Time analysis for planning a path in a time-window network

Y-L Chen ${ }^{1}$, L-J Hsiao ${ }^{2}$ and K Tang ${ }^{3, *}$
${ }^{1}$ National Central University, Chung-Li, Taiwan, Republic of China; ${ }^{2}$ Van-Nung Institute of Technology, Chung-Li, Taiwan, Republic of China; and ${ }^{3}$ Purdue University, West Lafayette, IN, USA

Abstract

A systematic method is proposed to generate time information on the paths and nodes on a time-window network for planning and selecting a path under a constraint on the latest entering time at the destination node. Specifically, three algorithms are proposed to generate six basic time characteristics of the nodes, including the earliest and latest times of arriving at, entering, and departing from each node on the network. Using the basic time characteristics, we identify inaccessible nodes that cannot be included in a feasible path and evaluate the accessible nodes' flexibilities in the waiting time and staying time. We also propose a method for measuring adverse effects of including an arc. Finally, based on the time characteristics and the proposed analyses, we develop an algorithm that can find the most flexible path in a time-window network. Journal of the Operational Research Society (2003) 54, 860-870. doi:10.1057/palgrave.jors. 2601583

Keywords: network; time-window constraint; time analysis

Introduction

The time-constrained network analysis generalizes the traditional network analysis by incorporating the constraints on the availability of the nodes over time. Time window has been a common form of time constraint considered in the literature. Basically, a time window is a time period, defined by the earliest and latest times, when a node is available for traveling through. There are many practical situations where time windows can be used to describe the time constraints associated with the nodes and arcs on a network. For example, a time window in a transportation network may be the time period that a service or transition facility is available for the traveler to pass through. Similarly, a time window associated with an arc may be the time that a transportation channel is open. In vehicle routing problems and traveling salesman problem, a time window may represent the time period during which a customer needs to be visited, and in production scheduling problems, a time window may be the time that a certain machine or production facility is available for processing jobs.

The time-window network analysis has attracted widespread interest over the past decade, and many fundamental issues considered in the traditional network optimization have been addressed for time-window networks. These include the vehicle routing problem, the traveling salesman problem, and the shortest path problem.

[^0]As in other operations research studies, mathematical models are used in network analysis to provide an abstract representation of the real problems for assessing decision alternatives and for selecting the best solution. Because of the complexity of a real problem and the tractability of the model, an exact representation of the real problem is seldom the objective of a model formulation effort. For example, the waiting time at a node or arc may be a very important factor in path selection because of the cost, safety, quality, and other consideration. It is difficult, however, to incorporate the factors of this nature in a network model. In fact, adding a simple cost component as a linear function of waiting time, a network model may become very complicated to solve. Consequently, many preferences, tangible and intangible factors are not incorporated in model formulation, resulting in implementation issues.

In this paper, instead of determining an 'optimal' path, our objective is to develop a systematic method to generating important time-related information for each node and arc on a network to assist selecting the most flexible path. We consider a time-window network and assume that a deadline constraint is imposed on the latest entering time of the destination node. Note that there could be multiple feasible paths under a deadline constraint. In planning or selecting a path, the following questions are often considered:
(a) What is the latest time to depart from a node on the network without violating the deadline constraint?
(b) What is the waiting time before entering a node? Can the waiting time be reduced and how much of it is inevitable?
(c) How long can we stay at a node? Can we increase or reduce the staying time, and what are the minimum and maximum staying times at a node?

The answers to these questions provide valuable information for selecting and planning a path on the network. For example, the waiting time before entering a node and the staying time at a node may have different economic or risk implications, depending on the application. A preferred path can be selected from the feasible paths by evaluating alternative paths based on the time information from our proposed analysis. We can also obtain information on the flexibility of a path in terms of the 'spare time' associated with the nodes on the path. A more flexible path is desirable if we consider potentially unexpected delays in traveling on the network. Furthermore, the information is also helpful when we have to switch to a new path after we have finished a portion of the initial path, because a node or more on the original path become unreliable.
Specifically, we propose three algorithms to generate six basic time characteristics associated with the nodes on the network. Using the time characteristics, we first identify inaccessible nodes, the nodes that cannot be included in a feasible path, and propose further analyses on the waiting time and staying time for accessible nodes. From the analyses, we evaluate the flexibility associated with each accessible node in terms of its flexible times in waiting and staying. We also identify inflexible nodes, which have no spare time in entering, departure, or both. It is demonstrated that the time characteristics and analyses provide valuable information for selecting and planning a path.

The remainder of this paper is organized as follows. First, we give the problem statement, and present the algorithms for evaluating six basic time characteristics associated with the nodes on the network. In the subsequent section, we use the basic time characteristics to further analyze the waiting time and the staying time at the nodes, and additional properties associated with the nodes and arcs. Using the results from the analyses, we then discuss a method of selecting a path in practice. A conclusion is given in the final section.

Problem statement and algorithms

A time-window network is represented as a directed graph $G=(N, A)$, where $N=\{1,2,3, \ldots, n\}$ and $A=\{(i, j) \mid i, j \in N$, and $i \neq j\}$. For simplicity, we assume that nodes 1 and n are the source and the destination, respectively. For each arc $(i, j) \in A$, there is a static and non-negative time duration, denoted by $\operatorname{dur}(i, j)$, to pass through it.

For each node $i \in N$, there are two types of time-window constraints, entering-time and departure-time windows. Let E_{i} be the number of entering-time windows for node i. The k th entering-time window for node $i, 1 \leq k \leq E_{i}$, is represented by $\left[\right.$ Ebeginin $_{i}^{k}$, Eend ${ }_{i}^{k}$], where Ebegin ${ }_{i}^{k}$, and Eend ${ }_{i}^{k}$ are
the beginning and ending times of the time window, respectively. Similarly, $\left(\right.$ Dbegin $_{i}^{k}$, Dend $\left._{i}^{k}\right)$ is used to represent the k th departure-time window, $1 \leq k \leq D_{i}$, for node i.

We assume that all the entering-time windows of a node are disjoint, that is, for node i,

$$
\begin{gathered}
\text { Eend }_{i}^{k-1}<\text { Ebegin }_{i}^{k}<\text { Eend }_{i}^{k} \text { for } 1<k \leq E_{i} \\
\text { and } 0 \leq \text { Ebegin }_{i}^{1} \leq \text { Eend }_{i}^{1}
\end{gathered}
$$

and, similarly, the departure-time windows for a node are also disjoint:

$$
\begin{aligned}
\text { Dend }_{i}^{k-1}<\text { Degegin }_{i}^{k} & \leq \text { Dend }_{i}^{k} \text { for } 1<k \leq D_{i} \\
\text { and } 0 & \leq \text { Dbegin }_{i}^{1} \leq \text { Dend }_{i}^{1}
\end{aligned}
$$

Furthermore, for simplicity in designing and presenting the algorithms, we let the source node have only one entering-time window $[0, \infty]$ and the destination node have only one departure-time window $(0, \infty)$. Without loss of generality, we let the ending time of the last entering-time window of node $n, E e n d_{n}^{E_{n}}$, be the predetermined latest time of entering the destination.

For illustration, let us consider the time-window network in Figure 1, where nodes 1 and 12 are the source and destination nodes, respectively, and the deadline to enter node 12 is 33 . The number on an arc is the arc's duration time, the time intervals given by the brackets are enteringtime windows, and those given by the parentheses are departure-time windows. For example, node 9 has one entering window and one departure window.

Figure 1 An example of time-window network.

In order to generate useful time information for path selection, we define the following six basic time characteristics associated with each node:
$E A_{i}=$ earliest time to arrive at node i from the source node, $E E_{i}=$ earliest time to enter node i,
$E D_{i}=$ earliest time to depart from node i after entering,
$L D_{i}=$ latest time to depart from node i without violating the deadline constraint,
$L E_{i}=$ latest time to enter node i without violating the deadline constraint,
$L A_{i}=$ latest time to arrive at node i without violating the deadline constraint.

There are several apparent relations among these time characteristics and the time-window constraints. First, the earliest time to enter node i must be no earlier than the earliest time to arrive at node $i\left(E E_{i} \geq E A_{i}\right)$, and $E E_{i}$ must be contained in an entering-time window associated with node i. Second, we have $E D_{i} \geq E E_{i}$, and $E D_{i}$ must be contained in a departure-time window associated with node i. Similarly, the same kind of relations holds for the latest times $L D_{i}, L E_{i}$, and $L A_{i}$. It is evident that the time characteristics associated with a node on a path should satisfy the relations $L A_{i} \geq E A_{i}$, $L E_{i} \geq E E_{i}$, and $L D_{i} \geq E D_{i}$. If the time characteristics associated with a node violate any one of these relations, a path containing the node is not feasible, and we define a node of that nature as an inaccessible node.

Next, we present three algorithms for evaluating the six time characteristics defined above. The three algorithms are executed in sequence. In presenting the algorithms, we define that a node, say node j, is a predecessor of node i if $\operatorname{arc}(j, i)$ exists on the network. Similarly, node j is a successor of node i if $\operatorname{arc}(i, j)$ exists.

The first algorithm is a forward procedure which evaluates $E A_{i}, E E_{i}$, and $E D_{i}$ for each node i on the network from the source to the destination. Let $E A(j, i)$ be the earliest time to arrive at node i through arc (j, i). Then, we have $E A(j, i)=$ $E D_{j}+\operatorname{dur}(j, i)$, and $E A_{i}$ for node i is determined by

$$
E A_{i}=\operatorname{Min}_{j}\{E A(j, i)\}
$$

for all the predecessor nodes j of i. Once $E A_{i}$ is obtained, $E E_{i}$ equals to $E A_{i}$ if $E A_{i}$ falls in one of the entering-time windows of node i; otherwise $E E_{i}$ equals to Ebegini ${ }_{i}^{k}$ of the next available entering-time window. Finally, $E D_{i}$ is obtained by comparing $E E_{i}$ with the available departuretime windows at node i.

The second algorithm is a backward procedure for evaluating $L E_{i}$ and $L D_{i}$ from the destination to the source. Let $L D(i, j)$ denote the latest time to leave nodes i to j without violating the deadline constraint, which can be obtained by
(i) Subtracting $\operatorname{dur}(i, j)$ from $L E_{j}$.
(ii) Adjusting the value to the departure-time windows of node i.

In turn, $L D_{i}$ can be determined as $\operatorname{Max}_{j}\{L D(i, j)\}$, for all the successor nodes j of node i. Finally, $L E_{i}$ is determined by adjusting $L D_{i}$ to its entering-time windows.

The third algorithm is used to evaluate $L A_{i}$. Let $L A(j, i)$ be the latest time to arrive at node i from node j without violating the deadline constraint, which can be obtained by the following procedure:
(i) Let $x=L E_{i}-\operatorname{dur}(j, i)$.
(ii) Let y denote the latest time that we can leave node j for node i.

If $x \geq L D_{j}$, then $y=L D_{j}$
Else if $E D_{j} \leq x \leq L D_{j}$, then determine y by comparing x and the departure-time windows of node j
Else if $x \leq E D_{j}$, then $\mathrm{y}=-\infty$.
(iii) $\operatorname{Set} L A(j, i)=\operatorname{dur}(j, i)+y$.

Finally, $L A_{i}$ can be determined as $\operatorname{Max}_{j}\{L A(j, i)\}$ for all the predecessor nodes j of i.

The proofs of the algorithms are omitted because the first and second algorithms are simple modifications of the classical shortest path algorithm and the third algorithm is intuitive. For the detailed algorithms, see the appendix.

We continue using the network in Figure 1 for illustration. We first use Algorithm I to obtain the $E A_{i}, E E_{i}$, and $E D_{i}$ for each node. The algorithm begins with setting $E D_{1}=0$ for the source node. Since the successors of the source node are nodes 2 and 3, the next step is to modify the $E A_{j}, E E_{j}$, and $E D_{j}$ of these two nodes. For node 2, we find that $E A_{2}=E D_{1}+\operatorname{dur}(1,2)=0+3=3$. Since $E A_{2}$ is in the first entering-time window, $[2,7], E E_{2}=E A_{2}=3$. We also find $E D_{2}=4$ because the first departure-time window (4,5), is behind $E E_{2}$. For node 3, the computation can be down similarly. Repeatedly using the procedure, we obtain the values of $E A_{i}, E E_{i}$, and $E D_{i}$ of all the nodes given in Table 1.

Since Algorithm II is a backward procedure, we first set the value of $L E_{12}$ to be $E e n d_{j}^{E_{n}}(=33)$. Node 12 has six predecessors: nodes $4,5,7,9,10$, and 11 . Consider node 4 first. The difference between $L E_{12}$ and $\operatorname{dur}(4,12)$ is 28 , which is the latest departure time without considering departuretime windows. However, since the last departure-time window of node 4 is $(12,18)$, the latest departure time at node $4, L D_{4}$, is 18 . By matching $L D_{4}$ with the entering-time windows, we found that the latest time to enter node $4\left(L E_{4}\right)$ is 16. Using the procedure, we found that $L D_{5}=28$, $L E_{5}=28, \quad L D_{7}=22, \quad L E_{7}=22, \quad L D_{9}=24, \quad L E_{9}=15$, $L D_{10}=21, L E_{10}=21, L D_{11}=27$, and $L E_{11}=22$. In the next iteration, node 5 is considered and can be done similarly. The complete results from Algorithm 2 are listed in the columns under $L E_{i}$ and $L D_{i}$ in Table 1.

In Algorithm III, all the $L A_{i}$ values can be computed independently and in any order since their evaluation processes are not dependent on the $L A_{i}$ values of other nodes. To illustrate this point, we give the process of obtaining $L A_{5}$. Node 5 has three predecessors, namely,

Table 1 Time characteristics associated with the nodes in Figure 1 when the deadline is 33

Node i	$E A_{i}$	$E E_{i}$	$E D_{i}$	$L A_{i}$	$L E_{i}$	$L D_{i}$
1	0 (source)	0 (source)	0	- (source)	10	10 (into node 2)
2	3 (from node 1)	3	4	15 (from node 4)	15	16 (into node 5)
3	6 (from node 2)	9	9	13 (from node 1)	13	18 (into node 5)
4	8 (from node 2)	10	12	14 (from node 5)	16	18 (into node 12)
5	9 (from node 2)	9	9	28 (from node 6)	28	28 (into node 12)
6	19 (from node 3)	19	12	20	21 (from node 3)	23
7	12 (from node 5)	12	14	22 (from node 5)	22	22 (into node 5)
7	30 (from node 6)	30	30	$-\infty$	18	18 (into node 12)
9	10 (from node 2)	12	20	11 (from node 2)	15	24 (into node 12)
9	8 (from node 2)	20	21	20 (from node 2)	21	21 (into node 12)
10	22 (from node 3)	22	24	22 (from node 3)	22	27 (into node 12)
11	13 (from node 5)	16	16	33 (from node 9)	33	- (destination)

Inaccessible node: node 8 .
Inaccessible arcs: $(6,7),(7,6),(8,6),(6,8)$ and $(4,2)$.
Inflexible node in arrival time: node 11 .
Inflexible node in departure time: node 10 .
nodes 2,3 , and 6 . Consider node 2 first ($j=2$ and $i=5$). We obtain that $x=L E_{5}-\operatorname{dur}(2,5)=28-5=23$ and y, the latest time to depart from nodes 2 to 5 , equals 16 . Consequently, we obtain $L A(2,5)=y+\operatorname{dur}(2,5)=16+5=21$. Next, we consider node $3(j=3$ and $i=5)$, and we obtain $x=L E_{5^{-}}$ $\operatorname{dur}(3,5)=28-4=24$ and $y=18$. Thus, our result becomes $L A(3,5)=y+\operatorname{dur}(3,5)=22$. Finally, we consider node 6 , and the result is $x=24, y=24$, and $L A(6,5)=y+$ $\operatorname{dur}(6,5)=28$. Using the results associated with these three nodes, we obtain $L A_{5}=\max \{L A(2,5), L A(3,5), L A(6,5)\}=$ 28. The results for the remaining nodes are given in Table 1.

Time analysis

In the last section, three algorithms are developed to evaluate six basic time characteristics for all the nodes on the network. In this section, we first define a partial order precedence graph to summarize the relations among the time characteristics. Next, we identify inaccessible nodes and propose further analyses on the waiting time and staying time for accessible nodes. Based on the analyses, we evaluate the flexibility associated with each accessible node in terms of its flexible times in waiting and staying. We also identify inflexible nodes, which have no spare time in entering time, departure time, or both. It is demonstrated that the time characteristics and the proposed analyses provide valuable information for planning a path in a time-window network.

First, we use $A A_{i}, A E_{i}$, and $A D_{i}$ to denote the actual arriving time, entering time, and departure time for node i, respectively. For a feasible path, the following relations must hold:

$$
\left.\begin{array}{rl}
E A_{i} & \leq A A_{i}
\end{array} \leq L A_{i}, \quad E E_{i} \leq A E_{i} \leq L E_{i}\right] \text { a } E D_{i} \leq A D_{i} \leq L D_{i}
$$

Furthermore, the arrival times, the entering times, and the departure times have the following relations:

Figure 2 Partial order relations among the time characteristics.

$$
\begin{aligned}
& E A_{i} \leq E E_{i} \leq E D_{i}, \quad A A_{i} \leq A E_{i} \leq A D_{i} \text { and } \\
& L A_{i} \leq L E_{i} \leq L D_{i}
\end{aligned}
$$

Using these two sets of relations, we obtain a partial order precedence graph shown in Figure 2 to summarize the relations among the time characteristics.

Inaccessible nodes

As defined, the inaccessible nodes are the nodes of which at least one of the inequalities, $E A_{i} \leq L A_{i}, E E_{i} \leq L E_{i}$, or $E D_{i} \leq L D_{i}$, is not satisfied. For example, from Table 1, we find that node 8 is an inaccessible node. The inaccessible nodes should not be included in a path unless the latest time to enter the destination or the time-windows associated with the node can be changed. In the following analysis, all the inaccessible nodes are excluded.

Node flexibility

We define the arrival-time interval for node i as $\left[E A_{i}, L A_{i}\right]$, which gives limits on the actual arrival time of a feasible path. Similarly, we define $\left[E E_{i}, L E_{i}\right]$ and $\left[E D_{i}, L D_{i}\right]$ as the entering-time and departure-time intervals for node i, respectively. The ranges of the three time intervals are
defined as follows:

$$
\begin{aligned}
& \text { Range }_{\mathrm{A}}[i]=L A_{i}-E A_{i}, \text { Range }_{\mathrm{E}}[i]=L E_{i}-E E_{i}, \\
& \text { Range }_{\mathrm{D}}[i]=L D_{i}-E D_{i}
\end{aligned}
$$

A larger range associated with a node implies more flexibility at a node or more robustness of a path if we consider uncertainties such as a possible unexpected increase in the duration time before arriving at the node. For a given network, the three intervals may be overlapped or disjoint.

If the earliest arrival time at a node is identical to its latest arrival time $\left(\right.$ Range $\left._{\mathrm{A}}[i]=0\right)$, we would not have any flexibility in the arrival time at the node. In other words, any delay of arriving at the node results in failing to meet the given latest time of entering the destination. In this case, we say that the node is inflexible in arrival time. Furthermore, if the earliest departure time is identical to the latest departure time $\left(\right.$ Range $\left._{\mathrm{D}}[i]=0\right)$, the node is inflexible in departure time. If a node is not flexible in both arrival time and departure time, we call the node an inflexible node.

Waiting time analysis

We consider the waiting time between arriving at a node and entering the node. There are two situations. In the first situation, the arrival-time interval overlaps with the enteringtime interval, that is, $L A_{i} \geq E E_{i}$. In this situation, the waiting time can be zero, if the arrival time at the node is in the overlapped period $\left[E E_{i}, L A_{i}\right]$ of the arrival-time and the entering-time intervals. On the other hand, if the actual arrival time $A A_{i}$ is before time $E E_{i}$, then we have to wait to enter the node during the time period $\left[A A_{i}, E E_{i}\right]$.

In the second situation, the arrival-time and the enteringtime intervals are disjoint, that is, $L A_{i}<E E_{i}$. In this situation, we have an unavoidable waiting time interval from $L A_{i}$ to $E E_{i}$. As shown in Figure 3, the longest possible waiting time is given by

$$
\text { longest }- \text { waiting }[i]=L E_{i}-E A_{i}
$$

and the total actual waiting time, $A E_{i}-A A_{i}$, can be partitioned into three portions following the relations among the latest arrival and the earliest entering times. These three times are defined as follows:

$$
\begin{aligned}
\text { shortest }- \text { waiting }[i] & =E E_{i}-L A_{i}, \\
\text { prewaiting }[i] & =L A_{i}-A A_{i}, \\
\text { postwaiting }[i] & =A E_{i}-E E_{i}
\end{aligned}
$$

Note that in the first situation where the arrival- and entering-time intervals overlap, we only have pre-waiting time and post-waiting time. In the second situation where $L A_{i}<E E_{i}$, the interval between $L A_{i}$ and $E E_{i}$ is the shortestwaiting interval because the interval is unavoidable.

On the contrary, the pre-waiting time and post-waiting time are flexible because they can be expanded or reduced by

Figure 3 Time ranges and their relations.
changing the arrival or entering times. Since $A A_{i}$ falls in the arrival-time interval and $A E_{i}$ in the entering-time interval, we have the relations $0 \leq$ pre-waiting $[i] \leq L A_{i}-E A_{i}$ and $0 \leq$ post-waiting $[i] \leq L E_{i}-E E_{i}$. Therefore, the total flexible waiting time in both situations can be measured by $\left(L A_{i}-E A_{i}\right)+\left(L E_{i}-E E_{i}\right)+\min \{$ shortest-waiting $[i], 0\}$.

Staying time analysis

We can analyze the staying time using the method used for analyzing the waiting time. There are two situations, based on whether the entering-time interval overlaps with the departure-time interval. In the first situation, the enteringtime interval overlaps with the departure-time interval, that is, $L E_{i} \geq E D_{i}$. In this situation, the staying time can be zero, if the entering time at the node is in the overlapped period, [$E D_{i}, L E_{i}$], of the entering-time and the departure-time intervals. On the other hand, if the actual entering time $A E_{i}$ is before time $E D_{i}$, then we have to stay at the node during the time period $\left[A E_{i}, E D_{i}\right]$. In the second situation, the entering-time and the departure-time intervals are disjoint, that is, $L E_{i}<E D_{i}$. In this situation, we have an unavoidable staying time interval from $L E_{i}$ to $E D_{i}$.

The time of actually staying at node i, denoted by actualstaying $[i]$, is determined by the difference between $A D_{i}$ and $A E_{i}$. The actual staying time consists of three portions: the pre-staying time, shortest-staying time, and post-staying time, defined by

$$
\begin{aligned}
\text { prestaying }[i] & =L E_{i}-A E_{i}, \\
\text { shorteststaying }[i] & =E D_{i}-L E_{i}, \\
\text { poststaying }[i] & =A D_{i}-E D_{i}
\end{aligned}
$$

The shortest staying time at node i is determined by max $\{$ shortest-staying $[i], 0\}$, which is the shortest time of staying at the node after entering. Next, we discuss the flexible staying time, which includes the pre-staying time and
post-staying time. Basically, the flexible staying time may be expanded or reduced within our discretion. We can determine the length of the pre-staying time by changing the actual entering time and that of the post-staying time by our actual departure time. Since $A E_{i}$ and $A D_{i}$ fall within the entering-time interval and the departure-time interval, respectively, we have $0 \leq$ pre-staying $[i] \leq L E_{i}-E E_{i}$ and $0 \leq$ post-staying $[i] \leq L D_{i}-E D_{i}$. Therefore, the total flexible staying time can be represented as

$$
\left(L E_{i}-E E_{i}\right)+\left(L D_{i}-E D_{i}\right)+\min \{\text { shortest-staying }[i], 0\}
$$

The longest-staying $[i]$ is the maximal staying time at a node. It is the longest time that we may stay at a node, which includes the entering-time interval, shortest staying time, and departure-time interval. The relation is

$$
\begin{aligned}
& \text { Longest-staying }[i]=L D_{i}-E E_{i} \\
& \quad=\text { Range }_{\mathrm{E}}[i]+\text { shortest-staying }[i]+\text { Range }_{\mathrm{D}}[i]
\end{aligned}
$$

Adverse effects by including an arc

It is often desirable to analyze potential adverse effects if we consider including arc (i, j) into the path. If arc (i, j) is included, the earliest time to arrive at node j becomes $E A(i, j)$, the latest time to arrive at node j without violating the deadline constraint becomes $L A(i, j)$, and the latest time to leave node i is $L D(i, j)$. As for the earliest time to depart from node i, it is the same as the original $E D_{i}$ because at time $E D_{i}$ we are allowed to leave for any successor nodes of node i.

There are three types of adverse effects that may be incurred by including arc (i, j) in the path. The first is associated with node i. Since $L D(i, j) \leq L D_{i}$, the new departure-time interval of node $i,\left[E D_{i}, L D(i, j)\right]$, is smaller than the original one $\left[E D_{i}, L D_{i}\right]$, implying less flexibility in the departure time from the node.

The second type of adverse effects is associated with node j. Since $E A(i, j) \geq E A_{j}$ and $L A(i, j) \leq L A_{j}$, the original arrival-time interval of node $j,\left[E A_{j}, L A_{j}\right]$, is reduced to a smaller interval $[E A(i, j), L A(i, j)]$, implying a less flexibility in the arrival time of the node. Furthermore, it may also increase the shortest waiting time. When $L A_{j}<E E_{j}$, the shortest waiting time interval at node j will be increased from $\left[L A_{j}, E E_{j}\right]$ to $\left[L A(i, j), E E_{j}\right]$.
The third type of effects is the possibility of causing the path to be infeasible. In this case, we may call arc (i, j) an inaccessible arc, which can be easily identified by checking the condition $L A(i, j)<E A(i, j)$. When the condition is satisfied, it is an inaccessible arc because the earliest time to arrive at node j is later than the latest time we need to arrive at node j without violating the deadline constraint.

Example 1

Using the basic time characteristics in Table 1 derived for the network of Figure 1, we obtain the additional properties associated with arrival, entering, and departure times of the nodes. For example, consider related time intervals for nodes

Table 2 Results of time analysis for nodes 4 and 9

Result	Node 4	Node 9
Arrival-time interval	$[8,14]$	$[10,11]$
Entering-time interval	$[10,16]$	$[12,15]$
Departure-time interval	$[12,18]$	$[20,24]$
Pre-waiting interval	$\left[\mathrm{AA}_{4}, 14\right]$	$\left[\mathrm{AA}_{9}, 11\right]$
Shortest-waiting interval	NA_{3}	$[11,12]$
Post-waiting interval	$\left[10, \mathrm{AE}_{4}\right]$	$\left[12, \mathrm{AE}_{9}\right]$
Pre-staying interval	$\left[\mathrm{AE}_{4}, 16\right]$	$\left[\mathrm{AE}_{9}, 15\right]$
Shortest-staying interval	NA	$[15,20]$
Post-staying interval	$\left[12, \mathrm{AE}_{4}\right]$	$\left[20, \mathrm{AD}_{9}\right]$
Flexible waiting time	8	4
Fixed waiting time	0	1
Longest waiting time	8	5
Flexible staying time	8	7
Fixed staying time	0	5
Longest staying time	8	12

9 and 4 given in Table 2. The arrival-, entering-, and departure-time intervals of node 9 are disjoint, suggesting that no matter how the arrival, entering, and departure times are selected, we cannot completely eliminate waiting and staying periods. Furthermore, since the three intervals of node 4 overlap, all the waiting and staying time intervals are flexible and can be adjusted by selecting proper arrival, entering, departure times.

Path selection

In this section, we propose an algorithm for selecting a path with maximum flexibility to meet the deadline requirement at the destination. As discussed in the last section, Range $_{\mathrm{A}}[i]$, Range $_{\mathrm{E}}[i]$, and Range $_{\mathrm{D}}[i]$ are reasonable measurements for a node's flexibility in its arrival, entering, and departure times. We first define a flexible node, based on a weighted sum of these ranges. Using the definition, we define that a path is flexible if all the nodes on the path are flexible. Under these definitions, an algorithm is proposed for finding the path with maximum flexibility among all flexible paths from the source node to the destination.

We define a measurement for the overall flexibility of node i as

$$
\begin{aligned}
\text { Flexibility }[i]= & \alpha \times \text { Range }_{\mathrm{A}}[i] \\
& +\beta \times \text { Range }_{\mathrm{E}}[i]+\gamma \times \text { Range }_{\mathrm{D}}[i]
\end{aligned}
$$

where α, β, and γ are weights given by users and $0 \leq \alpha, \beta$, and $\gamma \leq 1$. A node i is called a flexible node if it satisfies Flexibility $[i] \geq \lambda$, where λ is a threshold specified by users. Furthermore, we define that a path is a flexible path if all the nodes on the path are flexible nodes. The advantage of travelling along a flexible path is that no matter where we are in the path we have flexibility to change our schedule to cope with future unexpected delay or fluctuation in travel time. And we call a flexible path from nodes 1 to i as the most flexible path if it has the greatest flexibility at node i.

Next, we study the problem of finding the most flexible path from nodes 1 to i. Note that the three time ranges are
computed from the six time characteristics $L A_{i}, E A_{i}, L E_{i}$, $E E_{i}, L D_{i}$, and $E D_{i}$. Furthermore, these six characteristics are computed from Algorithms I-III, where Algorithm I computes $E E_{i}$ and $E D_{i}$ from $E A_{i}$, Algorithm II computes $L E_{i}$ and $L D_{i}$, and Algorithm III derives $L A_{i}$ from $L E_{i}$ and $L D_{i}$. From these three algorithms, we know that $L A_{i}, L E_{i}$, and $L D_{i}$ are not dependent on $E A_{i}$; but $E E_{i}$ and $E D_{i}$ are positively related to $E A_{i}$. In other words, if $E A_{i}$ becomes smaller, then $E E_{i}$ and $E D_{i}$ will become smaller or remain the same, but $L A_{i}, L E_{i}$ and $L D_{i}$ will not change. As a result, the smaller $E A_{i}$ is, the wider the three intervals are, or the more flexible node i is. From this simple but important observation, we conclude that the flexible path that leads to the earliest arrival at node i is the most flexible path to node i. Therefore, our problem now becomes how to find the flexible path with the earliest arrival time at node n. For ease of reference, we call the path the most flexible path to node n.

The most flexible path to a node, say node j, denoted as $\operatorname{MFP}(1, j)$, has an attractive property that any prefix path of $\operatorname{MFP}(1, j)$ to an intermediate node i can be replaced by the most flexible path to node i, that is, $\operatorname{MFP}(1, i)$, without increasing the earliest time to arrive node j. By going through $\operatorname{MFP}(1, i)$ other than the original prefix path, we will arrive node i earlier. Then, we can have the same earliest arrival time to node j just by waiting outside node i until the original arrival time has reached and then tracing the remaining path in the original way.

The above observation derives a very useful property that a prefix path of the most flexible path is also the most flexible path. Consequently, the proposed algorithm first finds the most flexible path for shorter paths and, based on the result, gradually extends to longer paths. The algorithm is described as follows. Note that we assume that $L A_{i}, L E_{i}$, and $L A_{i}$ have been calculated by Algorithms II and III beforehand.

Algorithm Finding-path

1. Set $E A_{1}=0$.

Set all $E A_{u}=\infty$ for all nodes u in N.
Insert all values of $E A_{u}$ into the set $H P$.
2. Find and remove the minimum element $E A_{u}$ from $H P$.
3. Determine whether node u is flexible by the following steps.
3.1. Compute $E E_{u}$ and $E D_{u}$ using $E A_{u}$.
3.2. Retrieve the values of $L A_{i}, L E_{i}$, and $L D_{i}$.
3.3. Compute the three time inter vals and node's flexibility.
4. If $u=n$ then go to step 6 .
5. If node u is not flexible then go to step 2; else do the following.
For each $\operatorname{arc}(u, w)$ emanating from node u, do
$\operatorname{temp}_{\mathrm{w}}=\mathrm{ED}_{\mathrm{u}}+\operatorname{dur}(\mathrm{u}, \mathrm{w})$.
If temp $_{w}<E A_{w}$ then
$E A_{w}=\operatorname{temp}_{\mathrm{w}}, \operatorname{pred}_{\mathrm{w}}=\mathrm{u}$, and
update the value of $E A_{w}$ in $H P$.
Go to step 2.
6. If node n is flexible then output the most flexible path by tracing back through pred $_{n}$;
Else the network has no flexible path to node n.

Example 2

Consider the network shown in Figure 4, where the arc's time is shown along each arc, the attached windows are indicated next to each node, and the specified deadline is 25 . Beside each node, we also show its latest entering time and latest departure time, which are calculated by Algorithm II. Further, we assume $\alpha=0, \beta=1, \gamma=1$, and $\lambda=4$ in determining a node's flexibility. Under this assumption, the flexibility of a node is computed by summing the ranges of the departure and entering time intervals, and if the total value is smaller than 4 , it is not flexible. The execution of the algorithm is shown in Table 3, where there are seven iterations, and, in each iteration, the node with the minimal $E A$ value is removed from $H P$. Moreover, in each iteration, we also check whether the chosen node is flexible. If a node is not flexible, we skip it and go to the next iteration, because it cannot be an intermediate node of a flexible path. Otherwise, we will update the earliest arrival times of its adjacent nodes, if it can provide a shorter path by going through this chosen node. Following this procedure, we found that path (1, 3, 5, 7) is the most flexible path. It is interesting to note that there are actually two paths that arrive at node 7 earlier than this path, that is, path $(1,3,5,6,7)$ and path $(1,2,5,7)$. These two paths were not selected, however, because the former has an inflexible node 6 and the latter has an inflexible node 2 as their intermediate nodes.

The following theorem shows the validity of the algorithm.

Theorem 1 Algorithm Finding-path finds the most flexible path in a network.

Proof. We prove the result by induction. At any given iteration, the algorithm partitions all nodes into two sets, namely, $H P$ and $\overline{H P}$, where $\overline{H P}=N-H P$. Our induction hypotheses are founded on the premises that: (1) the time

Figure 4 Network after preprocessing.

Table 3 Execution of Algorithm Finding-path

Iteration	Nodes	1	2	3	4	5	6	7	Chosen node	Flexibility of the node	Flexible or not
1	EA	0	4	5	∞	∞	∞	∞	1	$14=7+7$	Yes
	EE	0	6	9	∞	∞	∞	∞			
	ED	0	6	9	∞	∞	∞	∞			
	Belong to	$\overline{H P}$	HP	HP	HP	HP	HP	HP			
2	EA	0	4	5	∞	∞	∞	∞	2	$2=1+1$	Not
	EE	0	6	9	∞	∞	∞	∞			
	ED	0	6	9	∞	∞	∞	∞			
	Belong to	$\overline{H P}$	$\overline{H P}$	HP	HP	HP	HP	HP			
3	EA	0	4	5	11	13	∞	∞	3	$9=3+6$	Yes
	EE	0	6	9	11	14	∞	∞			
	ED	0	6	9	18	15	∞	∞			
	Belong to	$\overline{H P}$	$\overline{H P}$	$\overline{H P}$	HP	HP	HP	HP			
4	EA	0	4	5	11	13	21	22	4	$7=4+3$	Yes
	EE	0	6	9	11	14	∞	22			
	ED	0	6	9	18	15	∞	22			
	Belong to	$\overline{H P}$	$\overline{H P}$	$\overline{H P}$	$\overline{H P}$	HP	HP	HP			
5	EA	0	4	5	11	13	17	20	5	$10=5+5$	Yes
	EE	0	6	9	11	14	17	20			
	ED	0	6	9	18	15	17	20			
	Belong to	$\overline{H P}$	HP	HP							
6	EA	0	4	5	11	13	17	20	6	$2=1+1$	Not
	EE	0	6	9	11	14	17	20			
	ED	0	6	9	18	15	17	20			
	Belong to	$\overline{H P}$	HP								
7	EA	0	4	5	11	13	17	20	7	$10=5+5$	Yes
	EE	0	6	9	11	14	17	20			
	ED	0	6	9	18	15	17	20			
	Belong to	$\overline{H P}$									

label $E A_{u}$ of each node u in $\overline{H P}$ is the earliest possible time to arrive node u through a flexible path, and (2) the time label $E A_{u}$ of each node u in $\overline{H P}$ is the earliest time to arrive node u through a flexible path, provided that each intermediate node in the path lies in $\overline{H P}$. We perform induction according to the cardinality of the set $\overline{H P}$.
To prove hypothesis (1), recall that, in each iteration, we move a node u in $H P$ with the smallest value to $\overline{H P}$. To show that $E A_{u}$ of node u is optimum, notice that, by our induction hypothesis (2), $E A_{u}$ is the earliest time to arrive node u through a flexible path that does not contain any intermediate node in $H P$. We now show that the total time to arrive node u through any flexible paths that contain some nodes in $H P$ as an intermediate node is at least $E A_{u}$. To prove it, we let P denote a path formed by appending node u after a flexible path, and assume that P contains at least one node in $H P$ as an intermediate node. Path P can be decomposed into two segments P_{1} and P_{2}, where all intermediate nodes in P_{1} are not in $H P$, but the last node of P_{1}, say h, is in $H P$. By the induction hypotheses, this suggests that the total time of P_{1} is at least $E A_{h}$. Moreover, since node u is the smallest time label in $H P, E A_{h} \geq E A_{u}$.

Therefore, the path segment P_{1} has total time of at least $E A_{u}$. Furthermore, since all arc times are nonnegative, the total time of the path segment P_{2} is nonnegative. Consequently, the total time of path P is no less than $E A_{u}$. This result establishes the fact that $E A_{u}$ is the earliest time to arrive node u through a flexible path.

We next show that the algorithm preserves hypothesis (2). In step 2, the node with smallest $E A_{u}$ is selected, and its value becomes permanent thereafter. Following that, we will check if this node is flexible. If it is not flexible, then this node cannot be used as an intermediate node of a flexible path, and thus we skip it and move on to remaining nodes. Otherwise, the time labels of some nodes in $H P-\{u\}$ may decrease since node u could become an intermediate node in the most flexible paths to these nodes. Recall that after permanently labeling flexible node u, the algorithm examines each arc (u, w) emanating from node u and sets $E A_{w}=E D_{u}+\operatorname{dur}(u, w)$ if $E D_{u}+\operatorname{dur}(u, w)<E A_{w}$. Therefore, after this time-label update operation, the time label of each node w in $H P-\{u\}$ is the earliest possible time to arrive node w among all flexible paths whose intermediate nodes are all in $\overline{H P} \cup\{u\}$.

Finally, the following lemma shows the time complexity of the algorithm.

Lemma 1 Let n denote the number of nodes and m the maximum number of time windows associated with a node in the network. If $n \geq m$, then the time complexity of Algorithm Finding-path is $O\left(n^{2}\right)$.

Proof. The algorithm requires n iterations to find the most flexible path, since the initial $H P$ has n nodes, and one node is removed from $H P$ in each iteration. There are three operations in each iteration: (1) select the node with the minimum $E A$, (2) compute the flexibility of node u, and (3) update $E A$ values of those nodes adjacent to node u. Obviously, (1) can be done in time $\mathrm{O}(n)$, because finding the minimum value from n values can be done in time $\mathrm{O}(n)$, and (3) can also be done in time $\mathrm{O}(n)$ because each node has no more than n adjacent nodes. As to (2), it can be done in time $\mathrm{O}(m)$. To explain the time complexity associated with (2), note that the most time-consuming part for (2) is in step 3.1, in which $E E_{u}$ and $E D_{u}$ are derived from $E A_{u}$. To perform this computation, all entering time windows and departure time windows of node u need to be examined once. As a result, the time required is $\mathrm{O}(\mathrm{m})$. Combining all the above results, we have the total time complexity of $\mathrm{O}\left(n^{2}\right)$.

Multiple intermediate destination nodes

In this subsection, we discuss the method of selecting a path when multiple intermediate destination nodes with multiple deadlines are pre-specified. Under this new requirement, it is necessary to evaluate the changes to the time characteristics. Let the specified intermediate nodes be I_{j} with the latest entering time E_{j}, for $j=1$ to r. Without loss of generality, let $I_{0}=1$ and $I_{r}=n$. Consequently, the path must be from node I_{0} to node I_{1}, then to I_{2}, \ldots, and finally to I_{r}. In this path, we may pass through a node several times. Therefore, a node should have r sets of time characteristics rather than just only one set, where the j th set is for the subpath from I_{j-1}. to I_{j}. In view of this, we define new symbols, $E A_{i}(j), E E_{i}(j), E D_{i}(j), L D_{i}(j), L E_{i}(j)$, and $L A_{i}(j)$, which are similar to those defined previously except that they are constrained in their respective subpaths.
To compute $E A_{i}(j), E E_{i}(j)$, and $E D_{i}\{j\}$ for $j=1,2, \ldots$, and r, we execute Algorithm I r times, where, in the j th run, the source node s is I_{j-1}, destination node d is I_{j}, and the beginning time of source node is $E D_{s}(j-1)$. In order to compute $L E_{i}(j)$ and $L D_{i}(j)$, we execute Algorithm II backward for $j=r, r-1, \ldots, 1$. In the run corresponding to index j, we set the source node s as I_{j-1}, destination node d as I_{j}, and the latest entering time of destination node as $\min \left\{L E_{d}(j+1), E_{j}\right\}$. Finally, by applying Algorithm III r times, we can obtain all the values for $L A_{i}(j), j=1,2, \ldots, r$.

Based on the time characteristics $L D_{i}(j), L E_{i}(j)$, and $L A_{i}(j)$, where $j=1,2, \ldots, r$, Algorithm Finding-path can find
the most flexible path for each segment, that is, the most flexible paths from I_{j-1} to I_{j}, for $j=1,2, \ldots, r$. In the j th run, the source node is $I_{\mathrm{j}-1}$, destination node is I_{j}, and the beginning time of the source node is the earliest departure time of the node in the preceding run. After all these sub-paths are joined one after another, the final path is the one that is from node I_{0} to node I_{1}, then to I_{2}, \ldots, and finally to I_{r}.

Example 3

Consider the network shown in Figure 1. Suppose we want to find a path with two destinations, where the first destination is $I_{1}=6$ with $E_{1}=25$ and the second $I_{2}=12$ with $E_{2}=40$. Running Algorithm I directly for these two segments, we find that the optimal paths in the segments are $(1,2,3,6)$ and $(6,5,12)$, respectively.

Following the method discussed in this subsection, we run Algorithm II backward two times. In the first time, we set the source node as node 6 , the destination node as node 12 , and $L E_{12}(2)=40$. As a result, the latest entering times and the latest departure times for nodes $1,2,3,4,5,6,7,8,9,10$, 11 , and 12 are found to be $(10,10),(15,16),(13,18),(16,18)$, $(28,28),(23,24),(22,22),(18,18),(15,25),(25,28),(22,30)$, and $(40,40)$, respectively, where the first number in the parentheses is the latest entering time and the second the latest departure time. In running Algorithm II for the second time, we set the source node as node 1 , the destination node as node 6 , and $L E_{6}(1)=\min \left\{L E_{6}(2), E_{2}\right\}=\min \{23,25\}=$ 23. We find that the latest entering times and the latest departure times for nodes $1,2,3,4,5,6,7,8,9,10,11$, and 12 are $(4,4),(5,5),(11,11),(-\infty,-\infty),(-\infty,-\infty)$, $(23,23),(10,10),(-\infty,-\infty),(-\infty,-\infty),(-\infty,-\infty)$, $(-\infty,-\infty)$, and $(-\infty,-\infty)$, respectively.

Suppose a node's flexibility is determined by the following parameter values: $\alpha=0, \beta=1, \gamma=1$, and $\lambda=4$. Using these values, the flexibility of a node is calculated by summing the ranges of the departure and entering time intervals, and a node is not flexible if the total is smaller than 4. Algorithm Finding-path needs to be run twice, where the first run is used to find the most flexible path from nodes 1 to 6 , and the second is used for that from nodes 6 to 12 . In the first run, we find that the most flexible path is path $(1,3,6)$ rather than the original optimal path (1, 2, 3, 6). This is because node 2 is not flexible. (Node 2 has the following time characteristics: $E E_{1}(2)=3, \quad E D_{1}(2)=4, \quad L E_{1}(2)=5$ and $L D_{1}(2)=5$.) In the second run, we set $E D_{2}(6)$ as 20 , because the result of the preceding run indicates that 20 is the earliest departure time of node 6 . The result shows that the most flexible path from nodes 6 to 12 is path $(6,5,12)$. Combining the two paths together, we obtain the final path $(1,3,6,5,12)$, where every node in the path is flexible and the latest entering time constraints on nodes 6 and 12 are satisfied.

Conclusion

In this paper, we propose a systematic method for planning a path in a time-window network to meet a pre-determined deadline constraint. The main results of the paper include (1) three efficient algorithms developed for generating six basic time characteristics associated with each node, (2) a systematic analysis proposed to generate important time information for planning a path in a time-window network, and (3) based on the time characteristics and the proposed analyses, an algorithm to find the most flexible path in a time-window network.
The paper can be extended in several ways. For example, we may examine other kinds of time constraints, such as time-schedule and traffic-light constraints, and see how this time-related analysis can be done in these time-constrained networks. Furthermore, we may develop systematic or interactive procedures for selecting a path according to these time characteristics. In addition, we may generalize the problem to multiple travelers by requiring the travelers must meet at certain nodes before specified deadlines.

References

1 Baker EK (1983). An exact algorithm for the time-constrained traveling salesman problem. Opns Res 31: 938-945.
2 Baker E (1982). Vehicle routing with time window constraints. Logist Transb Rev 18: 385-401.
3 Ahn BH and Shin JY (1991). Vehicle-routing with time windows and time-varying congestion. J Opl Res Soc 42: 393-400.
4 Balakrishnan N (1993). Simple heuristics for the vehicle routing problem with soft time windows. J Opl Res Soc 44: 279-287.
5 Desrochers M and Soumis F (1988). A reoptimization algorithm for the shortest path problem with time windows. Eur J Opl Res 35: 242-254.
6 Dumas Y, Desrosiers J, Gelinas E and Solomon MM (1995). An optimal algorithm for the traveling salesman problem with time windows. Opns Res 43: 367-371.
7 Desaulniters G and Villeneuve D (2000). The shortest path problem with time windows and linear waiting costs. Transp Sci. 34: 312-319.
8 Dijkstra EW (1959). A note on two problems in connection with graphs. Numer Math 1: 269-271.
9 Fox BL (1978). Data structures and computer science techniques in operations research. Opns Res 26: 686-717.
10 Eppstein D (1994). Finding the k shortest paths. Proceeding of the 35th Annual Symposium on Foundations of Computer Science. pp 154-165.
11 Chen YL Rinks D and Tang K (1997). Critical path in an activity network with time constraints. Eur J Opl Res 100: 122-133.
12 Chen YL and Tang K (1998). Minimal time paths in a network with mixed time constraints. Comput Opns Res 25: 793-805.
13 Chen YL and Yang HH (2000). Shortest paths in traffic-light networks. Transp Res:B 34: 241-253.

Appendix

Algorithm I. Evaluation of $E A_{i}, E E_{i}$, and $E D_{i}$:
Step 1: Initialization
For each node i, except the source node, set $E A_{i}=\infty, E E_{i}=\infty$, and $E D_{i}=\infty$;
$E A_{1}=0 ; E E_{1}=0 ; E D_{1}=0 ;$
Mark all the nodes as unexamined nodes;
Step 2: Let node i be the node with the minimum $E D_{i}$ value among the unexamined nodes;

For each unexamined successor j of node i, do
if $E D_{i}+\operatorname{dur}(i, j)<E A_{j}$, then
$E A_{\mathrm{j}}=\mathrm{ED}_{\mathrm{i}}+\operatorname{dur}(\mathrm{i}, \mathrm{j}) ;$
If $E A_{j}>E_{\text {End }}^{j}{ }_{j}^{E_{j}}$, then go to the next iteration of the for-loop;
Find the minimal $k\left(1 \leq k \leq E_{j}\right)$, such that $E A_{j} \leq$ Eend $_{j}{ }^{k}$;
$E E_{\mathrm{j}}=\max \left\{\mathrm{EA}_{\mathrm{j}}\right.$, Ebegin $\left._{\mathrm{j}}^{\mathrm{k}}\right\} ;$
If $E E_{j}>$ Dend $_{j}^{E_{j}}$, then go to the next iteration of the for-loop;
Find the minimal $k\left(1 \leq k \leq D_{j}\right)$, such that $E E_{j} \leq$ Dend ${ }_{j}^{k}$;
$\mathrm{ED}_{\mathrm{j}}=\max \left\{\mathrm{EE}_{\mathrm{j}}\right.$, Dbegin $\left._{\mathrm{j}}^{\mathrm{k}}\right\} ;$
If $E D_{j}$ has been modified, then $E P_{j}=i$;
/* $E P_{j}$ is used to store the earliest path route */
Mark node i as an examined node;
Step 3: Repeat step 2 until all the nodes have been examined;
Algorithm II. Evaluation of $L E_{i}$ and $L D_{i}$:
Step 1: Initialization
For each node i other than destination n, do
$L E_{i}=-\infty$ and $L D_{i}=-\infty$;
$L E_{n}=$ Eend $_{j}^{E_{n}}$;
Mark all the nodes as unexamined nodes;
Step 2: Backward computation
Let node i be the node with the maximum $L E_{i}$ among the unexamined nodes;
For each unexamined predecessor j of i, do
if $L E_{i}-\operatorname{dur}(j, i)>L D_{j}$, then
If $L E_{i}-\operatorname{dur}(j, i)<$ Dbegin $_{j}{ }^{1}$, then go to the next iteration of the for-loop;
Find the maximal $k\left(1 \leq k \leq D_{j}\right)$ such that $\operatorname{Dbegin}_{j}^{k} \leq L E_{i}-\operatorname{dur}(j, i)$;
$L D_{j}=\max \left\{L D_{j}, \min \left\{L E_{i}-d u r(j, i)\right.\right.$, Dend $\left._{j}^{k}\right\} ;$
If $L D_{j}<$ Dbegin $_{j}{ }^{1}$, then go to the next iteration of the for-loop;
Find the maximal $k\left(1 \leq k \leq E_{j}\right)$, such that Ebegin $_{j}^{k} \leq L D_{j}$;
$L E_{j}=\max \left\{L E_{j}, \min \left\{L D_{j}\right.\right.$, Eend $\left.\left._{j}^{k}\right\}\right\} ;$
If $L E_{j}$ is changed, then set $L P_{j}=i$;
/* $L P_{j}$ stores the latest path route */
Mark node i as an examined node;
Step 3: Repeat step 2 until all the nodes have been examined.
Algorithm III. Evaluation of $L A_{i}$:
For each node i except the source node, do
begin
$L A_{i}=-\infty ;$
For each predecessor node j of i, do
$x=L E_{i}-\operatorname{dur}(j, i)$;
if $x \geq L D_{j}$ then $y=L D_{j}$
else if $x \geq E D_{j}$ then begin

Find the maximal k such that $\operatorname{Dbegin}_{j}^{k} \leq x$;
$y=\min \left\{\right.$ Dend $\left._{j}^{k}, x\right\}$
end
else $y=-\infty$;
$L A_{i}=\max \left\{L A_{i}, y+\operatorname{dur}(j, i)\right\}$;
if $L A_{i}$, is changed, then set $L A P_{i}=j /^{*} L A P_{i}$ is used to store the node from which we can arrive at node i in the latest time. */ end

Acknowledgments-We thank two anonymous referees for their many helpful suggestions that improved this paper. The first author was supported, in part, by the Ministry of Education (MOE) Program for Promoting Academic Excellence of Universities under the Grant Number 91-H-FA07-1-4.

Received January 2001
accepted February 2003 After three revisions

[^0]: *Correspondence: K Tang, Krannert Graduate School of Management, Purdue University, West Lafayette, IN 47907-1310, USA.
 E-mail: ktang@mgmt.purdue.edu

