicolás & Toval, 2009). Wiegers (1999) seems to assume that requirements will
be written in natural language, and gives a number of guidelines for how to formulate
requirements, such as “state requirements in a consistent fashion” and “avoid comparative
words.” Level of formality in SRSs does not only depend on what the analyst wants to
write. It also depends on the complexity of the system. According to Daniels and Bahill
(2004) highly complex systems require a higher level of formality.

As stated above, by categorizing requirements readability of SRSs can be improved.
Requirements can have very varying characteristics, so categorizing them by dividing

06-02-Johansson.indd 35 2012/5/29 下午 03:27:53

36 Björn Johansson, Tanja Rolandsson

them into different types would be a logic way. But first, it is necessary to define what a
requirement is.

Machado, Ramos and Fernandes (2005) present the following definitions of the term
requirement: “(1) a condition or capability needed by a user to solve a problem or achieve
an objective; (2) a condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification or other formally imposed
documents; (3) a documented representation of a condition or capability as in (1) or (2)
(Machado et al., 2005). ”

The first and second of these definitions are applicable to requirements in SRSs, and
are hereafter used in this research. The third definition appears to be what is considered as
an SRS, and does therefore not apply to the term requirement.

Requirements are not all the same kind, which results in that there are many ways
to classify them. Eriksson (2007) divides requirements into three broad categories,
where the second category has a number of sub-categories. These different types of
requirement categories are functional, non-functional (with the sub-categories usability,
reliability, performance and supportability) and design restrictions. Wiktorin (2003)
divides requirements into functional and non-functional ones. Avison and Fitzgerald
(2006) describe a quite similar division: on one hand there are functional requirements,
on the other hand non-functional requirements with a number of sub-categories. Another
categorization is made by Grady (1992), who describes the FURPS+ model. FURPS is
an acronym for Functionality, Usability, Reliability, Performance, Supportability (Grady,
1992), which is the same types as used by Eriksson (2007). The “+” sign was added to the
model to “extend the acronym to emphasize various specific attributes (Grady, 1992).”
Yet another division is presented in the IEEE standard 830 (IEEE, 1998a). This standard
suggests the following groups of requirements: external interfaces, functions, performance
requirements, logical database requirements, design constraints and software system
attributes. The last category has five sub-categories; reliability, availability, security,
maintainability and portability (IEEE, 1998a).

This research will henceforth use the categorization from Eriksson (2007) to describe
different types of requirements. One modification has been done though; the division
Eriksson (2007) makes on supportability into maintainability and testability is not used as
shown in Figure 2.

To summarize this section, we started out by explaining what an SRS is, stating that
it is a documentation of requirements when developing an information system or making
major changes to a system. The SRS describes the purpose and functionality of the
system. After this, we stated that an SRS needs to be structured in some way to simplify

06-02-Johansson.indd 36 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 37

the readability, and the IEEE standard 830 was presented as an example, along with an
extended version, as presented in Figure 2.

3. Methodological considerations

The data for the investigation of SRSs consists of a collection of real case
requirements specifications available online. Selected requirements specifications were
found by using a regular Google search; however, the selection followed a rigorous plan
as described below. Selected requirements specifications are from software products
of different types. They were stated as being the final requirements specification for
its specific product. The search was made with the keywords “software requirements
specification” and “system requirements specification.” However, these terms are not
very specific, resulting therefore in many hits. Instead of limiting the search to get a
manageable number of hits, the first 25 pages with hits were skimmed and sites which
seemed relevant were opened. This resulted in a list of 16 possible candidates. From this
list 10 SRSs were selected. The six not selected turned out to be either school projects,
too old, or not requirements specifications for software, following the idea of a purposeful
approach (Maxwell, 2005) finding a representative sample for the research, and ensuring
that the theoretical background is applicable (Eriksson, 2007; Maxwell, 2005). Choosing
data available on Internet can be risky and to get reliable data it is necessary to be critical
to the data when collecting it. One of the major principles in source criticism is to
understand who the author of something is and the origin of the data (Svenning, 2003).

Figure 2 Hierarchy of Requirements Adopted from Eriksson (2007),
Sub-categories of Supportability Deleted

06-02-Johansson.indd 37 2012/5/29 下午 03:27:53

38 Björn Johansson, Tanja Rolandsson

To avoid getting unreliable data, only requirements specifications which measured up to
a certain standard were collected. The criteria we used were the following three: the SRS
needed an origin, it had to be authentic (i.e., no mock-ups), and it had to be written in the
last decade (year 2000 or later).

Each requirements specification needed to have a traceable origin, or at least a
possibility to find out who the owner was or who had created it. To further establish the
reliability and to ensure that it was okay to use the specification, an e-mail was sent to the
owner of the document.

The second criterion was related to authenticity. The requirements specifications had
to be from software development projects, no school projects were collected. It was easy
to identify school projects; they usually had course name, student name and teacher name
stated on the first page. The final criterion, that they needed to be written no earlier than
year 2000, was easy to check since almost all SRSs found had a date and version number
on them. Undated documents were rejected. The result of this process was that the final
data set consisted of nine SRSs.

Analysis is generally based on finding patterns and a keyword in qualitative
analysis is sorting. In order to be able to analyze it, collected data needs to be sorted.
This is of great importance when analyzing texts (Halvorsen, 1992; Svenning, 2003).
Another critical point Svenning (2003) makes regarding analyzing texts, is the need for a
theoretical basis.

In this research two research questions were raised. The first was to examine how
specific SRSs were structured and in what way specific requirements are organized. The
second was to see if some type of requirements is more common than other types, and
is most common. To answer the first question properly, it is necessary to go back to the
fundamentals of SRSs. Then the questions are if the SRSs follow the IEEE 830, or not? If
not, how does the structure differ from IEEE 830? Is the language formal or informal? The
third paragraph in IEEE 830, list of requirements, can be organized in different ways. This
is the most interesting part of question number one. Are requirements categorized by type,
importance, or some other way? Are they given unique identifiers?

This leads to question number two. According to Avison and Fitzgerald (2006) as
well as Cysneiros and do Prado Leite (2004), functional requirements are more common
than non-functional requirements. It could be qustioned if this is consistent with reality.
To say something about that, the list of requirements in each SRS was analyzed, different
types of requirements identified and then analyzed from the statement that certain types of
requirements are more common than others. In order to answer these questions, the outline
for analysis presented in Table 1 was constructed.

06-02-Johansson.indd 38 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 39

Table 1 Outline for Analysis and Presentation of Results
Label of SRS
<Abbreviated
Name>

Categorization of Requirements: <Description of Categorization> Section 5.3
Structure of SRS: <IEEE
830/Other>

Section 5.1

Language: <Natural/
Constructed>/
Identification of
Requirements: <Type of
Identifier>

Section 5.2

Number of Different
Categories of
Requirements:
<Functional: Usability:
Reliability: Performance:
Supportability: Design
Restrictions: >
Section 5.4

4. Presentation of the results

This section presents the results from respectively SRS one by one, in alphabetical
order by the name of the system the SRS is related to. Each system is briefly presented
and some examples of different types of requirements are presented. The results of the
questions in the outline for analysis (Table 1) of the SRS are shown in Table 2, which
is a summary of each SRS. The results organized by each question in the table are then
analyzed and discussed in the section that follows.

4.1 APAF

APAF stands for ASPERA-3 Processing and Archiving Facility. ASPERA-3 is
an instrument package for a space mission to Mars and the APAF is a system which is
designed to process the telemetry collected by ASPERA-3. The software receives data
from ASPERA-3, processes it, distributes it, presents it on a web-display and finally
submits it for storage. The SRS, which is version 1.0 is from 2007 and to some extent
follows the IEEE 830 standard. What is in Section two -- overview in IEEE 830 -- is here
included in the first section. The second section is called “requirements specification
description” with different requirements for requirements. Section three is the list of
requirements, as in IEEE 830. Following is one section called “notes.” Some examples
of functional requirements are: “APAF-FR-02 The APAF system shall process all
ASPERA-3 science data into IDFS data sets,” and “APAF-FR-07 Web-based displays of
the most current ASPERA-3 data shall be provided for public view,” and an example of
supportability requirement is: “APAF-LR-02SwRI shall provide software support for the
APAF system.”

4.2 CTBTO_WMO_SEA

CTBTO_WMO_SEA (Comprehensive Nuclear Test-Ban Treaty Organization World
Meteorological Organization Special Event Analysis) is a software package designed

06-02-Johansson.indd 39 2012/5/29 下午 03:27:53

40 Björn Johansson, Tanja Rolandsson

Ta
bl

e
2

 P
re

se
nt

at
io

n
of

 th
e

A
na

ly
si

s
of

 th
e

N
in

e
S

R
S

s
SR

S
N

am
e

C
at

eg
or

iz
at

io
n

of
 R

eq
ui

re
m

en
ts

St
ru

ct
ur

e
of

 S
R

S
La

ng
ua

ge
 /

Id
en

tif
ic

at
io

n
of

 R
eq

ui
re

m
en

ts
N

um
be

r o
f D

iff
er

en
t

C
at

eg
or

ie
s o

f
R

eq
ui

re
m

en
ts

A
PA

F
(1

) C
ap

ab
ili

ty
/F

un
ct

io
na

l R
eq

ui
re

m
en

ts;
 (2

) E
xt

er
na

l I
nt

er
fa

ce
 R

eq
ui

re
m

en
ts;

 (3
) I

nt
er

na
l I

nt
er

fa
ce

 R
eq

ui
re

m
en

ts;
 (4

)
In

te
rn

al
 D

at
a

R
eq

ui
re

m
en

ts;
 (5

) S
ec

ur
ity

 &
 P

riv
ac

y
R

eq
ui

re
m

en
ts;

 (6
) C

om
pu

te
r R

es
ou

rc
e

R
eq

ui
re

m
en

ts;
 (7

) L
og

ist
ic

s-
R

el
at

ed
 R

eq
ui

re
m

en
ts;

 (8
) D

el
iv

er
y

R
eq

ui
re

m
en

ts;
 (9

) O
th

er
 R

eq
ui

re
m

en
ts

C
on

sid
er

ed
.

(1
) S

co
pe

; (
2)

 R
eq

ui
re

m
en

ts
Sp

ec
ifi

ca
tio

n
D

es
cr

ip
tio

ns
; (

3)

R
eq

ui
re

m
en

ts;
 (4

) N
ot

es
.

N
at

ur
al

/L
et

te
r-N

um
be

r
C

om
bi

na
tio

ns
Fu

nc
tio

na
l:

28
U

sa
bi

lit
y:

 0
R

el
ia

bi
lit

y:
 0

Pe
rfo

rm
an

ce
: 0

Su
pp

or
ta

bi
lit

y:
 2

D
es

ig
n

R
es

tri
ct

io
ns

: 4
C

TB
TO

_W
M

O
_S

EA
(1

) F
un

ct
io

na
l R

eq
ui

re
m

en
ts;

 (2
) A

cc
ep

ta
nc

e
Te

sti
ng

 R
eq

ui
re

m
en

ts;
 (3

) D
oc

um
en

ta
tio

n
R

eq
ui

re
m

en
ts;

 (4
) S

ec
ur

ity

R
eq

ui
re

m
en

ts;
 (5

) P
or

ta
bi

lit
y

R
eq

ui
re

m
en

ts;
 (6

) P
er

fo
rm

an
ce

 R
eq

ui
re

m
en

ts.
(1

) S
co

pe
; (

2)
 R

ef
er

en
ce

s;
(3

) F
un

ct
io

na
l R

eq
ui

re
m

en
ts;

(4

) A
cc

ep
ta

nc
e

Te
sti

ng
 R

eq
ui

re
m

en
ts;

 (5
) D

oc
um

en
ta

tio
n

R
eq

ui
re

m
en

ts;
 (6

) S
ec

ur
ity

 R
eq

ui
re

m
en

ts;
 (7

) P
or

ta
bi

lit
y

R
eq

ui
re

m
en

ts;
 (8

) P
er

fo
rm

an
ce

 R
eq

ui
re

m
en

ts;
 (9

) T
er

m
in

ol
og

y
(G

lo
ss

ar
y,

 A
bb

re
vi

at
io

ns
 a

nd
 A

pp
en

di
ce

s)
.

N
at

ur
al

/H
ie

ra
rc

hi
ca

l
N

um
be

rs
Fu

nc
tio

na
l:

92
U

sa
bi

lit
y:

 6
R

el
ia

bi
lit

y:
 0

Pe
rfo

rm
an

ce
: 5

Su
pp

or
ta

bi
lit

y:
 3

D
es

ig
n

R
es

tri
ct

io
ns

: 2

06-02-Johansson.indd 40 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 41

SR
S

N
am

e
C

at
eg

or
iz

at
io

n
of

 R
eq

ui
re

m
en

ts
EV

LA
 C

B
(1

) E
xt

er
na

l I
nt

er
fa

ce
 R

eq
ui

re
m

en
ts;

 (2
) P

er
fo

rm
an

ce
 R

eq
ui

re
m

en
ts;

 (3
) R

el
ia

bi
lit

y/
Av

ai
la

bi
lit

y;
 (4

) S
er

vi
ce

ab
ili

ty
; (

5)

M
ai

nt
ai

na
bi

lit
y;

 (6
) S

ca
la

bi
lit

y,
 S

ec
ur

ity
; (

7)
 In

sta
lla

tio
n

&
 U

pg
ra

de
s;

(8
) D

oc
um

en
ta

tio
n.

IE
EE

 8
30

: (
1)

 In
tro

du
ct

io
n;

 (2
) O

ve
ra

ll
D

es
cr

ip
tio

n;
 (3

) S
pe

ci
fic

R

eq
ui

re
m

en
ts.

N
at

ur
al

/H
ie

ra
rc

hi
ca

l
N

um
be

rs
Fu

nc
tio

na
l:

66
U

sa
bi

lit
y:

 2
R

el
ia

bi
lit

y:
 8

Pe
rfo

rm
an

ce
: 1

2
Su

pp
or

ta
bi

lit
y:

 1
3

D
es

ig
n

R
es

tri
ct

io
ns

: 0
I-1

5
R

LC
S

(1
) E

xt
er

na
l I

nt
er

fa
ce

 R
eq

ui
re

m
en

ts;
 (2

) F
un

ct
io

na
l R

eq
ui

re
m

en
ts;

 (3
) P

er
fo

rm
an

ce
; (

4)
 L

og
ic

al
 D

at
ab

as
e

R
eq

ui
re

m
en

ts;

(5
) D

es
ig

n
C

on
str

ai
nt

s;
(6

) R
LC

S
A

pp
lic

at
io

n
So

ftw
ar

e A
ttr

ib
ut

es
.

IE
EE

 8
30

: (
1)

 In
tro

du
ct

io
n;

 (2
) O

ve
ra

ll
D

es
cr

ip
tio

n;
 (3

) S
pe

ci
fic

R

eq
ui

re
m

en
ts.

N
at

ur
al

/H
ie

ra
rc

hi
ca

l
N

um
be

rs
Fu

nc
tio

na
l:

85
U

sa
bi

lit
y:

 0
R

el
ia

bi
lit

y:
 1

0
Pe

rfo
rm

an
ce

: 2
0

Su
pp

or
ta

bi
lit

y:
 3

D
es

ig
n

R
es

tri
ct

io
ns

: 6
M

D
O

T
V

II
D

U
A

P
(1

) I
np

ut
 S

er
vi

ce
s;

 (2
) A

dm
in

ist
ra

tiv
e

Se
rv

ic
es

; (
3)

 D
yn

am
ic

 D
at

a
Se

rv
ic

es
; (

4)
 C

om
pu

ta
tio

na
l S

er
vi

ce
s;

(5
) P

er
sis

te
nt

D

at
a

Se
rv

ic
es

; (
6)

 O
ut

pu
t S

er
vi

ce
s;

(7
) P

re
se

nt
at

io
n

Se
rv

ic
es

; (
8)

 D
es

ig
n

C
on

str
ai

nt
s;

(9
) Q

ua
lit

y
C

ha
ra

ct
er

ist
ic

s;
(1

0)

Ex
te

rn
al

 S
er

vi
ce

s.
IE

EE
 8

30
: (

1)
 In

tro
du

ct
io

n;
 (2

) O
ve

ra
ll

D
es

cr
ip

tio
n;

 (3
) S

pe
ci

fic

R
eq

ui
re

m
en

ts.
N

at
ur

al
/L

et
te

r-N
um

be
r

C
om

bi
na

tio
ns

 &
 L

ev
el

 o
f

Pr
io

rit
y

(L
ow

, M
ed

iu
m

,
H

ig
h)

Fu
nc

tio
na

l:
92

U
sa

bi
lit

y:
 0

R
el

ia
bi

lit
y:

 0
Pe

rfo
rm

an
ce

: 0
Su

pp
or

ta
bi

lit
y:

 4
D

es
ig

n
R

es
tri

ct
io

ns
: 6

Ta
bl

e
2

 P
re

se
nt

at
io

n
of

 th
e

A
na

ly
si

s
of

 th
e

N
in

e
S

R
S

s
(c

on
tin

ue
d)

06-02-Johansson.indd 41 2012/5/29 下午 03:27:53

42 Björn Johansson, Tanja Rolandsson

SR
S

N
am

e
C

at
eg

or
iz

at
io

n
of

 R
eq

ui
re

m
en

ts
N

PO
ES

S
D

E
(1

) R
eq

ui
re

d
St

at
es

 a
nd

 M
od

es
; (

2)
 C

ap
ab

ili
ty

 R
eq

ui
re

m
en

ts;
 (3

) E
xt

er
na

l I
nt

er
fa

ce
 R

eq
ui

re
m

en
ts;

 (4
) I

nt
er

na
l I

nt
er

fa
ce

R

eq
ui

re
m

en
ts;

 (5
) I

nt
er

na
l D

at
a

R
eq

ui
re

m
en

ts;
 (6

) A
da

pt
io

n
R

eq
ui

re
m

en
ts;

 (7
) S

ec
ur

ity
 a

nd
 P

riv
ac

y
R

eq
ui

re
m

en
ts;

 (8
)

C
om

pu
te

r R
es

ou
rc

e
R

eq
ui

re
m

en
ts;

 (9
) O

pe
ra

to
r-R

el
at

ed
 R

eq
ui

re
m

en
ts;

 (1
0)

 O
th

er
 R

eq
ui

re
m

en
ts.

(1
) S

co
pe

; (
2)

 R
ef

er
en

ce
d

D
oc

um
en

ts;
 (3

) R
eq

ui
re

m
en

ts;
 (4

)
R

eq
ui

re
m

en
ts

Tr
ac

ea
bi

lit
y

(A
pp

en
di

ce
s)

.
N

at
ur

al
/H

ie
ra

rc
hi

ca
l

N
um

be
rs

Fu
nc

tio
na

l:
88

U
sa

bi
lit

y:
 0

R
el

ia
bi

lit
y:

 5
Pe

rfo
rm

an
ce

: 1
3

Su
pp

or
ta

bi
lit

y:
 3

D
es

ig
n

R
es

tri
ct

io
ns

: 4
O

SS
A

FF
C

M
(1

) R
eq

ui
re

d
St

at
es

 a
nd

 M
od

es
; (

2)
 C

SC
I C

ap
ab

ili
ty

 R
eq

ui
re

m
en

ts;
 (3

) C
SC

I E
xt

er
na

l I
nt

er
fa

ce
 R

eq
ui

re
m

en
ts;

(4

) C
SC

I I
nt

er
na

l I
nt

er
fa

ce
 R

eq
ui

re
m

en
ts;

 (5
) C

SC
I I

nt
er

na
l D

at
a

R
eq

ui
re

m
en

ts;
 (6

) A
da

pt
io

n
R

eq
ui

re
m

en
ts;

 (7
)

Sa
fe

ty
 R

eq
ui

re
m

en
ts;

 (8
) S

ec
ur

ity
 a

nd
 P

riv
ac

y
R

eq
ui

re
m

en
ts;

 (9
) C

SC
I E

nv
iro

nm
en

t R
eq

ui
re

m
en

ts;
 (1

0)
 C

om
pu

te
r

R
es

ou
rc

e
R

eq
ui

re
m

en
ts;

 (1
1)

 S
of

tw
ar

e
Q

ua
lit

y
Fa

ct
or

s;
(1

2)
 D

es
ig

n
an

d
Im

pl
em

en
ta

tio
n

C
on

str
ai

nt
s;

(1
3)

 P
er

so
nn

el

R
eq

ui
re

m
en

ts;
 (1

4)
 T

ra
in

in
g-

R
el

at
ed

 R
eq

ui
re

m
en

ts;
 (1

5)
 L

og
ist

ic
s-

R
el

at
ed

 R
eq

ui
re

m
en

ts;
 (1

6)
 O

th
er

 R
eq

ui
re

m
en

ts;
 (1

7)

Pa
ck

ag
in

g
R

eq
ui

re
m

en
ts;

 (1
8)

 P
re

ce
de

nc
e

an
d

C
rit

ic
al

ity
 R

eq
ui

re
m

en
ts.

(1
) S

co
pe

; (
2)

 R
ef

er
en

ce
d

D
oc

um
en

ts;
 (3

) R
eq

ui
re

m
en

ts;
 (4

)
Q

ua
lif

ic
at

io
n

Pr
ov

is
io

ns
; (

5)
 R

eq
ui

re
m

en
ts

Tr
ac

ea
bi

lit
y;

 (6
) N

ot
es

.
N

at
ur

al
/H

ie
ra

rc
hi

ca
l

N
um

be
rs

Fu
nc

tio
na

l:
19

U
sa

bi
lit

y:
 7

R
el

ia
bi

lit
y:

 1
Pe

rfo
rm

an
ce

: 0
Su

pp
or

ta
bi

lit
y:

 5
D

es
ig

n
R

es
tri

ct
io

ns
: 1

0

Ta
bl

e
2

 P
re

se
nt

at
io

n
of

 th
e

A
na

ly
si

s
of

 th
e

N
in

e
S

R
S

s
(c

on
tin

ue
d)

06-02-Johansson.indd 42 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 43

SR
S

N
am

e
C

at
eg

or
iz

at
io

n
of

 R
eq

ui
re

m
en

ts
SR

S2
X

E
SA

M
PL

E
FL

A
G

(1
)

Fu
nc

tio
na

l R
eq

ui
re

m
en

ts
; (

2)
 A

cc
ep

ta
nc

e
Te

st
in

g
R

eq
ui

re
m

en
ts

; (
3)

 D
oc

um
en

ta
tio

n
R

eq
ui

re
m

en
ts

; (
4)

 S
ec

ur
ity

R

eq
ui

re
m

en
ts;

 (5
) P

or
ta

bi
lit

y
R

eq
ui

re
m

en
ts;

 (6
) P

er
fo

rm
an

ce
 R

eq
ui

re
m

en
ts.

(1
)

Sc
op

e;
 (

2)
 R

ef
er

en
ce

s;
 (

3)
 F

un
ct

io
na

l
R

eq
ui

re
m

en
ts

;
(4

)
A

cc
ep

ta
nc

e
Te

st
in

g
R

eq
ui

re
m

en
ts

;
(5

)
D

oc
um

en
ta

ti
on

R

eq
ui

re
m

en
ts

;
(6

)
Se

cu
ri

ty
 R

eq
ui

re
m

en
ts

;
(7

)
Po

rt
ab

il
it

y
R

eq
ui

re
m

en
ts

; (
8)

 P
er

fo
rm

an
ce

 R
eq

ui
re

m
en

ts
; (

9)
 T

er
m

in
ol

og
y

(G
lo

ss
ar

y,
 A

bb
re

vi
at

io
ns

 a
nd

 A
pp

en
di

ce
s)

.

N
at

ur
al

/H
ie

ra
rc

hi
ca

l
N

um
be

rs
Fu

nc
tio

na
l:

49
U

sa
bi

lit
y:

 6
R

el
ia

bi
lit

y:
 0

Pe
rfo

rm
an

ce
: 3

Su
pp

or
ta

bi
lit

y:
 4

D
es

ig
n

R
es

tri
ct

io
ns

: 3
ST

EW
A

R
D

S
(1

) S
ys

te
m

 F
ea

tu
re

s;
(2

) E
xt

er
na

l I
nt

er
fa

ce
 R

eq
ui

re
m

en
ts;

 (3
) O

th
er

 N
on

-fu
nc

tio
na

l R
eq

ui
re

m
en

ts.
IE

EE
 8

30
: (

1)
 I

nt
ro

du
ct

io
n;

 (
2)

 O
ve

ra
ll

D
es

cr
ip

tio
n;

 (
3)

 S
pe

ci
fic

R

eq
ui

re
m

en
ts.

N
at

ur
al

/L
et

te
r-

N
um

be
r

C
om

bi
na

tio
ns

Fu
nc

tio
na

l:
85

U
sa

bi
lit

y:
 1

R
el

ia
bi

lit
y:

 1
Pe

rfo
rm

an
ce

: 2
Su

pp
or

ta
bi

lit
y:

 2
D

es
ig

n
R

es
tri

ct
io

ns
: 9

Ta
bl

e
2

 P
re

se
nt

at
io

n
of

 th
e

A
na

ly
si

s
of

 th
e

N
in

e
S

R
S

s
(c

on
tin

ue
d)

06-02-Johansson.indd 43 2012/5/29 下午 03:27:53

44 Björn Johansson, Tanja Rolandsson

to (1) initialize and forward calculations from a larger system and (2) provide a web-
based interface for collecting, comparing, source locating and reporting data received
from meteorological centers. The SRS with version no. 1.0 is from 2009, and follow an
organization-specific template. Section one, introduction, is quite similar to IEEE 830.
Section two is not an overview of the system, but a list of references to related documents.
Requirements are not collected under one section, instead different types of requirements
have their own headings. Examples of functional requirements are: “1.3.2 The software
shall allow for post processing of the virtual RN station measurements,” “2.2.2 The
software shall monitor the automated collection of the data received in response to the
request,” and “2.2.4 The web tool shall be capable to generate WMO Centre comparison
statistics: Consolidation of auto-reporting on the web page of the exercise, including
plot generation, and integration of the standard display of MMFORs inter-comparison
statistics.” One example of a performance requirement is: “18.4 A full daily update of
the reporting web page shall not take longer than 12 hours per 10 x 10 SRS data request
examined.” And an example of design restriction is: “3.1 The CTBTO_WMO_SEA
software shall run under UNIX/LINUX while making use of the native C and FORTRAN
compiler package gcc running at the PTS.”

4.3 EVLA CB

This SRS describes requirements for a system which is an in-between system and
the main component of a data processing pipeline in a system called EVLA (the VLA
Expansion Project). The CB stands for Correlator Backend. The system is supposed to
receive, assemble, format, process and finally deliver data in a suitable way. Data is sent
to EVLA CB from a monitor and control system, and after processing it the EVLA CB
delivers it to an end-to-end system. In the SRS it is stated that it follows IEEE 830. The
SRS with the version number 2.0 is from 2002. The following examples of requirements is
typical examples of functional requirements: “3.2.1.1 Monitor and Control System -- The
BE shall acknowledge receipt of all data received from M&C,” “3.2.2.7 Data Invalid --
The BE shall replace all invalid data with zero values,” “3.2.2.31 Reboot network -- The
BE shall be able to initiate a reboot of any internal network,” and a typical example of
performance requirement is: “3.3.2.1 Input -- The BE System shall be capable of accepting
an aggregate data input stream from the Correlator of a minimum om 1.6 Gbytes/sec. This
must be done simultaneously with the output stream, but not necessarily over the same
interconnects. This is an initial deployment specification and will be increased over time,”
an example of supportability requirement is: “3.6.1 Software tools -- Software tools and
pre-built applications that do not have source code available shall come with a complete
diagnostic package and customer support.”

06-02-Johansson.indd 44 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 45

4.4 I-15 RLCS

The Interstate 15 Reversible Lane Control System (I-15 RLCS) is designed to
control opening and closing of reversible lanes on the Interstate 15. It was developed
since the previous system was getting old and was impossible to extend. I-15 RLCS also
provides a graphical user interface, process control and monitoring, sequencing, data
processing and security as well as reporting. The SRS is from 2004; however, it does not
contain any information about versions. Examples of functional requirements are: “3.2.2.1
The RCLS shall monitor all field device sensors, and shall process operator requests
for changing field device status,” and “3.2.2.6.1 The RCLS software shall initialize each
control unit and device sensor as it is identified.” Examples of performance requirements
are: “3.3.1.1 The external server data store containing RLCS status for use by external
systems shall be updated once per minute,” and “3.3.4.1 At a minimum of every 60
seconds, the system shall check the current date and time against a list of scheduled events
for the current mode to determine if any event should be executed.” Examples of design
restrictions are: “3.5.1.1 The data processing and security, and reporting functions of the
RLCS application software shall be implemented with commercial off-the-shelf software,”
and “3.5.2.3 The MD5 algorithm shall be used to secure application data and software in
the controllers and the application servers.”

4.5 MDOT VII DUAP

MDOT VII DUAP is an abbreviation of Michigan Department of Transportation’s
Vehicle Infrastructure Integration Data Use Analysis and Processing system. The
system is a research program, designed to examine the impact on traffic operations,
asset management and transportations planning by new VII data. DUAP is supposed to
collect, convert and communicate data to different people to support MDOT. The SRS
investigated is version 1.02 from 2007. Examples of functional requirements are: “IS-010
The System shall collect probe vehicle data. H,” “IS-070-003 The DUAP data elements
shall include roadway event information data fields corresponding to the SAE J2354
structure as enumerated un APPENDIX F -- SAE J2354 Event Information Elements. H,”
and “AS-140 The DUAP System shall be able to organize the sequence of execution of
computational modes.” One example of supportability requirement is: “The DUAP System
shall be capable of adding new data sources. L,” and examples of design constraints are:
“DC- 010-010 The DUAP System shall use a Java software foundation. M,” and “DC-040
The DUAP System shall use Michigan Geographic Framework geo-references. H.” Most
of the requirements in this SRS also have a source (another document) and some of the
requirements were commented.

06-02-Johansson.indd 45 2012/5/29 下午 03:27:53

46 Björn Johansson, Tanja Rolandsson

4.6 NPOESS DE

The NPOESS (National Polar-Orbiting Operational Environmental Satellite
System) Data Exploitation (DE) is a system that aims at distributing data from NPOESS
observations to civilian customers and operational and climate communities. It receives
data, process and packages and finally delivers the data to the right people. It is also
supposed to be part of customer service. The SRS is from 2007 and marked with version
1.0. Sections one and three are similar to IEEE 830. Section two, which in IEEE 830 is
called overview, is sort of included in the first section and instead Section two is called
referenced documents. After Section three which lists requirements, there is a fourth
section called requirements traceability. Examples of functional requirements are: “3.2.1
The System shall be capable of defining Data Products for Ingest,” and “3.3.1 The System
shall be capable of receiving data and products from IDPS.” One example of performance
requirement is: “3.4.3 The system shall be capable of executing 99 % of its scheduled tasks
in any consecutive 30 day period” and a example of supportability requirement is: “3.6.2 The
System shall be capable of adding additional capacity without redesign of its infrastructure.”
Example of design restriction: “3.8.2.2 The System shall be constructed using COTS and
Open Source software where it is possible, practical and approved by the Government.”

4.7 OSSAFFCM

OSSAFFCM is an abbreviation of Open Source Sustainability Assessment
Framework Format Converter Module. This software is, as the name reveals, a format
converter module in an open source framework. It is designed to calculate sustainability
for different products and thus see environmental impact of the product. The purpose of
the format converter is to convert data formats from one of four types into another without
any loss of data. The SRS has version no. 1.1 and is from 2007. What is included in IEEE
830 Section two, “overview,” is included in the first section. The second section contains
a list of related documents. Section three lists requirements, similar to IEEE 830. After
that follows three sections, called “qualification provisions,” “requirements traceability”
and “notes.” Examples of functional requirements are: “3.2.1.6 The inventory calculation
will be able to cope with loops in the product system,” and “3.2.4 The converter will allow
conversion between important LCI (Life Cycle Inventory) data formats.” Examples of
usability requirements are: “3.12 The software will be documented in English,” and “3.13.3
The software will be designed to be used by people interested in Life Cycle Assessment
and sustainability assessment.” Example of design restriction is: “3.9 The Framework and
the converter will be designed to run in Windows environments (Win 2000, Win XP, Win
Vista), Macintosh, and Linux OS. A Java Virtual Machine (JVM) of version 5 or higher
needs to be installed. A MySQL database needs to be installed as well. Both JVM and
MySQL will be made available on the website.”

06-02-Johansson.indd 46 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 47

4.8 SRS2XESAMPLEFLAG

The SRS (Source-Receptor Sensitivity) 2XESAMPLEFLAG is an extension
to a web-based metrological analysis tool. When a known emitter releases xenon
which might affect a xenon sample, the software is designed to flag this sample.
SRS2XESAMPLEFLAG is supposed to run on any Unix-based system. The SRS from
2009 has version no. 1.0. The structure follows an organization-specific template (Same
as CTBTO_WMO_SEA). The introduction, Section one, is fairly similar to IEEE 830.
Section two is not an overview of the system, but a list of references. The requirements
are not collected under one section, instead different types of requirements have their own
headings. Examples of functional requirements are: “1.6 The software shall be capable to
choose between those available ATM (Atmospheric Transport Modelling) models that were
utilized to generate the SRS (Source Receptor Sensitivity) data pertaining to the sample.
Further requirements are specified in requirements 5.x,” and “3.1 The software shall be
capable to parse the information of the emissions from known xenon sources via a xenon
sources inventory input file, parsed by the command line option -e<xenon-emissions-
file>.” Examples of usability requirements are: “14. All documentation will be written in
English in MS Word format,” and “20. There shall be a help function implemented that is
called with the ‘–help’ option and upon any users’ choice of options that is non-compliant
with the required syntax.” Example of a performance requirement is: “25. Processing of
a 21 days SRS field and preparation of the data shall not last longer than 5 minutes per
sample if the full 21 days release (emission) period is examined.”

4.9 STEWARDS

STEWARDS (Sustaining the Earth’s Watersheds -- Agricultural Research Data
System) is a system designed to manage data related to water, soil, management
and economics. It was developed to be part of the Conservation Effects Assessment
Project (CEAP) which assesses the environmental effects of a conservation program
implementation. The SRS with version no. 1.1 is from 2006. Examples of functional
requirements are: “FR-2.3: Browse, query, and download individual sampling station data
and metadata. Provide access to the data via browsing of sites, stations, and instruments;
allow for simple queries to individual datasets; provide a metadata search tool to query
dataset parameters; and allow for downloading of datasets (full or partial),” and “FR-
2.5: Generate tabular reports of selected data. Provide access to CEAP-related reports,
tables and project documents.” Example of a performance requirement is: “PR-2:
Loading speed: The data system shall load as quickly as comparable productivity tools
on whatever environment it is running on,” and a example of supportability requirement
is: “SQ-1: Portability: This database will be built for a particular system and may not be
portable but results to queries will be portable between many environments.” Example of

06-02-Johansson.indd 47 2012/5/29 下午 03:27:53

48 Björn Johansson, Tanja Rolandsson

design restriction: “SR-5: Relational Database Management System -- As the primary data
storage mechanism for the corporate standard relational database management system,
Microsoft SQL Server will be required to support system functionality.”

5. Analysis and discussion

In this section we discuss the above presented results. It follows the order of the
presented questions in the outline for analysis as presented in Section two.

5.1 The structure of the different SRSs

Four of nine SRSs followed IEEE 830 -- EVLA CB, I15 RCLS, MDOT VII DUAP
and STEWARDS, and except from MDOT VII DUAP, this was also stated in the SRS. Of
the remaining five, four of the SRSs -- CTBTO_WMO_SEA, NPOESS DE, OSSAFFCM
and SRS2XESAMPLEFLAG -- were structured in a fairly similar way. These four all
started with an introductory section called scope, continued with references or referenced
documents in Section two, and the requirements began in Section three. In NPOESS DE
it was stated that it was based on the IEEE standard 12207. However, in that standard no
given structure is described, so it must have been used in some other way than following
a structure. In the SRS, it was also stated that the requirements management tool DOORS
was used to create the SRS. NPOESS DE was the only SRS where it was stated that
some kind of tool had been used. The last SRS -- APAF -- was structured almost as the
other four in the non-IEEE 830-group, with the exception that Section two was called
“requirements specification descriptions.” For the SRSs who did not follow IEEE 830,
including APAF, all had system overview and document overview in the first section. This
is fairly similar to the sub-headings “system type” and “overview of the subsequent parts
of the specification” in IEEE 830. Beyond these two subheadings, all SRSs, both the ones
following IEEE 830 and the rest, had other subheadings as well in the first section. These
were things like project identification, rationale or definitions.

Another similarity between all SRSs is that they had the specific requirements
starting in Section three. The CTBTO_WMO_SEA and SRS2XESAMPLEFLAG turned
out to have the same author, which explains why they are structured similarly. These SRSs
follow an organization-specific template, called DSTD, which is stated in the document
overview-section of the SRSs. In no other SRSs such information was given.

Biggest differences in the outlines of the SRSs were within the second section
and how requirements were divided into groups. The second section of the SRSs was,
as stated above, either “overview,” as in IEEE 830, or a section with references to other
documents. APAF, which stood out a bit from the others, had a second section that looked

06-02-Johansson.indd 48 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 49

nothing like any of the other ones. It was called “requirements specification description,”
an explanation of necessary attributes for requirements. These attributes were for example
that each requirement should have a unique identifier, be necessary for the system or
formulated in a clear and concise way. It can be claimed that such statements feel a bit
superfluous and belong in the requirements engineering literature and not in an SRS.
Others seem to agree on that, especially since no other SRSs had such explanations of the
nature of requirements.

So, except from APAF, the SRSs appeared to follow either IEEE 830, starting
with an introduction, followed by a system overview and then the actual requirements,
or another, unnamed structure, starting with scope, followed by a list of referenced
documents, and then the actual requirements.

5.2 Language and identifier

All SRSs and requirements in them are written in an informal language, which
is consistent with the claim made in chapter two, that contemporary SRSs use natural,
informal language. Maybe the use of informal language also is because the systems are not
extremely large or complex. Some of them were just small extensions to existing systems,
for example the SRS2XESAMPLEFLAG or the OSSAFFCM. These “smaller” systems
also had a fairly low number of requirements.

All requirements had unique identifiers, that in most cases were hierarchically
numbered, but in APAF, MDOT VII DUAP and STEWARDS there were letter-number
combinations. This is consistent with the statement both Wiegers (1999) and Eriksson
(2007) makes; that hierarchical numbering is the conventional way to label requirements.
No other types of labeling were present in the SRSs analyzed.

5.3 Categorization of requirements

In all cases, requirements were divided into groups depending on character of the
requirements. These groups were not the same as the ones in chapter two; instead the
requirements were grouped differently in each SRS, with the exception of CTBTO_
WMO_SEA and SRS2XESAMPLEFLAG, who, as mentioned above, have the same
outline for the entire SRS. Except for MDOT VII DUAP, one group of requirements was
named almost the same in all SRSs: capability/functional requirements. Another group
called external interface requirements was also very common. This group is mentioned by
Wiegers (1999) as the first group of requirements in the extended IEEE 830, and appears
in six of the nine SRSs. A third group of requirements was also present in six of the nine
SRSs, namely security and privacy requirements. Table 2 presents how requirements
were structured in the SRSs. In most SRSs, requirements were divided into 6-10 groups.
It would seem logical if systems with lots of requirements had a larger number of groups;

06-02-Johansson.indd 49 2012/5/29 下午 03:27:53

50 Björn Johansson, Tanja Rolandsson

however, this is not the case. Interesting to note is that, for example, OSSAFFCM with a
fairly low number of requirements had the largest number of groups of requirements (18),
while I-15 RLCS, with a great number of requirements, had a much smaller number of
groups of requirements (6).

The MDOT VII DUAP varies from the others since the naming of the groups of
requirements was done much differently. Most categories were called “services” of some
kind, such as input services, administrative services and computational service. Also, the
major part of requirements in this SRS had a reference document and some of them had
comments to help the interpretation of them.

When analyzing the SRSs, it was quite difficult to identify type of requirement.
Especially the non-functional ones were tricky to categorize into Eriksson’s (2007)
categories. None of the SRSs used the same categorization as Eriksson (2007), which
made it necessary to categorize requirements from the category given in the SRS to the
corresponding category in the outline for analysis. However, in most cases the name of
the group of requirements corresponded to one of the FURPS+ components or one of its
keywords. For example, EVLA CB had groups of requirements called “serviceability”
and “maintainability,” which both are FURPS+ keywords for supportability. Functional
requirements were sometimes also necessary to identify. The category “security and
privacy requirements” which appeared in six of the nine SRSs were usually stated under
its own heading. Since “security” is one of the FURPS+ keywords for functionality and
requirements usually followed a noun-verb construction such as “the System shall be
capable of generating backups for all NDE data, procedures, and software (requirement
3.7.2 in NPOESS DE),” they were counted as functional requirements. However, in
STEWARDS, the category “security requirements” is listed as a subcategory of “other
non-functional requirements.” When looking at specific requirements, there was for
example one that looked like this: “SCR-4: Availability The fourth consideration for
security requirements is availability. The system must be available to the intended
audience 24 hours per day, 7 days a week with, 99% availability and a tolerance of -5%
(not less than 50% of working hours in any week). For this system, availability will be
concerned with the reliability of the software and network components. Intentional ‘denial
of service attacks’ is not foreseen as a significant concern (STEWARDS, p. 13).” This
could be seen as a non-functional requirement, which in the categorization belongs to the
group “reliability.” This example shows that the categorization of requirements can differ
a lot.

To summarize this, it can be concluded that none of the SRS had the same structure
of requirements as described in the theoretical background in Section two. Instead, all
SRSs had individual organizations of requirements, except from CTBTO_WMO_SEA

06-02-Johansson.indd 50 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 51

and SRS2XESAMPLEFLAG who had the same organization of requirements, probably
because they have the same author. The great variety of ways to organize the requirements
into groups made that a re-categorization was done to fit them in the outline for analysis
and be able to compare results, especially in the counting of the requirements.

5.4 Number of different categories of requirements

Functional requirements were more frequent than non-functional ones and design
requirements, which confirms statements made earlier. It also supports the statement that
non-functional requirements are difficult to evaluate and measure, since they involve
so many aspects. Another claim is that functional requirements are specified clearer. In
some cases, the functional requirements were extremely detailed, while there were only a
few non-functional requirements in the same document. This was particularly noticeable
in CTBTO_WMO_SEA, where functional requirements were very detailed with a great
number of sub-requirements: “1.2.1.4.1.1.1 For the nuclide it shall be possible to enter
the nuclide symbol name explicitly (e.g. Xe-133). The name will be translated into the
nuclide specific half-life time (via a lookup table offered by the commission). If ‘Tracer’ is
given, a zero half-life time shall be applied (indicated by a ‘999.9’ in the configuration file
‘SPECIES’)” while a non-functional requirement or design restriction could be as short
as this: “12 Source code will be documented in the code according to suitable standards.”
However, these two requirements are, especially the latter one, rather extreme and
should not be viewed as facts, only as examples or end-points of a scale on how detailed
requirements can be. Most of the time, functional and non-functional requirements seemed
to have been given the same level of detail.

Eriksson (2007) divided non-functional requirements into four groups; usability,
reliability, performance and supportability. Of these four groups, performance
requirements were most frequent. In four of the SRSs, performance requirements were
labeled as an own group of requirements. This was the only group of non-functional
requirements that was consistent with Eriksson’s classification. As discussed above,
the division of requirements into different groups in each of the SRSs seemed to follow
individual templates.

Design restrictions requirements were not very common. One reason for that
could be that they are formulated to a high extent in other documents. For example,
in STEWARDS there is a reference to a site called “USDA Web Style Guide,” MDOT
VII DUAP has a reference to a document called “Systems Engineering Methodology
version 1.0” and in the SRS for EVLA CB there is a reference to a document called
“EVLA Correlator Monitor and Control System, Test Software and Backend Software
Requirements and Design Concepts.”

06-02-Johansson.indd 51 2012/5/29 下午 03:27:53

52 Björn Johansson, Tanja Rolandsson

Regarding non-functional requirements, the most frequent were performance
requirements. Maybe this is because performance requirements often are expressed with
time and thereby the easiest one to measure. One example on this is the requirement
3.10.2.3 from NPOESS DE: “The System shall deliver A-DCS telemetry data from IDPS
to the US Global Processing Center within 1minute of their receipt.” Comparing this to a
requirement from OSSAFFCM: “3.11.2 The software will be easily learned and used. This
usability will be supported by documentation accompanying the software.” It is clear that
that is hard to measure. As Avison and Fitzgerald (2006) state, nonfunctional requirements
can be hard to evaluate, especially ones that not are about time.

Wrapping this up, functional requirements were more common than non-functional
ones and design restrictions. This confirms statements about functional requirements and
that they are the most frequent ones in SRSs. Sometimes functional requirements were
more detailed than non-functional ones, but this was only apparent in special cases and not
something consistent. According to the results, it is not true that functional requirements
are described clearer or in more detail than non-functional requirements or design
restrictions.

6. Conclusions

The purpose of this research was to identify similarities and differences in SRS
composition. From the analyses of nine SRSs it can be concluded that there seems to be
two major types of structures for SRSs. They either follow IEEE 830 with its introduction
-- overview -- list of requirements structure, or have an outline which is introduction
-- references -- list of requirements. There was no similar pattern regarding the
organization of the actual requirements. With the exception of CTBTO_WMO_SEA and
SRS2XESAMPLEFLAG who have the same origin and were structured the exact same
way, no other SRSs had a similar way to organize requirements. The only similarity in
organization of requirements was that in all cases, requirements were divided into groups,
and they had unique identifiers. Three groups of requirements were frequently used:
functional/capability requirements, external interface requirements and security/privacy
requirements. The differences in SRS composition are, however, not very extreme. This
finding is not consistent with the results reported by Power (2002), who claims that SRS
structures vary a lot.

Looking at specific requirements, functional requirements outnumbered the other
categories by large. Even combined, there were less non-functional requirements than
functional ones. This does confirm the claim that it might have been better to follow
Wiktorin (2003) suggestions dividing functional requirements into groups. However,

06-02-Johansson.indd 52 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 53

there were few requirements in the SRSs that clearly could be regarded as functional
requirements. Since the functional requirements category thus became much broader than
the different categories of non-functional requirements, it was not very surprising that
there were many more functional requirements.

It can also be concluded that number of requirements is not a reason for the choice of
structure of SRSs. For example, the OSSAFFCM which had the largest number of groups
of requirements had a very small number of actual requirements. It can be stated that it
seems unnecessary to have so many groups of requirements when in some cases there
was only one or two requirements in each category, but the reason for this is not clear. A
possible suggestion for further research would then be to pick out a couple of SRSs and
contact the originators to get the answer on such questions.

It can be stated that following standards, like the IEEE 830, simplifies documentation
of requirements. If every requirements engineer documented requirements in his/her
own way, the development team would have to put a lot of time in interpreting the SRS
for every new project. This is of course why standards are developed in the first place,
and it can be concluded that standards are useful, as long as they are applicable to the
organizational context and allow modifications. Another benefit of using standards is that
they do not need to be organization-specific. If the development team works independently
and is not bound to one specific company, they can use the same template for different
projects in different organizations.

Regarding the specific groups of requirements, it might be possible to use templates
as well. The literature showed a number of different ways to categorize requirements
(Avison & Fitzgerald, 2006; Eriksson, 2007; IEEE, 1998a; Wiktorin, 2003), and the results
in this research showed a great variety in the organization of specific requirements. The
main conclusion from the research on SRSs is that a more general classification might
be useful, particularly for independent development teams, or when development teams
from different companies cooperate in projects. However, it can also be concluded that a
classification should focus more on non-functional requirements and thereby decrease the
risk of having a too high focus on functional requirements in future systems development
processes.

Acknowledgements

We would like to express our thanks to the anonymous reviewers and Professor She-I
Chang, whom acted as guest editor, for their comments and suggestions during the process
of finalizing this article. This paper is a revised and expanded version of a paper entitled
“Revisiting Software Requirements Specifications -- What Could We Learn” presented at

06-02-Johansson.indd 53 2012/5/29 下午 03:27:53

54 Björn Johansson, Tanja Rolandsson

2010 International Conference on Accounting and Information Technology (ICAIT) July
5-7, 2010, Chiayi, Taiwan.

References

Adisa, F., Schubert, P., Sudzina, F. and Johansson, B. (2010) ‘Living requirements space: an
open access tool for enterprise resource planning systems requirements gathering’, Online
Information Review, Vol. 34, No. 4, pp. 540-564.

Avison, D. and Fitzgerald, G. (2006) Information Systems Development: Methodologies,
Techniques & Tools, McGraw-Hill, Berkshire, UK.

Cysneiros, L.M. and do Prado Leite, J.C.S. (2004) ‘Nonfunctional requirements: from elicitation
to conceptual models’, IEEE Transactions on Software Engineering, Vol. 30, No. 5, pp.
328-350.

Dahlstrand, M., Fredborg, H. and Leandersson, S. (2009) ‘Co-design av co-design -- förslag på
riktlinjer för arbetssättet och utformningen av kravspecifikationer’, Unpublished Bachelor’s
thesis, University of Borås, Västra Götaland, Sweden.

Daniels, J. and Bahill, T. (2004) ‘The hybrid process that combines traditional requirements and
use cases’, Systems Engineering, Vol. 7, No. 4, pp. 303-319.

De Carvalho, R.A., Johansson, B. and Parthasarathy, S. (2010) ‘Software tools for requirements
management in an ERP system context’, Journal of Software Engineering and Technology,
Vol. 2, No. 2, pp. 101-106.

Droschl, G. (2000) ‘Formal specification of a security system module in VDM-SL’, Technical
report, Institute for Software Technology, Technical University of Graz, Graz, Austria.

Duggan, E.W. and Thachenkary, C.S. (2003) ‘Higher quality requirements: supporting joint
application development with the nominal group technique’, Information Technology and
Management, Vol. 4, No. 4, pp. 391-408.

Eriksson, U. (2007) Kravhantering för IT-System, Studentlitteratur, Malmö, Sweden.

Franko, S. and Hansson, M. (2006) ‘Verksamhetsregler vid utformning av kravspecifikation’,
Unpublished Bachelor’s thesis, Lund University, Scania, Sweden.

Grady, R.B. (1992) Practical Software Metrics for Project Management and Process
Improvement, Prentice Hall, Upper Saddle River, NJ.

Halvorsen, K. (1992) Samhällsvetenskaplig Metod, Studentlitteratur, Lund, Sweden.

06-02-Johansson.indd 54 2012/5/29 下午 03:27:53

Revisiting Software Requirements Specifications -- What Could We Learn 55

Hull, E., Jackson, K. and Dick, J. (2005) Requirements Engineering, Springer, London, UK.

Jackson, M. (1995) Software Requirements & Specifications: A Lexicon of Practice, Principles
and Prejudices, ACM Press, London, UK.

Machado, R.J., Ramos, I. and Fernandes, J.M. (2005) ‘Specification of requirements models’,
in Aurum, A. and Wohlin, C. (Eds.), Engineering and Managing Software Requirements,
Springer, Berlin, Germany, pp. 47-68.

Maxwell, J.A. (2005) Qualitative Research Design: An Interactive Approach, Sage, Thousand
Oaks, CA.

McIlroy, R.C. and Stanton, N.A. (2011) ‘Specifying the requirements for requirements
specification: the case for work domain and worker competencies analyses’, Theoretical
Issues in Ergonomics Science, doi: 10.1080/1463922X.2010.539287

Nicolás, J. and Toval, A. (2009) ‘On the generation of requirements specifications from software
engineering models: a systematic literature review’, Information and Software Technology,
Vol. 51, No. 9, pp. 1291-1307.

Power, N.M. (2002) ‘A grounded theory of requirements documentation in the practice of
software development’, Unpublished Ph.D. dissertation, Dublin City University, Dublin,
Ireland.

Smith, S., Lai, L. and Khedri, R. (2007) ‘Requirements analysis for engineering computation: a
systematic approach for improving reliability’, Reliable Computing, Vol. 13, No. 1, pp. 83-
107.

Svenning, C. (2003) Metodboken (5th ed.), Lorentz Förlag, Eslöv, Sweden.

The Institute of Electrical and Electronics Engineers (1998a) ‘IEEE Standard 830-1998: IEEE
Recommended Practice for Software Requirements Specifications’, Technical report, IEEE,
New York, NY.

The Institute of Electrical and Electronics Engineers (1998b) ‘IEEE/EIA Standard 12207.0-
1996: (ISO/IEC 12207) Standard for Information Technology -- Software Life Cycle
Processes’, Technical report, IEEE, New York, NY.

Véras, P.C., Villani, E., Ambrósio, A.M., Pontes, R.P., Vieira, M. and Madeira, H. (2010)
‘Benchmarking software requirements documentation for space application’, in Schoitsch,
E. (Ed.), Computer Safety, Reliability, and Security, Springer, Berlin, Germany, pp. 112-
125.

Wiegers, K.E. (1999) Software Requirements, Microsoft Press, Redmond, WA.

06-02-Johansson.indd 55 2012/5/29 下午 03:27:54

56 Björn Johansson, Tanja Rolandsson

Wieringa, R.J. (1996) Requirements Engineering: Frameworks for Understanding, John Wiley
& Sons, Chichester, UK.

Wiktorin, L. (2003) Systemutveckling på 2000-Talet, Studentlitteratur, Lund, Sweden.

About the authors

Björn Johansson holds a Ph.D. in Information Systems Development from the Department of
Management and Engineering at Linköping University. Currently he works as Associate
Senior Lecturer at Department of Informatics, Lund University. Previously he worked as a
Post Doc. at the Center for Applied ICT at Copenhagen Business School. He is a member
of the IFIP Working Groups IFIP 8.6 and IFIP 8.9.

Tanja Rolandsson received her B.Sc. in Informatics and B.A. in English Linguistics from
Lund University in 2010. She is currently working for the Swedish Armed Forces as a
systems engineer at the Armed Forces Command and Control Regiment with development,
implementation and administration of several different weather information systems.

06-02-Johansson.indd 56 2012/5/29 下午 03:27:54

Revisiting Software Requirements Specifications -- What Could We Learn 57

Appendix: SRS Sources

All websites visited January 3, 2010.

1. ASPERA-3 Processing and Archiving Facility
 http://www.aspera-3.org/idfs/APAF_SRS_V1.0.pdf

2. CTBTO_WMO_SEA
 http://www.ctbto.org/fileadmin/user_upload/procurement/2008/RFP2009-0339-CTBTO_

WMO_SEA_Software_Requirements_Specification-DISCHENDORF.pdf

3. EVLA Correlator Backend
 http://www.aoc.nrao.edu/evla/techdocs/computer/workdocs/Corr_bkend_Req_Soft.pdf

4. I 15 Reversible Lane Control System
 http://www.dot.ca.gov/dist11/operations/I15RLCS/RFP_DOT2040_SecVID_Apr21_2004.

pdf

5. MDOT Vehicle Infrastructure Integration Data Use Analysis and Processing (VII DUAP)
 http://www.michigan.gov/documents/mdot/MDOT_DUAP_SysReq_Final_220099_7.pdf

6. NPOESS Data Exploitation
 http://projects.osd.noaa.gov/NDE/pub-docs/SystemRequirementsDoc.pdf

7. OSSAFFCM Open Source Sustainability Assessment Framework, Format Converter Module
 http://www.openlca.org/uploads/media/Software_Requirements_v1.1_3Feb07.pdf

8. SRS2xESampleFlag
 http://www.ctbto.org/fileadmin/user_upload/procurement/2008/RFP2009-0337-SRS2Xe

SampleFlag_Software_Requirements_Specification-DISCHENDORF.pdf

9. STEWARDS
 ftp://ftp-fc.sc.egov.usda.gov/NHQ/nri/ceap/stewardssystemdesign030206.pdf

06-02-Johansson.indd 57 2012/5/29 下午 03:27:54

