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Economic design of multi-characteristic models
for a three-class screening procedure

YUMEI LOt and KWEI TANG}

In this paper, we present different inspection methods to determine the acceptability
of produced items. In the first method, items are classified into two grades. An item
belongs to a grade when it meets the requirements of that grade. In the second
method, a joint screening rule based on an aggregation of the characteristics is used.
The two methods are then compared.

1. Introduction

Traditionally, sampling is favoured over screening (1009, inspection) because it
provides an economical and efficient method for obtaining information about an
unknown population, such as a production lot or a production process. However,
modern manufacturing systems, such as the just-in-time (JIT) system and the flexible
manufacturing system (FMS), have a trend toward smaller production lot sizes to
reduce inventory costs. Sampling becomes inefficient in these environments, while
screening becomes more cost effective owing to the rapid development in automated
inspection instruments and computerized manufacturing.

In a typical screening procedure, all the outgoing items are subject to acceptance
inspection. If an item does not conform to the predetermined screening specifications, it
is rejected and subjected to some corrective actions, Since items are separated into two
classes (acceptance and rejection), this type of screening procedure can be named as
‘two-class screening’. Basic models of two-class screening were discussed by Taguchi
(1984) and Tang (1988) and a brief literature review was given in Tang and Tang (1989).

Most studies consider only one quality characteristic. However, it is very common
for a product to have many important quality characteristics. For example, tensile
strength and compressibility are two important quality characteristics for an alloy.
Tang and Tang (1989) proposed two multi-characteristic models for two-class
screening. In the first model, each characteristic has its own screening specifications,
and acceptance inspection is used to determine the conformance of an item to the
specifications. An item is accepted only when it simultaneously conforms to the
specifications of all the quality characteristics. In the second model, a joint screening
rule based on an aggregation of the quality characteristics is used. To implement the
second model, it is necessary to obtain the exact values of all the quality characteristics.

In many situations, items produced by the same production process may be sorted
into different product grades and sold in different prices (England and Leenders 1975).
Tang (1989) considered a situation where the outgoing items are either sorted into one
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of two product grades or scrapped. The quality of the product is determined by only
one quality characteristic. It is assumed that Grade 1 has tighter product specifications
and thus commands a higher price than Grade 2. A quadratic function suggested by
Taguchi (1984) is used to measure the loss due to consumer dissatisfaction with product
quality. A ‘three-class’ screening model is proposed to determine the optimal screening
specification limits by maximizing the expected per-item profit.

In this paper, we extend the single-characteristic model for three-class screening
proposed by Tang (1989) to two multi-characteristic models. Similar to Tang and Tang
(1989), in Model 1 each characteristic has distinct screening specifications, and
inspection results of individual characteristics are used to determine the disposition of
an item. In Model 2, a joint screening rule based on an aggregation of all the
characteristics is used. In order to implement this model, it is necessary to use the exact
measured values of all the characteristics to determine the disposition of an item.

In the next section, we briefly discuss the single-characteristic three-class screening
model proposed by Tang (1989). Then, two multi-characteristic models, Models 1 and
2, are presented in sections 2 and 3. In section 4, a numerical example is given and a
numerical study is used to compare the two models.

2. Single-characteristic model

In this section, the single-characteristic screening model proposed by Tang (1989) is
presented. The situation considered in the study is as follows: the items produced by a
production process are to be sorted into two grades or scrapped. It is assumed that
Grade 1 has tighter specifications and a higher price than Grade 2. A loss in revenue is
incurred to the producer if a Grade 1 item is classified into Grade 2 or scrapped, or if a
Grade 2 item is scrapped. On the other hand, a loss caused by consumer dissatisfaction
is also incurred when a Grade 2 item is classified into Grade 1, or an item which should
be scrapped is classified into Grade 1 or Grade 2.

The loss due to consumer dissatisfaction may include loss in goodwill, warranty,
replacement cost, and handling cost. Classical concept of attribute inspection assumes
that this loss is a constant when an item does not conform to product specifications and
is zero otherwise. Let r denote this constant cost. However, Taguchi (1984) argued that
this cost concept was incorrect. Instead, he suggested that a quadratic function of the
deviation from the product target (ideal) value could better measure the true loss. In
this study, this quadratic loss function is used.

Let Y be a random variable which denotes the deviation of the quality characteristic
from the target value and let y denote the value of Y of an item. Let /(y) denote the
quadratic loss function, which has a form

(y)=ky? (1

where k is a positive constant. Taguchi suggested that k is determined by equating (y)
and r at product specifications limits. Let [—d,,d,] be the product specifications for
Grade 1, then k associated with Grade 1 is given by

k,=r/d? (2

For simplicity, we let r be the same for Grade 2. Let [—d,,d,] be the product
specifications of Grade 2, then k for Grade 2 is determined by

ky=r/d} )
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Let p, and p, denote the per-item selling prices of Grade 1 and Grade 2 items,
respectively. Let 4p>0 be the price difference p, —p,, and 8, and 4, be the screening
specification limits in the following screening rules:

If ye[—4,,6,], the item is classified into Grade 1.
If ye[ —d,, —8,]U[d,,8,], the item is classified into Grade 2.

Let Pr(G1) and Pr(G2) be the proportion of items sorted into Grades 1 and 2,
respectively. Let f(y) denote the probability density function of ¥, then

PrGl)= J Sy dy )
s,

and

-8y a2
Pr(G2)= J_ f)dy+ L fy)dy (%)

Consequently, the per-item expected revenue is given by

ER=p,Pr(Gl)+p,Pr(G2) 6)
We define the per-item expected loss due to imperfect quality as the expected
acceptance cost (EAC), which is given by

—éy

a1
EAC=f klyzf(y)dy+f

-

42
koy? f(y)dy+ f ) k,y*f(y)dy (7

-2

The expected per-item profit EPR is determined by:

EPR=ER—EAC 8)

It is easy to show that the optimal solution 6* and 6% are determined by
0% =(dp/(ky —ky))''? ©)
0% =(py/k,)'"? (10)

Note that for a given y, the difference betweeen Grades 1 and 2 in acceptance cost is
(k; —k,)y*. If this difference is less than 4p, the item should be assigned to Grade 1. This
is actually implied by equation (9). Similarly, equation (10) suggests that an item is
classified into Grade 2 rather than being scrapped if the acceptance cost k,y? is smaller
than p,.

3. Multi-characteristic model 1

Consider the situation where a product has n distinct quality characteristics. Let
Y}, Yy,..., Y, denote their deviations from the corresponding target values. In Model 1,
it is assumed that each quality characteristic has distinct screening specifications. An
item is classified into one of the two grades only when it simultaneously conforms to all
the screening specifications of that grade. The items that cannot meet all the
specifications of either grade are scrapped. Furthermore, it is also assumed that Y;
follows a normal distribution with a mean zero and a standard deviation ¢; and that
Y, Y,..., Y, are statistically independent. Furthermore, the total loss due to the
measured quality deviations y,,y,...,y, of an item is assumed to be additive, i.e., the
sum of the single-characteristic loss function. Let I,,(y,, ¥, ..., y,) and LnisYaees v
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denote the loss functions for Grades 1 and 2, respectively. The function forms of these
two functions are given by

lln(y17y2"'ayn)=k11y§+k12y%+"'+klny'2| for Grade 1 (1
lln(yl,yz...,y,,)=k21yf+k22y§+...+k2,,yf for Grade 2 (12)

where k;; is a constant associated with Grade i and characteristic j.

3.1. Model formulation

Let §;; denote the screening specification limit associated with Grade i and the jth
quality characteristic. Let p;; denote the probability that y;is in [ —d;5 6;;]. Since Y; are
statistically independent, the proportion of items sorted into Grade 1 is given by

PNGD=ELMJ (13)

It can also be shown that the proportion of items sorted into Grade 2 is given by

PrG2)=T11 ps~ [l 2y (14

As a result, the expected revenue from selling the item is
ER=p,Pr(G1)+p,Pr(G2) (15)

The expected acceptance cost due to the imperfect quality is obtained by averaging the
quadratic loss functions over the acceptance regions. Let us define

dij
m;;= j .V,gfj(yj') dy; (16)
sy
which is equal to 6}[2(d;;/0)—1]1—20 19:j9(0;5/6;), where &(-) and ¢(-) are the
standard normal distribution and density functions, respectively. It can be verified that
the expected acceptance cost can be expressed as

EAC:Ji1 klim1f<ljp“)+[-il kzjmzj(iljpzi>—j§1 kzjmu(f]jl’u)] (17

Consequently, EAC can be evaluated by using the standard normal distribution and
density functions and some simple computation. The expected per-item profit is the
difference of ER and ECA, which can be simplified as

EPR:{AP H Py~ Z [(k1j—k2j)m1j I_[ P1i:|}+[l72 n P2j— Z <k2jm2j H}’n)}
j=1 j=1 i+ i=1 j=1 i#j
(18)

3.2. Analysis of the model

Let EPR1 denote the expression in the braces { } of (18). Note that EPR1 is
determined only by the screening specification limits associated with Grade 1.
Similarly, let EPR2 denote the expression in the second brackets [ ] of (18), which is
determined by the screening specification limits associated with Grade 2.
Consequently, we can easily obtain the first-derivative conditions for optimal solution
associated with the jth characteristic:

(klj—k2j)5%j+i;j(kli_kZi)mli/plizAp (19
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k03, + _;_kzimzi/P2i=P2 (20)
i%j

Comparing (19) with the corresponding expression (9) in the single characteristic
model, it is found that (19) has an additional term

Z (kyi—ky)my/py;
iFj

which is actually the sum of expected conditional acceptance costs of all the other
characteristics. Since (k,;—k,)m,;/p,; is non-negative, it is obvious that introducing
additional characteristics into the model results in the optimal screening specification
limits of the jth characteristic becoming more stringent. In fact [4p/(k,;—k,)]"/?
provides an upper bound for the optimal specification limit 0%;

Note that in this model it is assumed that the exact values of the characteristics are
not available. Instead, only the results of acceptance inspection are used to decide the
disposition of an item. Based on this information structure, the interaction effects of
other characteristics on a given characteristic can be only in terms of expected values
rather than the exact values of the characteristics. Similar to the single characteristic
model, the optimal screening rule is to classify an item into Grade 1 when the difference
in acceptance costs is smaller than Ap:

(klj_kzj)‘sfj+;_ [(kyi—ky)myi/p 1< dp (21
iZj

Similarly, the solution to the specification limits in Grade 2 is to classify an item into
Grade 2 when

ky 03+ .;_(kzimn/l’z.') <P (22)
i#j
and (p,/k,;)"'? is an upper bound for the optimal specification limit 0%

3.3. Solution procedure

Based on the discussion in the last section, the solution obtained by the following
iterative search algorithm satisfies the first-derivative conditions for the optimal
solution.

Step 1. Obtain the initial solutions J, jand d,; by solving their respective single-
characteristic models independently.

Step 2. Tteratively solve and update (19) and (20) for each characteristic until the
solution converges.

This algorithm, as previously mentioned, provides approximate solutions which satisfy
the first-derivative conditions for the optimal solution. Our computation experience
shows that this algorithm did provide the optimal solutions and converged quickly for
the problems tested.

4. Multi-characteristic model 2

In Model 1, direct trade-offs among the quality of characteristics are not possible.
For instance, an item is classified into Grade 2 if it fails to meet the screening
specifications of any one of the characteristics for Grade 1 even though the values of
other characteristics may be very close to the target values. In this section, we propose
Model 2 based on a joint screening rule. Notice that to implement this model, the exact
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measured values of all the characteristics have to be obtained. Therefore, the inspection
cost of using Model 2 is usually higher than that of using Model 1.

4.1. Optimal screening rule

Recall that in the single characteristic model, the optimal specifications are
determined by comparing the difference in acceptance costs of two grades and the
difference in prices. Therefore, the optimal solution is independent of the distribution of
the quality characteristic. In a multi-characteristic case, if the characteristics are
aggregated, the problem actually becomes a single-characteristic problem. Therefore a
reasonable joint screening rule is to classify an item into Grade 1 if

n

) (klj_klj)yjngp (23)

i=1

to classify an item into Grade 2 if

=

J

1(k1j-kzj)yf>Ap and 2‘1 kyyi<p2 (24)
i=
and to scrap an item if

'21 kz,‘ng >Pp2 (25)
=

To illustrate this screening rule, we now consider a two-characteristic problem with the
parameters given in Table 1. We assume that p, is $12-0, p, is $7-0, and r is $15:0. Then
the optimal screening rule is to classify an item to Grade 1 if

1:39y2 4+ 1-67y3 <50 (26)
and classify an item to Grade 2 if
139y 4+ 1:67y3250  and 1-:01y2 4+ 1-16y3<7:0 (27)

Let the two ellipses in the figure represent the boundaries of (26) and (27). Then, all the
items outside the larger ellipse should be scrapped. The area outside the smaller ellipse
but inside the larger ellipse is the acceptance region for Grade 2 and the area inside the
smaller ellipse is the acceptance region for Grade 1. For comparisons, the acceptance
regions associated with Model 1 are also given in the figure. Notice that the acceptance
regions of Model 2 are actually bounded by those of the single characteristics models.

Consider the rectangles associated with Model 1 in the figure. The area bounded by
the smaller rectangle is the acceptance region for Grade 1 and the area outside the
smaller rectangle, inside the large rectangle is the acceptance region for Grade 2, and

Grade 1 Grade 2
Characteristic d; 0% d;; 0%
1 2:50 1-70 3-85 2-44
2 2-30 1-57 3-60 229

Table 1. A two-characteristic example. d;; is the product specification limit of Grade i for
characteristic j; 0% is the optimal screening specification limit of Grade i for characteristic j
in Model 1.
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The acceptance regions of a two-characteristic problem.

the area outside the larger rectangle is the rejection region. It is interesting to point out
that, using Model 1, the items represented by the points A and B in Fig. 1 are classified
into Grades 1 and 2, respectively. However, using Model 2, the classifications of these
two items are just the opposite. In fact, point A has a higher acceptance cost than point
B and should be classified as a Grade 2 item. Therefore, Model 2 has economic
advantage over Model 1.

4.2. Evaluation of Pr(G1), Pr(G2) and EAC

It has been shown by Tang and Tang (1989), following Robbins (1948), that the
distribution of a linear combination of several independent chi-square random
variables can be written as a series of chi-square distributions with coefficients being
computed iteratively. Without loss of generality, in this section we assume that the
variances of all the quality characteristics are 1. F urthermore, let (k;; —k,,) be the
smallest value among all the (k, i—k2;) in Grade 1 and let k,, be the smallest value
among k,; Then

Pr(G1)=prob[Zl(klj—kzj)yf SAp]
I=

= ,i €+ 2{Ap/(ky1 —k3,)) (28)
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where F,,{) is the chi-square distribution function with n+2j degrees of freedom
and c; is obtained by

Cj:Bj{I!I[(kli_kﬂ)/(kll_kZl)]1/2} j=0,1,2,...

i=2
with
(i) O(,,= .Zz [1 —(kll'—k21)/(k11"'—k21)]h/2h h—_— 1,2, 3,...
ji=

(i) fo=1
i) B,=(1) Y haB;_,  forj=1,23,...
h=1

It has been shown that, if the infinite series in (28) is truncated at the (¢ + 1)th term, the
error is bounded by

t t
0<PAGY)— ¥ ¢Fyafdpltkis—kar) 1= 2 < 29
i= 7=

Note that for a given value of error, the smaller (ky; —k;,) is, the larger is the number of
terms ¢ required.

Let PHG1UG2)=Pr(G2)+ Pr(G1), then (28) can be used to evaluate PHG1 uG2)
by replacing 4p, ky; —k,, and ky;—k; by, respectively, p, k,; and k,;. Exact forms for
computing P(G1uG2) were given in Lo (1989). As a result, Pr(G2) can be obtained by
Pr(G1uG2)— Pr(Gl).

Using the fact that yf,(y)=nf,+2(y), where f,(y)=F '(y) is the probability density
function of the chi-square distribution with n degrees of freedom, we can show that
EAC=EAC,+ EAC,, where

EAC, = .20 [(kqy “‘k21)cl("+2j)]Fn+2j+ L(Ap/(kyy —k;1)) (30)
BAC,= 3. Tkascfn+ 5)1Fns 2y alpall) (31)

5. Numerical analyses

In this section, a five-characteristic example is presented along with sensitivity
studies to compare the performance of the two multi-characteristic models. Four
factors are considered in the sensitivity analyses: 4p, r, d; and o;. A FORTRAN
program has been developed for implementing the solution algorithms and evaluating
model parameters.

5.1. Example

Consider a five-characteristic problem with parameter values given in Table 2. Itis
assumed that r is $15:0, and p, and p, are $12-0 and $7-0, respectively. The optimal
screening specification limits for Model 1 are also given in Table 2. The solution
procedure stopped when the differences of §;; between two successive iterations of all
the characteristics were smaller than 0-0001. The algorithm stopped after only six
iterations. Using the optimal solution, 26:13%, of the items are classified into Grade 1,
43-33% are classified into Grade 2, and 30-547; are scrapped. EAC is $3-65 and EPR is
$2-52.
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Grade 1 Grade 2
Characteristic d;; o} d;; 0%
1 2:50 1-30 3-85 1-92
2 2:30 1-19 3-60 1-81
3 2:30 1-19 3-60 1-81
4 2:20 1-13 350 1-77
5 220 1-13 3-50 1-77

Table 2. A five-characteristic example. d; is the product specification limit of Grade i for
characteristic j; 8% is the optimal screening specification limit of Grade i for characteristic j
in Model 1.

For Model 2, Pr(G1) and Pr(G2) are 29-30% and 40-73%;, respectively, and 29-97%,
of the items are scrapped. EC A associated with the optimal solution is $3-63, and EPR
is $2-73. The difference in EPR between Models 1 and 2 is about 8%,

5.2. Effect of Ap

Price change of a product may be caused by change in demand, competition, or
product improvement. In this section, we study the effects of such a change on the
optimal solutions of the two models. Specifically, p, was fixed and p, was varied from
70 to 115% of the baseline value. The corresponding optimal solutions and several
important model characteristics are reported in Table 3.

It was found in both models that when 4 p decreased, Pr(G1) decreased, Pr(G2)
increased, and Pr(G1UG?2) increased. This indicates that some items, which were
originally classified into Grade 1 or scrapped, were classified into Grade 2 when p,
became larger. EAC and EPR increased as p, increased.

It was also observed that Model 1 was more sensitive to 4p. In particular, as Ap
changed, the per cent changes in EAC, EPR, Pr(G1) and Pr(G2) were higher than those
in Model 2.

5.3. Effect of r

In this section, we study the effects of the change inr from 15 (baseline value) to 19-5
(130% of the baseline value). Since k, ; is determined by r (equations (2) and (3)), for a
given dy;, k;; increases as r increases. Therefore, acceptance cost for a given quality
deviation increases as r increases.

The results show that, as r increased, Pr(G1), Pr(G2), EAC, and EPR decreased. The
change of r had the same effect on the acceptance probabilities of both grades, i.e. the
proportion in both grades decreased as r increased. This relationship was different from
the one in section 5.2, where p, had a reverse influence on the acceptance probability in
Grades 1 and 2. Furthermore, this numerical study also shows that Model 1 was more
sensitive to the change of r then Model 2.

5.4. Effects of product specifications

Product specifications may be changed by government regulations, competition or
consumer demand. To study the effect of tightening product specifications, we obtain
the results of reducing 5% of d, ;of characteristics 1,3 and 5 individually, two at the same
time, and all three together.
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Model 1 Model 2

Ap PHG1) Pr(G2) AEAC AEPR Pr(G1) Pr(G2) A4EAC AEPR

710 449 0-8 -71 -189 47-8 0-8 —-40 —164
675 41-8 84 —-68 —183 44-8 79 -38 —158
6-40 387 15-8 —-61 —166 41-8 14-8 -35 —144
605 355 230 -51  —139 388 216 -29 —120
570 324 301 -37 -102 356 281 —-21 —88
535 292 369 -20 —-56 325 345 —11 —4-8
500* 261 433 0-0 0-0 293 407 0-0 0-0
4-65 230 49-6 21 65 26:1 467 1-3 56
4-30 201 555 45 13-8 230 524 27 119
3-95 171 611 70 219 199 579 4-4 19-0

Table 3. The effect of 4p (%). AEAC is the relative change in EAC from the baseline value;
AEPR is the relative change in EPR from the baseline value; the asterisk marks the
baseline.

Reducing d;; effectively results in an increase of k;;, implying a larger acceptance
cost. Consequently, 8% of the characteristics with tightened specifications were
significantly smaller. At the same time, this also slightly reduced d% of other
characteristics with unchanged specifications. Moreover, 6% decreased further if there is
an additional characteristic with reduced specification limit. The larger number of

tightened characteristics, the greater the reduction on EAC, PG1), Pr(G2), and EPR.

5.5. Effect of characteristic variance

Reducing the variance of the process implies an improvement of the quality of items
produced by the process (Taguchi et al. 1984, 1989, Jessup 1985). In many
manufacturing processes, the characteristics of the product are determined at different
stages. Consequently, reducing the process variance of a production stage results in a
reduction of the variance of a characteristic.

To study the effect of reducing characteristics variances, we obtain the results of
changing the variances of characteristic 1,3 and 5 from 1-0 to 0-81, individually, two at
the same time, and all three together. The effects on the optimal screening specification
limits of Models 1 and 2 were investigated.

When there was only one characteristic having a smaller variance, o of this
characteristic were significantly larger and 6% of other characteristics were slightly
larger than their corresponding baseline values. This also resulted in an increase in
PrG1), P(G2), EAC and EPR. When there were more than one characteristic having
smaller variance, the reduction in individual &} was relatively larger than that when
only one characteristic variance was reduced. In addition, the per cent improvement in
EPR associated with a simultaneous reduction in several characteristic variances was
larger than the sum of the per cent improvements in EPR associated with individual
characteristics.

6. Conclusion
In this paper, we considered a situation where items produced in a manufacturing
process are sorted into two grades or scrapped. Two product grades have different
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selling prices and product specifications. The product quality is determined by more
than one characteristic. Two models have been proposed using different inspection
methods. Optimal solution procedures were proposed and demonstrated. Numerical
analyses showed the sensitivities of the solutions with respect to several important
model parameters. The models suggested in this paper can be extended to the situation
where more than two product grades are available.

The function used in this paper to measure the loss due to imperfect quality is an
additive function. It is known that there are several important conditions for using an
additive loss function (Keeney and Raiffa 1976). When these conditions are not met,
other forms of loss function should be considered. The optimal screening rule of Model
2 can be easily obtained for other loss function. However, depending on the loss
function, the solution procedure for Model 1 may be difficult to develop. One
important reason that Model 1 performed reasonably well relative to Model 2 is that
the difference in acceptance regions between two models was not significant. However,
it is expected that the difference in acceptance regions would be significant when other
forms of loss functions, such as a multiplicative one, were used. In this case, Model 1
would not perform as well as Model 2.
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