
Time analysis for planning a path
in a time-window network
Y-L Chen1, L-J Hsiao2 and K Tang3,*
1National Central University, Chung-Li, Taiwan, Republic of China; 2Van-Nung Institute of Technology, Chung-Li,
Taiwan, Republic of China; and 3Purdue University, West Lafayette, IN, USA

A systematic method is proposed to generate time information on the paths and nodes on a time-window network for
planning and selecting a path under a constraint on the latest entering time at the destination node. Specifically, three
algorithms are proposed to generate six basic time characteristics of the nodes, including the earliest and latest times of
arriving at, entering, and departing from each node on the network. Using the basic time characteristics, we identify
inaccessible nodes that cannot be included in a feasible path and evaluate the accessible nodes’ flexibilities in the waiting
time and staying time. We also propose a method for measuring adverse effects of including an arc. Finally, based on
the time characteristics and the proposed analyses, we develop an algorithm that can find the most flexible path in a
time-window network.
Journal of the Operational Research Society (2003) 54, 860–870. doi:10.1057/palgrave.jors.2601583

Keywords: network; time-window constraint; time analysis

Introduction

The time-constrained network analysis generalizes the

traditional network analysis by incorporating the constraints

on the availability of the nodes over time. Time window has

been a common form of time constraint considered in the

literature. Basically, a time window is a time period, defined

by the earliest and latest times, when a node is available for

traveling through. There are many practical situations where

time windows can be used to describe the time constraints

associated with the nodes and arcs on a network. For

example, a time window in a transportation network may be

the time period that a service or transition facility is available

for the traveler to pass through. Similarly, a time window

associated with an arc may be the time that a transportation

channel is open. In vehicle routing problems and traveling

salesman problem, a time window may represent the time

period during which a customer needs to be visited, and in

production scheduling problems, a time window may be the

time that a certain machine or production facility is available

for processing jobs.

The time-window network analysis has attracted wide-

spread interest over the past decade, and many fundamental

issues considered in the traditional network optimization

have been addressed for time-window networks. These

include the vehicle routing problem, the traveling salesman

problem, and the shortest path problem.

As in other operations research studies, mathematical

models are used in network analysis to provide an abstract

representation of the real problems for assessing decision

alternatives and for selecting the best solution. Because of

the complexity of a real problem and the tractability of the

model, an exact representation of the real problem is seldom

the objective of a model formulation effort. For example, the

waiting time at a node or arc may be a very important factor

in path selection because of the cost, safety, quality, and

other consideration. It is difficult, however, to incorporate

the factors of this nature in a network model. In fact, adding

a simple cost component as a linear function of waiting time,

a network model may become very complicated to solve.

Consequently, many preferences, tangible and intangible

factors are not incorporated in model formulation, resulting

in implementation issues.

In this paper, instead of determining an ‘optimal’ path,

our objective is to develop a systematic method to generating

important time-related information for each node and arc on

a network to assist selecting the most flexible path. We

consider a time-window network and assume that a deadline

constraint is imposed on the latest entering time of the

destination node. Note that there could be multiple feasible

paths under a deadline constraint. In planning or selecting a

path, the following questions are often considered:

(a) What is the latest time to depart from a node on the

network without violating the deadline constraint?

(b) What is the waiting time before entering a node? Can

the waiting time be reduced and how much of it is

inevitable?

*Correspondence: K Tang, Krannert Graduate School of Management,
Purdue University, West Lafayette, IN 47907-1310, USA.
E-mail: ktang@mgmt.purdue.edu

Journal of the Operational Research Society (2003) 54, 860–870 r 2003 Operational Research Society Ltd. All rights reserved. 0160-5682/03 $25.00

www.palgrave-journals.com/jors

(c) How long can we stay at a node? Can we increase or

reduce the staying time, and what are the minimum and

maximum staying times at a node?

The answers to these questions provide valuable informa-

tion for selecting and planning a path on the network. For

example, the waiting time before entering a node and the

staying time at a node may have different economic or risk

implications, depending on the application. A preferred path

can be selected from the feasible paths by evaluating

alternative paths based on the time information from our

proposed analysis. We can also obtain information on the

flexibility of a path in terms of the ‘spare time’ associated

with the nodes on the path. A more flexible path is desirable

if we consider potentially unexpected delays in traveling on

the network. Furthermore, the information is also helpful

when we have to switch to a new path after we have finished

a portion of the initial path, because a node or more on the

original path become unreliable.

Specifically, we propose three algorithms to generate six

basic time characteristics associated with the nodes on the

network. Using the time characteristics, we first identify

inaccessible nodes, the nodes that cannot be included in a

feasible path, and propose further analyses on the waiting

time and staying time for accessible nodes. From the

analyses, we evaluate the flexibility associated with each

accessible node in terms of its flexible times in waiting and

staying. We also identify inflexible nodes, which have no

spare time in entering, departure, or both. It is demonstrated

that the time characteristics and analyses provide valuable

information for selecting and planning a path.

The remainder of this paper is organized as follows. First,

we give the problem statement, and present the algorithms

for evaluating six basic time characteristics associated with

the nodes on the network. In the subsequent section, we use

the basic time characteristics to further analyze the waiting

time and the staying time at the nodes, and additional

properties associated with the nodes and arcs. Using the

results from the analyses, we then discuss a method of

selecting a path in practice. A conclusion is given in the final

section.

Problem statement and algorithms

A time-window network is represented as a directed graph

G¼ (N, A), where N¼ {1, 2, 3,y, n} and A¼ {(i, j)|i, jAN,

and iaj}. For simplicity, we assume that nodes 1 and n are

the source and the destination, respectively. For each arc

(i, j)AA, there is a static and non-negative time duration,

denoted by dur(i, j), to pass through it.

For each node iAN, there are two types of time-window

constraints, entering-time and departure-time windows. Let

Ei be the number of entering-time windows for node i. The

kth entering-time window for node i, 1rkrEi, is repre-

sented by [Ebegini
k, Eend i

k], where Ebegini
k, and Eend i

k are

the beginning and ending times of the time window,

respectively. Similarly, (Dbegini
k, Dendi

k) is used to represent

the kth departure-time window, 1rkrDi, for node i.

We assume that all the entering-time windows of a node

are disjoint, that is, for node i,

Eendk�1
i oEbegink

i oEendk
i for 1ok � Ei

and 0 � Ebegin1i � Eend1i

and, similarly, the departure-time windows for a node are

also disjoint:

Dendk�1
i oDbegink

i � Dendk
i for 1ok � Di

and 0 � Dbegin1i � Dend1i

Furthermore, for simplicity in designing and presenting

the algorithms, we let the source node have only one

entering-time window [0,N] and the destination node have

only one departure-time window (0, N). Without loss of

generality, we let the ending time of the last entering-time

window of node n, EendEn
n , be the predetermined latest time

of entering the destination.

For illustration, let us consider the time-window network

in Figure 1, where nodes 1 and 12 are the source and

destination nodes, respectively, and the deadline to enter

node 12 is 33. The number on an arc is the arc’s duration

time, the time intervals given by the brackets are entering-

time windows, and those given by the parentheses are

departure-time windows. For example, node 9 has one

entering window and one departure window.

Figure 1 An example of time-window network.

Y-L Chen et al—Time analysis for time-window network 861

In order to generate useful time information for path

selection, we define the following six basic time character-

istics associated with each node:

EAi¼ earliest time to arrive at node i from the source node,

EEi¼ earliest time to enter node i,

EDi¼ earliest time to depart from node i after entering,

LDi¼ latest time to depart from node i without violating the

deadline constraint,

LEi¼ latest time to enter node i without violating the

deadline constraint,

LAi¼ latest time to arrive at node i without violating the

deadline constraint.

There are several apparent relations among these time

characteristics and the time-window constraints. First, the

earliest time to enter node i must be no earlier than the

earliest time to arrive at node i (EEiZEAi), and EEi must be

contained in an entering-time window associated with node

i. Second, we have EDiZEEi, and EDi must be contained in

a departure-time window associated with node i. Similarly,

the same kind of relations holds for the latest times LDi, LEi,

and LAi. It is evident that the time characteristics associated

with a node on a path should satisfy the relations LAiZEAi,

LEiZEEi, and LDiZEDi. If the time characteristics

associated with a node violate any one of these relations, a

path containing the node is not feasible, and we define a

node of that nature as an inaccessible node.

Next, we present three algorithms for evaluating the six

time characteristics defined above. The three algorithms are

executed in sequence. In presenting the algorithms, we define

that a node, say node j, is a predecessor of node i if arc (j, i)

exists on the network. Similarly, node j is a successor of node

i if arc (i, j) exists.

The first algorithm is a forward procedure which evaluates

EAi, EEi, and EDi for each node i on the network from

the source to the destination. Let EA(j, i) be the earliest time

to arrive at node i through arc (j, i). Then, we have EA(j, i)¼
EDjþ dur(j, i), and EAi for node i is determined by

EAi ¼ Min
j

fEAð j; iÞg

for all the predecessor nodes j of i. Once EAi is obtained,

EEi equals to EAi if EAi falls in one of the entering-time

windows of node i; otherwise EEi equals to Ebegin i
k of

the next available entering-time window. Finally, EDi is

obtained by comparing EEi with the available departure-

time windows at node i.

The second algorithm is a backward procedure for

evaluating LEi and LDi from the destination to the source.

Let LD(i, j) denote the latest time to leave nodes i to j

without violating the deadline constraint, which can be

obtained by

(i) Subtracting dur(i, j) from LEj.

(ii) Adjusting the value to the departure-time windows of

node i.

In turn, LDi can be determined as Maxj {LD(i, j)}, for all

the successor nodes j of node i. Finally, LEi is determined by

adjusting LDi to its entering-time windows.

The third algorithm is used to evaluate LAi. Let LA(j, i)

be the latest time to arrive at node i from node j without

violating the deadline constraint, which can be obtained by

the following procedure:

(i) Let x¼LEi-dur(j, i).

(ii) Let y denote the latest time that we can leave node j for

node i.

If xZLDj, then y¼LDj

Else if EDjrxrLDj, then determine y by comparing x

and the departure-time windows of node j

Else if xrEDj, then y¼�N.

(iii) Set LA(j, i)¼ dur(j, i)þ y.

Finally, LAi can be determined as Maxj {LA(j, i)} for all

the predecessor nodes j of i.

The proofs of the algorithms are omitted because the first

and second algorithms are simple modifications of the

classical shortest path algorithm and the third algorithm is

intuitive. For the detailed algorithms, see the appendix.

We continue using the network in Figure 1 for illustration.

We first use Algorithm I to obtain the EAi, EEi, and EDi for

each node. The algorithm begins with setting ED1¼ 0 for the
source node. Since the successors of the source node are

nodes 2 and 3, the next step is to modify the EAj, EEj, and

EDj of these two nodes. For node 2, we find that

EA2¼ED1þ dur(1, 2)¼ 0þ 3¼ 3. Since EA2 is in the first

entering-time window, [2,7], EE2¼EA2¼ 3. We also find
ED2¼ 4 because the first departure-time window (4, 5), is
behind EE2. For node 3, the computation can be down

similarly. Repeatedly using the procedure, we obtain the

values of EAi, EEi, and EDi of all the nodes given in Table 1.

Since Algorithm II is a backward procedure, we first set

the value of LE12 to be EendEn

j (¼ 33). Node 12 has six
predecessors: nodes 4, 5, 7, 9, 10, and 11. Consider node 4

first. The difference between LE12 and dur(4, 12) is 28, which

is the latest departure time without considering departure-

time windows. However, since the last departure-time

window of node 4 is (12, 18), the latest departure time at

node 4, LD4, is 18. By matching LD4 with the entering-time

windows, we found that the latest time to enter node 4 (LE4)

is 16. Using the procedure, we found that LD5¼ 28,
LE5¼ 28, LD7¼ 22, LE7¼ 22, LD9¼ 24, LE9¼ 15,
LD10¼ 21, LE10¼ 21, LD11¼ 27, and LE11¼ 22. In the next
iteration, node 5 is considered and can be done similarly.

The complete results from Algorithm 2 are listed in the

columns under LEi and LDi in Table 1.

In Algorithm III, all the LAi values can be computed

independently and in any order since their evaluation

processes are not dependent on the LAi values of other

nodes. To illustrate this point, we give the process of

obtaining LA5. Node 5 has three predecessors, namely,

862 Journal of the Operational Research Society Vol. 54, No. 8

nodes 2, 3, and 6. Consider node 2 first (j¼ 2 and i¼ 5). We
obtain that x¼LE5�dur(2, 5)¼ 28�5¼ 23 and y, the latest

time to depart from nodes 2 to 5, equals 16. Consequently,

we obtain LA(2, 5)¼ yþ dur(2, 5)¼ 16þ 5¼ 21. Next, we
consider node 3(j¼ 3 and i¼ 5), and we obtain x¼LE5-

dur(3, 5)¼ 28–4¼ 24 and y¼ 18. Thus, our result becomes
LA(3, 5)¼ yþ dur(3, 5)¼ 22. Finally, we consider node 6,
and the result is x¼ 24, y¼ 24, and LA(6, 5)¼ yþ
dur(6, 5)¼ 28. Using the results associated with these three
nodes, we obtain LA5¼max{LA(2, 5), LA(3, 5), LA(6, 5)}¼
28. The results for the remaining nodes are given in Table 1.

Time analysis

In the last section, three algorithms are developed to

evaluate six basic time characteristics for all the nodes on

the network. In this section, we first define a partial order

precedence graph to summarize the relations among the time

characteristics. Next, we identify inaccessible nodes and

propose further analyses on the waiting time and staying

time for accessible nodes. Based on the analyses, we evaluate

the flexibility associated with each accessible node in terms

of its flexible times in waiting and staying. We also identify

inflexible nodes, which have no spare time in entering time,

departure time, or both. It is demonstrated that the

time characteristics and the proposed analyses provide

valuable information for planning a path in a time-window

network.

First, we use AAi, AEi, and ADi to denote the actual

arriving time, entering time, and departure time for node i,

respectively. For a feasible path, the following relations must

hold:

EAi � AAi � LAi; EEi � AEi � LEi

and EDi � ADi � LDi

Furthermore, the arrival times, the entering times, and the

departure times have the following relations:

EAi � EEi � EDi; AAi � AEi � ADi and

LAi � LEi � LDi

Using these two sets of relations, we obtain a partial order

precedence graph shown in Figure 2 to summarize the

relations among the time characteristics.

Inaccessible nodes

As defined, the inaccessible nodes are the nodes of which at

least one of the inequalities, EAirLAi, EEirLEi, or

EDirLDi, is not satisfied. For example, from Table 1, we

find that node 8 is an inaccessible node. The inaccessible

nodes should not be included in a path unless the latest time

to enter the destination or the time-windows associated with

the node can be changed. In the following analysis, all the

inaccessible nodes are excluded.

Node flexibility

We define the arrival-time interval for node i as [EAi, LAi],

which gives limits on the actual arrival time of a feasible

path. Similarly, we define [EEi, LEi] and [EDi, LDi] as the

entering-time and departure-time intervals for node i,

respectively. The ranges of the three time intervals are

Table 1 Time characteristics associated with the nodes in Figure 1 when the deadline is 33

Node i EAi EEi EDi LAi LEi LDi

1 0 (source) 0 (source) 0 — (source) 10 10 (into node 2)
2 3 (from node 1) 3 4 15 (from node 4) 15 16 (into node 5)
3 6 (from node 2) 9 9 13 (from node 1) 13 18 (into node 5)
4 8 (from node 2) 10 12 14 (from node 5) 16 18 (into node 12)
5 9 (from node 2) 9 9 28 (from node 6) 28 28 (into node 12)
6 19 (from node 3) 19 20 21 (from node 3) 23 24 (into node 5)
7 12 (from node 5) 12 14 22 (from node 5) 22 22 (into node 12)
8 30 (from node 6) 30 30 �N 18 18 (into node 7)
9 10 (from node 2) 12 20 11 (from node 2) 15 24 (into node 12)
10 8 (from node 2) 20 21 20 (from node 2) 21 21 (into node 12)
11 22 (from node 3) 22 24 22 (from node 3) 22 27 (into node 12)
12 13 (from node 5) 16 16 33 (from node 9) 33 — (destination)

Inaccessible node: node 8.
Inaccessible arcs: (6, 7), (7, 6), (8, 6), (6, 8) and (4, 2).
Inflexible node in arrival time: node 11.
Inflexible node in departure time: node 10.

Figure 2 Partial order relations among the time characteristics.

Y-L Chen et al—Time analysis for time-window network 863

defined as follows:

RangeA½i
 ¼ LAi � EAi; RangeE½i
 ¼ LEi � EEi;

RangeD½i
 ¼ LDi � EDi

A larger range associated with a node implies more

flexibility at a node or more robustness of a path if we

consider uncertainties such as a possible unexpected increase

in the duration time before arriving at the node. For a given

network, the three intervals may be overlapped or disjoint.

If the earliest arrival time at a node is identical to its latest

arrival time (RangeA[i]¼ 0), we would not have any

flexibility in the arrival time at the node. In other words,

any delay of arriving at the node results in failing to meet the

given latest time of entering the destination. In this case, we

say that the node is inflexible in arrival time. Furthermore, if

the earliest departure time is identical to the latest departure

time (RangeD[i]¼ 0), the node is inflexible in departure time.
If a node is not flexible in both arrival time and departure

time, we call the node an inflexible node.

Waiting time analysis

We consider the waiting time between arriving at a node and

entering the node. There are two situations. In the first

situation, the arrival-time interval overlaps with the entering-

time interval, that is, LAiZEEi. In this situation, the waiting

time can be zero, if the arrival time at the node is in the

overlapped period [EEi, LAi] of the arrival-time and the

entering-time intervals. On the other hand, if the actual

arrival time AAi is before time EEi, then we have to wait to

enter the node during the time period [AAi, EEi].

In the second situation, the arrival-time and the entering-

time intervals are disjoint, that is, LAioEEi. In this

situation, we have an unavoidable waiting time interval

from LAi to EEi. As shown in Figure 3, the longest possible

waiting time is given by

longest � waiting½i
 ¼ LEi � EAi

and the total actual waiting time, AEi–AAi, can be

partitioned into three portions following the relations among

the latest arrival and the earliest entering times. These three

times are defined as follows:

shortest� waiting½i
 ¼ EEi � LAi;

prewaiting½i
 ¼ LAi � AAi;

postwaiting½i
 ¼ AEi � EEi

Note that in the first situation where the arrival- and

entering-time intervals overlap, we only have pre-waiting

time and post-waiting time. In the second situation where

LAioEEi, the interval between LAi and EEi is the shortest-

waiting interval because the interval is unavoidable.

On the contrary, the pre-waiting time and post-waiting

time are flexible because they can be expanded or reduced by

changing the arrival or entering times. Since AAi falls in the

arrival-time interval and AEi in the entering-time interval,

we have the relations 0rpre-waiting[i]rLAi–EAi and

0rpost-waiting[i]rLEi-EEi. Therefore, the total flexible

waiting time in both situations can be measured by

(LAi–EAi)þ (LEi�EEi)þmin{shortest-waiting[i], 0}.

Staying time analysis

We can analyze the staying time using the method used for

analyzing the waiting time. There are two situations, based

on whether the entering-time interval overlaps with the

departure-time interval. In the first situation, the entering-

time interval overlaps with the departure-time interval, that

is, LEiZEDi. In this situation, the staying time can be zero,

if the entering time at the node is in the overlapped period,

[EDi, LEi], of the entering-time and the departure-time

intervals. On the other hand, if the actual entering time AEi

is before time EDi, then we have to stay at the node during

the time period [AEi, EDi]. In the second situation, the

entering-time and the departure-time intervals are disjoint,

that is, LEioEDi. In this situation, we have an unavoidable

staying time interval from LEi to EDi.

The time of actually staying at node i, denoted by actual-

staying[i], is determined by the difference between ADi and

AEi. The actual staying time consists of three portions: the

pre-staying time, shortest-staying time, and post-staying

time, defined by

prestaying½i
 ¼ LEi � AEi;

shorteststaying½i
 ¼ EDi � LEi;

poststaying½i
 ¼ ADi � EDi

The shortest staying time at node i is determined by max

{shortest-staying[i], 0}, which is the shortest time of staying

at the node after entering. Next, we discuss the flexible

staying time, which includes the pre-staying time and

Figure 3 Time ranges and their relations.

864 Journal of the Operational Research Society Vol. 54, No. 8

post-staying time. Basically, the flexible staying time may be

expanded or reduced within our discretion. We can

determine the length of the pre-staying time by changing

the actual entering time and that of the post-staying time by

our actual departure time. Since AEi and ADi fall within the

entering-time interval and the departure-time interval,

respectively, we have 0rpre-staying[i]rLEi�EEi and

0rpost-staying[i]rLDi�EDi. Therefore, the total flexible

staying time can be represented as

ðLEi � EEiÞ þ ðLDi � EDiÞ þ minfshortest-staying½i
; 0g

The longest-staying[i] is the maximal staying time at a node.

It is the longest time that we may stay at a node, which

includes the entering-time interval, shortest staying time, and

departure-time interval. The relation is

Longest-staying½i
 ¼ LDi � EEi

¼ RangeE½i
 þ shortest-staying½i
 þ RangeD½i

Adverse effects by including an arc

It is often desirable to analyze potential adverse effects if we

consider including arc (i, j) into the path. If arc (i, j) is

included, the earliest time to arrive at node j becomes

EA(i, j), the latest time to arrive at node j without violating

the deadline constraint becomes LA(i, j), and the latest time

to leave node i is LD(i, j). As for the earliest time to depart

from node i, it is the same as the original EDi because at time

EDi we are allowed to leave for any successor nodes of node i.

There are three types of adverse effects that may be

incurred by including arc (i, j) in the path. The first is

associated with node i. Since LD(i, j)rLDi, the new

departure-time interval of node i, [EDi, LD(i, j)], is smaller

than the original one [EDi, LDi], implying less flexibility in

the departure time from the node.

The second type of adverse effects is associated with

node j. Since EA(i, j)ZEAj and LA(i, j)rLAj, the original

arrival-time interval of node j, [EAj, LAj], is reduced to a

smaller interval [EA(i, j), LA(i, j)], implying a less flexibility

in the arrival time of the node. Furthermore, it may also

increase the shortest waiting time. When LAjoEEj, the

shortest waiting time interval at node j will be increased from

[LAj, EEj] to [LA(i, j), EEj].

The third type of effects is the possibility of causing the

path to be infeasible. In this case, we may call arc (i, j) an

inaccessible arc, which can be easily identified by checking

the condition LA(i, j)oEA(i, j). When the condition is

satisfied, it is an inaccessible arc because the earliest time to

arrive at node j is later than the latest time we need to arrive

at node j without violating the deadline constraint.

Example 1

Using the basic time characteristics in Table 1 derived for the

network of Figure 1, we obtain the additional properties

associated with arrival, entering, and departure times of the

nodes. For example, consider related time intervals for nodes

9 and 4 given in Table 2. The arrival-, entering-, and

departure-time intervals of node 9 are disjoint, suggesting

that no matter how the arrival, entering, and departure times

are selected, we cannot completely eliminate waiting and

staying periods. Furthermore, since the three intervals of

node 4 overlap, all the waiting and staying time intervals are

flexible and can be adjusted by selecting proper arrival,

entering, departure times.

Path selection

In this section, we propose an algorithm for selecting a path

with maximum flexibility to meet the deadline requirement

at the destination. As discussed in the last section, RangeA[i],

RangeE[i], and RangeD[i] are reasonable measurements for a

node’s flexibility in its arrival, entering, and departure times.

We first define a flexible node, based on a weighted sum of

these ranges. Using the definition, we define that a path is

flexible if all the nodes on the path are flexible. Under these

definitions, an algorithm is proposed for finding the path

with maximum flexibility among all flexible paths from the

source node to the destination.

We define a measurement for the overall flexibility of node

i as

Flexibility½i
 ¼ a�RangeA½i

þ b�RangeE½i
 þ g�RangeD½i

where a, b, and g are weights given by users and 0ra, b, and
gr1. A node i is called a flexible node if it satisfies

Flexibility[i]Zl, where l is a threshold specified by users.
Furthermore, we define that a path is a flexible path if all the

nodes on the path are flexible nodes. The advantage of

travelling along a flexible path is that no matter where we are

in the path we have flexibility to change our schedule to cope

with future unexpected delay or fluctuation in travel time.

And we call a flexible path from nodes 1 to i as the most

flexible path if it has the greatest flexibility at node i.

Next, we study the problem of finding the most flexible

path from nodes 1 to i. Note that the three time ranges are

Table 2 Results of time analysis for nodes 4 and 9

Result Node 4 Node 9

Arrival-time interval [8, 14] [10, 11]
Entering-time interval [10, 16] [12, 15]
Departure-time interval [12, 18] [20, 24]
Pre-waiting interval [AA4, 14] [AA9, 11]
Shortest-waiting interval NA [11, 12]
Post-waiting interval [10, AE4] [12, AE9]
Pre-staying interval [AE4, 16] [AE9, 15]
Shortest-staying interval NA [15, 20]
Post-staying interval [12, AE4] [20, AD9]
Flexible waiting time 8 4
Fixed waiting time 0 1
Longest waiting time 8 5
Flexible staying time 8 7
Fixed staying time 0 5
Longest staying time 8 12

Y-L Chen et al—Time analysis for time-window network 865

computed from the six time characteristics LAi, EAi, LEi,

EEi, LDi, and EDi. Furthermore, these six characteristics are

computed from Algorithms I–III, where Algorithm I

computes EEi and EDi from EAi, Algorithm II computes

LEi and LDi, and Algorithm III derives LAi from LEi and

LDi. From these three algorithms, we know that LAi, LEi,

and LDi are not dependent on EAi; but EEi and EDi are

positively related to EAi. In other words, if EAi becomes

smaller, then EEi and EDi will become smaller or remain the

same, but LAi, LEi and LDi will not change. As a result, the

smaller EAi is, the wider the three intervals are, or the more

flexible node i is. From this simple but important observa-

tion, we conclude that the flexible path that leads to the

earliest arrival at node i is the most flexible path to node i.

Therefore, our problem now becomes how to find the

flexible path with the earliest arrival time at node n. For

ease of reference, we call the path the most flexible path to

node n.

The most flexible path to a node, say node j, denoted as

MFP(1, j), has an attractive property that any prefix path of

MFP(1, j) to an intermediate node i can be replaced by the

most flexible path to node i, that is, MFP(1, i), without

increasing the earliest time to arrive node j. By going

through MFP(1, i) other than the original prefix path, we

will arrive node i earlier. Then, we can have the same earliest

arrival time to node j just by waiting outside node i until the

original arrival time has reached and then tracing the

remaining path in the original way.

The above observation derives a very useful property

that a prefix path of the most flexible path is also the most

flexible path. Consequently, the proposed algorithm first

finds the most flexible path for shorter paths and, based on

the result, gradually extends to longer paths. The algorithm

is described as follows. Note that we assume that LAi, LEi,

and LAi have been calculated by Algorithms II and III

beforehand.

Example 2

Consider the network shown in Figure 4, where the arc’s

time is shown along each arc, the attached windows are

indicated next to each node, and the specified deadline is 25.

Beside each node, we also show its latest entering time and

latest departure time, which are calculated by Algorithm II.

Further, we assume a¼ 0, b¼ 1, g¼ 1, and l¼ 4 in

determining a node’s flexibility. Under this assumption, the

flexibility of a node is computed by summing the ranges of

the departure and entering time intervals, and if the total

value is smaller than 4, it is not flexible. The execution of the

algorithm is shown in Table 3, where there are seven

iterations, and, in each iteration, the node with the minimal

EA value is removed from HP. Moreover, in each iteration,

we also check whether the chosen node is flexible. If a node is

not flexible, we skip it and go to the next iteration, because it

cannot be an intermediate node of a flexible path. Otherwise,

we will update the earliest arrival times of its adjacent nodes,

if it can provide a shorter path by going through this chosen

node. Following this procedure, we found that path (1, 3, 5,

7) is the most flexible path. It is interesting to note that there

are actually two paths that arrive at node 7 earlier than this

path, that is, path (1, 3, 5, 6, 7) and path (1, 2, 5, 7). These

two paths were not selected, however, because the former

has an inflexible node 6 and the latter has an inflexible

node 2 as their intermediate nodes.

The following theorem shows the validity of the

algorithm.

Theorem 1 Algorithm Finding-path finds the most flexible path

in a network.

Proof. We prove the result by induction. At any given

iteration, the algorithm partitions all nodes into two sets,

namely, HP and HP , where HP ¼ N � HP. Our induction

hypotheses are founded on the premises that: (1) the time

Algorithm Finding-path
1. Set EA1¼ 0.
Set all EAu¼N for all nodes u in N.
Insert all values of EAu into the set HP.

2. Find and remove the minimum element EAu from HP.
3. Determine whether node u is flexible by the following steps.
3.1. Compute EEu and EDu using EAu.
3.2. Retrieve the values of LAi, LEi, and LDi.
3.3. Compute the three time inter vals and node’s flexibility.

4. If u¼ n then go to step 6.
5. If node u is not flexible then go to step 2; else do the
following.
For each arc (u, w) emanating from node u, do

tempw¼EDuþ dur(u, w).
If tempwoEAw then
EAw¼ tempw, predw¼ u, and
update the value of EAw in HP.
Go to step 2.

6. If node n is flexible then output the most flexible path by
tracing back through predn;
Else the network has no flexible path to node n. Figure 4 Network after preprocessing.

866 Journal of the Operational Research Society Vol. 54, No. 8

label EAu of each node u inHP is the earliest possible time to

arrive node u through a flexible path, and (2) the time label

EAu of each node u inHP is the earliest time to arrive node u

through a flexible path, provided that each intermediate

node in the path lies inHP. We perform induction according

to the cardinality of the set HP.

To prove hypothesis (1), recall that, in each iteration, we

move a node u inHP with the smallest value toHP. To show

that EAu of node u is optimum, notice that, by our induction

hypothesis (2), EAu is the earliest time to arrive node u

through a flexible path that does not contain any

intermediate node in HP. We now show that the total time

to arrive node u through any flexible paths that contain some

nodes in HP as an intermediate node is at least EAu. To

prove it, we let P denote a path formed by appending node u

after a flexible path, and assume that P contains at least one

node in HP as an intermediate node. Path P can be

decomposed into two segments P1 and P2, where all

intermediate nodes in P1 are not in HP, but the last node

of P1, say h, is in HP. By the induction hypotheses, this

suggests that the total time of P1 is at least EAh. Moreover,

since node u is the smallest time label in HP, EAhZEAu.

Therefore, the path segment P1 has total time of at least EAu.

Furthermore, since all arc times are nonnegative, the total

time of the path segment P2 is nonnegative. Consequently,

the total time of path P is no less than EAu. This result

establishes the fact that EAu is the earliest time to arrive

node u through a flexible path.

We next show that the algorithm preserves hypothesis (2).

In step 2, the node with smallest EAu is selected, and its value

becomes permanent thereafter. Following that, we will check

if this node is flexible. If it is not flexible, then this node

cannot be used as an intermediate node of a flexible path,

and thus we skip it and move on to remaining nodes.

Otherwise, the time labels of some nodes in HP�{u} may
decrease since node u could become an intermediate node in

the most flexible paths to these nodes. Recall that after

permanently labeling flexible node u, the algorithm examines

each arc (u, w) emanating from node u and sets

EAw¼EDuþ dur(u, w) if EDuþ dur(u, w)oEAw. Therefore,

after this time-label update operation, the time label of

each node w in HP�{u} is the earliest possible time to arrive
node w among all flexible paths whose intermediate nodes

are all in HP [fug. &

Table 3 Execution of Algorithm Finding-path

Iteration Nodes 1 2 3 4 5 6 7 Chosen
node

Flexibility
of the node

Flexible
or not

EA 0 4 5 N N N N

EE 0 6 9 N N N N

1 ED 0 6 9 N N N N 1 14¼ 7þ 7 Yes
Belong to HP HP HP HP HP HP HP

EA 0 4 5 N N N N

EE 0 6 9 N N N N

2 ED 0 6 9 N N N N 2 2¼ 1þ 1 Not
Belong to HP HP HP HP HP HP HP

EA 0 4 5 11 13 N N

EE 0 6 9 11 14 N N

3 ED 0 6 9 18 15 N N 3 9¼ 3þ 6 Yes
Belong to HP HP HP HP HP HP HP

EA 0 4 5 11 13 21 22
EE 0 6 9 11 14 N 22

4 ED 0 6 9 18 15 N 22 4 7¼ 4þ 3 Yes
Belong to HP HP HP HP HP HP HP

EA 0 4 5 11 13 17 20
EE 0 6 9 11 14 17 20

5 ED 0 6 9 18 15 17 20 5 10¼ 5þ 5 Yes
Belong to HP HP HP HP HP HP HP

EA 0 4 5 11 13 17 20
EE 0 6 9 11 14 17 20

6 ED 0 6 9 18 15 17 20 6 2¼ 1þ 1 Not
Belong to HP HP HP HP HP HP HP

EA 0 4 5 11 13 17 20
EE 0 6 9 11 14 17 20

7 ED 0 6 9 18 15 17 20 7 10¼ 5þ 5 Yes
Belong to HP HP HP HP HP HP HP

Y-L Chen et al—Time analysis for time-window network 867

Finally, the following lemma shows the time complexity of

the algorithm.

Lemma 1 Let n denote the number of nodes and m the

maximum number of time windows associated with a node in

the network. If nZm, then the time complexity of Algorithm

Finding-path is O(n2).

Proof. The algorithm requires n iterations to find the

most flexible path, since the initial HP has n nodes, and

one node is removed from HP in each iteration. There are

three operations in each iteration: (1) select the node with the

minimum EA, (2) compute the flexibility of node u, and (3)

update EA values of those nodes adjacent to node u.

Obviously, (1) can be done in time O(n), because finding the

minimum value from n values can be done in time O(n), and

(3) can also be done in time O(n) because each node has no

more than n adjacent nodes. As to (2), it can be done in time

O(m). To explain the time complexity associated with (2),

note that the most time-consuming part for (2) is in step 3.1,

in which EEu and EDu are derived from EAu. To perform

this computation, all entering time windows and departure

time windows of node u need to be examined once. As a

result, the time required is O(m). Combining all the above

results, we have the total time complexity of O(n2).

Multiple intermediate destination nodes

In this subsection, we discuss the method of selecting a

path when multiple intermediate destination nodes with

multiple deadlines are pre-specified. Under this new require-

ment, it is necessary to evaluate the changes to the time

characteristics. Let the specified intermediate nodes be Ij
with the latest entering time Ej, for j¼ 1 to r. Without loss of

generality, let I0¼ 1 and Ir¼ n. Consequently, the path must

be from node I0 to node I1, then to I2,y, and finally to Ir. In

this path, we may pass through a node several times.

Therefore, a node should have r sets of time characteristics

rather than just only one set, where the jth set is for the

subpath from Ij�1. to Ij. In view of this, we define new

symbols, EAi(j), EEi(j), EDi(j), LDi(j), LEi(j), and LAi(j),

which are similar to those defined previously except that they

are constrained in their respective subpaths.

To compute EAi(j), EEi(j), and EDi{ j} for j¼ 1, 2,y,

and r, we execute Algorithm I r times, where, in the jth run,

the source node s is Ij�1, destination node d is Ij, and the

beginning time of source node is EDs(j�1). In order to
compute LEi(j) and LDi(j), we execute Algorithm II

backward for j¼ r, r�1,y, 1. In the run corresponding to

index j, we set the source node s as Ij�1, destination node d as

Ij, and the latest entering time of destination node as

min{LEd(jþ 1), Ej}. Finally, by applying Algorithm III r

times, we can obtain all the values for LAi(j), j¼ 1, 2,y, r.

Based on the time characteristics LDi(j), LEi(j), and

LAi(j), where j¼ 1, 2,y, r, Algorithm Finding-path can find

the most flexible path for each segment, that is, the most

flexible paths from Ij�1 to Ij, for j¼ 1, 2,y, r. In the jth run,

the source node is Ij�1, destination node is Ij, and the

beginning time of the source node is the earliest departure

time of the node in the preceding run. After all these

sub-paths are joined one after another, the final path is the

one that is from node I0 to node I1, then to I2,y, and finally

to Ir.

Example 3

Consider the network shown in Figure 1. Suppose we want

to find a path with two destinations, where the first

destination is I1¼ 6 with E1¼ 25 and the second I2¼ 12
with E2¼ 40. Running Algorithm I directly for these two

segments, we find that the optimal paths in the segments are

(1, 2, 3, 6) and (6, 5, 12), respectively.

Following the method discussed in this subsection, we run

Algorithm II backward two times. In the first time, we set

the source node as node 6, the destination node as node 12,

and LE12(2)¼ 40. As a result, the latest entering times and
the latest departure times for nodes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, and 12 are found to be (10, 10), (15, 16), (13, 18), (16, 18),

(28, 28), (23, 24), (22, 22), (18, 18), (15, 25), (25, 28), (22, 30),

and (40, 40), respectively, where the first number in the

parentheses is the latest entering time and the second the

latest departure time. In running Algorithm II for the second

time, we set the source node as node 1, the destination node

as node 6, and LE6(1)¼min{LE6(2), E2}¼min {23, 25}¼
23. We find that the latest entering times and the latest

departure times for nodes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

and 12 are (4, 4), (5, 5), (11,11), (�N, �N), (�N,�N),

(23, 23), (10, 10), (�N,�N), (�N,�N), (�N,�N),

(�N,�N), and (�N,�N), respectively.

Suppose a node’s flexibility is determined by the following

parameter values: a¼ 0, b¼ 1, g¼ 1, and l¼ 4. Using these
values, the flexibility of a node is calculated by summing the

ranges of the departure and entering time intervals, and a

node is not flexible if the total is smaller than 4. Algorithm

Finding-path needs to be run twice, where the first run is

used to find the most flexible path from nodes 1 to 6, and the

second is used for that from nodes 6 to 12. In the first

run, we find that the most flexible path is path (1, 3, 6)

rather than the original optimal path (1, 2, 3, 6). This

is because node 2 is not flexible. (Node 2 has the following

time characteristics: EE1(2)¼ 3, ED1(2)¼ 4, LE1(2)¼ 5
and LD1(2)¼ 5.) In the second run, we set ED2(6) as 20,

because the result of the preceding run indicates that 20 is

the earliest departure time of node 6. The result shows that

the most flexible path from nodes 6 to 12 is path (6, 5, 12).

Combining the two paths together, we obtain the final path

(1, 3, 6, 5, 12), where every node in the path is flexible and

the latest entering time constraints on nodes 6 and 12 are

satisfied.

868 Journal of the Operational Research Society Vol. 54, No. 8

Conclusion

In this paper, we propose a systematic method for planning a

path in a time-window network to meet a pre-determined

deadline constraint. The main results of the paper include (1)

three efficient algorithms developed for generating six basic

time characteristics associated with each node, (2) a

systematic analysis proposed to generate important time

information for planning a path in a time-window network,

and (3) based on the time characteristics and the proposed

analyses, an algorithm to find the most flexible path in a

time-window network.

The paper can be extended in several ways. For example,

we may examine other kinds of time constraints, such as

time-schedule and traffic-light constraints, and see how this

time-related analysis can be done in these time-constrained

networks. Furthermore, we may develop systematic or

interactive procedures for selecting a path according to

these time characteristics. In addition, we may generalize the

problem to multiple travelers by requiring the travelers must

meet at certain nodes before specified deadlines.

References

1 Baker EK (1983). An exact algorithm for the time-constrained
traveling salesman problem. Opns Res 31: 938–945.

2 Baker E (1982). Vehicle routing with time window constraints.
Logist Transb Rev 18: 385–401.

3 Ahn BH and Shin JY (1991). Vehicle-routing with time windows
and time-varying congestion. J Opl Res Soc 42: 393–400.

4 Balakrishnan N (1993). Simple heuristics for the vehicle routing
problem with soft time windows. J Opl Res Soc 44: 279–287.

5 Desrochers M and Soumis F (1988). A reoptimization algorithm
for the shortest path problem with time windows. Eur J Opl Res
35: 242–254.

6 Dumas Y, Desrosiers J, Gelinas E and Solomon MM (1995).
An optimal algorithm for the traveling salesman problem with
time windows. Opns Res 43: 367–371.

7 Desaulniters G and Villeneuve D (2000). The shortest path
problem with time windows and linear waiting costs. Transp Sci.
34: 312–319.

8 Dijkstra EW (1959). A note on two problems in connection with
graphs. Numer Math 1: 269–271.

9 Fox BL (1978). Data structures and computer science techni-
ques in operations research. Opns Res 26: 686–717.

10 Eppstein D (1994). Finding the k shortest paths. Proceeding of
the 35th Annual Symposium on Foundations of Computer Science.
pp 154–165.

11 Chen YL Rinks D and Tang K (1997). Critical path in an acti-
vity network with time constraints. Eur J Opl Res 100: 122–133.

12 Chen YL and Tang K (1998). Minimal time paths in a network
with mixed time constraints. Comput Opns Res 25: 793–805.

13 Chen YL and Yang HH (2000). Shortest paths in traffic-light
networks. Transp Res:B 34: 241–253.

Appendix

Algorithm I. Evaluation of EAi, EEi, and EDi:

Step 1: Initialization

For each node i, except the source node, set

EAi¼N, EEi¼N, and EDi¼N;

EA1¼ 0; EE1¼ 0; ED1¼ 0;
Mark all the nodes as unexamined nodes;

Step 2: Let node i be the node with the minimum EDi value

among the unexamined nodes;

For each unexamined successor j of node i, do

if EDiþ dur(i, j)oEAj, then

EAj¼EDiþ dur(i, j);
If EAj4Eend

Ej

j , then go to the next iteration of

the for-loop;

Find the minimal k(1rkrEj), such that EAjr
Eendj

k;

EEj ¼max {EAj, Ebeginjk};
If EEj4Dend

Ej

j , then go to the next iteration of

the for-loop;

Find the minimal k(1rkrDj), such that EEjr
Dend j

k;

EDj¼max{EEj, Dbeginjk};
If EDj has been modified, then EPj¼ i;

/* EPj is used to store the earliest path route */

Mark node i as an examined node;

Step 3: Repeat step 2 until all the nodes have been examined;

Algorithm II. Evaluation of LEi and LDi:

Step 1: Initialization

For each node i other than destination n, do

LEi¼�N and LDi¼�N;

LEn ¼ EendEn

j ;

Mark all the nodes as unexamined nodes;

Step 2: Backward computation

Let node i be the node with the maximum LEi among

the unexamined nodes;

For each unexamined predecessor j of i, do

if LEi–dur(j, i)4LDj, then

If LEi–dur(j, i)oDbeginj
1, then go to the next

iteration of the for-loop;

Find the maximal k(1rkrDj) such that

Dbeginj
krLEi–dur(j, i);

LDj¼max{LDj, min{LEi-dur(j, i), Dendj
k};

If LDjoDbeginj
1, then go to the next iteration of

the for-loop;

Find the maximal k(1rkrEj), such that

Ebeginj
krLDj;

LEj¼max{LEj, min{LDj, Eendj
k}};

If LEj is changed, then set LPj¼ i;

/* LPj stores the latest path route */

Mark node i as an examined node;

Step 3: Repeat step 2 until all the nodes have been examined.

Algorithm III. Evaluation of LAi:

For each node i except the source node, do

begin

LAi¼�N;

For each predecessor node j of i, do

x¼LEi�dur(j, i);

if xZLDj then y¼LDj

else if xZEDj then begin

Y-L Chen et al—Time analysis for time-window network 869

Find the maximal k such that Dbegin j
krx;

y¼min{Dend j
k, x}

end

else y¼�N;

LAi¼max{LAi, yþ dur(j, i)};

if LAi, is changed, then set LAPi¼ j /* LAPi is used to

store the node from which we

can arrive at node i in the latest time. */

end

Acknowledgments—We thank two anonymous referees for their many
helpful suggestions that improved this paper. The first author was
supported, in part, by the Ministry of Education (MOE) Program for
Promoting Academic Excellence of Universities under the Grant
Number 91-H-FA07-1-4.

Received January 2001
accepted February 2003 After three revisions

870 Journal of the Operational Research Society Vol. 54, No. 8

	Time analysis for planning a pathin a time-window network
	Introduction
	Problem statement and algorithms
	Time analysis
	Inaccessible nodes
	Node flexibility

	Waiting time analysis
	Staying time analysis
	Adverse effects by including an arc
	Example 1

	Path selection
	Example 2
	Multiple intermediate destination nodes
	Example 3

	Conclusion
	References
	Appendix

