
MANAGEMENT SCIENCE
Vol. 32, No. 6, June 1986

Printed in U.S.A.

MULTIATTRIBUTE BAYESIAN ACCEPTANCE
* SAMPLING PLANS UNDER NONDESTRUCTIVE

INSPECTION*

4 KWEI TANG, ROBERT PLANTE AND HERBERT MOSKOWITZ
College of Business Administration, Louisiana State University,

Baton Rouge, Louisiana 70803
Krannert Graduate School of Management, Purdue University,

West Lafayette, Indiana 'M901

A methodology for determining optimal sampling plans for Bayesian multiattribute accep-
tance sampling models is developed. Inspections are assumed to be nondestructive and
attributes are classified as scrappable or screenable according to the corrective action required
when a lot is rejected on a given attribute. The effects of interactions among attributes on the
resulting optimal sampling plan are examined and show that: (1) sampling plans for screen-

» able attributes can be obtained by solving a set of independent single attribute models, (2)
interactions of scrappable attributes on screenable attributes and conversely result in smaller
sample sizes for screenable attributes than in single attribute plans, and (3) interactions among
scrappable attributes result in either smaller sample sizes, lower acceptance probabilities or

^ both, relative to single attribute plans. An iterative subproblem algorithm is developed, which
is effective in finding near optimal multiattribute sampling plans having a large number of

^ attributes.
j ^ (ACCEPTANCE SAMPLING—MULTIATTRIBUTE; DECISION ANALYSTS; STATlS-

"* TICS—SAMPLING)

1. Introduction
• • * - * ' • • •• •

Dodge and Romig's pioneering work (1929) on sampling inspection established a
strong foundation for model development in the scientific selection of acceptance
sampling plans for single attribute inspection. Due to the simplicity of their model and
its ease in practical implementation, the method has been extended and widely used.
Recently, however, economically based (Bayesian) sampling plans have drawn consid-
erable attention (e.g., Guenther 1971, Hald 1960). Unlike traditional approaches which
emphasized classical statistical concepts such as maintenance of an acceptable quality
level (AQL), the Bayesian approach explicitly considers the costs associated with
decisions to accept or reject inspection lots. An optimal sampling plan is selected by
minimizing an expected loss function usually based on three cost components; (1) cost
of inspection, (2) cost associated with a rejected lot, and (3) costs incurred for each
defective item encountered in an accepted lot.

It is more often the case that a lot requires inspection on more than one attribute. In
Dodge and Romig (1929) this is accomplished by considering an item as defective if it
possesses a defect on one or more attributes, regardless of the number of defects. This
in effect treats a multiattribute problem as if it were a single attribute problem.
Consequently, the relative importance among attributes is ignored by this model.

3, However, economic models require explicit assessments of the economic consequences
associated with each attribute. Economic multiattribute acceptance sampling plans
have been formulated in Ailor et al. (1975), Schmidt and Bennett (1972), and most
recently in Moskowitz et al. (1984). These studies proposed multiattribute models
which associate separate inspection, rejection and acceptance costs with each attribute.
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Due to the discrete nature of the optimization problem a discrete search algorithm,
based on an extended pattern search, was developed in Moskowitz et al. (1984) and
was shown to be efficient for up to three attributes. Further, it was shown that
inspection plans could be obtained independently for each attribute provided that a
rejected lot is screened on each of the attributes which precipitated rejection of the lot.
However, if rejection on one or more attributes causes the lot to be^icjapped, then an
optimal multiattribute inspection plan must be obtained by considering the cost
consequences of all attributes simultaneously.

We extend the wg;rkin_ Moskowitz e t a l . J 1984) through an investigation of the
interactions among attributes and the effect of these interactions on an optimal
inspection plan. An optimization algorithm is then developed which utilizes subprob-
lem solutions in̂  conjunction with knowledge of these interaction effects. The algorithm
is shown to be effectiye for obtaining multiattribute inspection plans for a larger
number of attributes than was previously possible.

2. Assumptions and Classification of Attributes

Here we present the assumptions used in our study, and give a classification scheme
for attributes which is based on the disposition of rejected lots (Schmidt and Bennett
1972). Suppose there is an incoming lot consisting of N items for multiattribute
inspection. A random sample of n, items is drawn from the lot for inspection on the /th
attribute. If the number of defective items in the sample x,. exceeds the acceptance
number c,, the lot is rejected on attribute i, otherwise the lot is accepted on that
attribute. The nature of inspections on all attributes is assumed to be nondestructive,
and inspections on each attribut£,are carried to completion regardless of the inspection
outcome on the other attributes^ (Ailor et al. 19757 Moskowitz et al. 1984, Schmidt and
Bennett 1972). Furthermore, the occurrences of attributes on an item are assumed
statistically independent (Ailor et al. 1975, Moskowitz et al. 1984, Schmidt and Bennett
1972) Based on the disposition of rejected lots two classes of attributes are assumed:

A. Scrappable Attributes. Rejection results in scrapping an entire lot or returning
an entire lot to the supplier.

B. ScreembleAttribtitei._ Vit]e>c\:\on results jn sorting the uninspected items or
downgrading the value of a lot. ,

If the lot is rejected on one or inore scrappable attributes, the lot is scrapped or
returned to the supplier. Otherwise, corrective actions, if any, are in effect for the
screenable attributes on which lot rejections are called. In the next section we discuss
the impact of this classification scheme on single attribute models and then on
multiattribute models.

3. Single Attribute Models

We first discuss the costs inherent in a sampling plan for both scrappable and
screenable attributes. We then develop the single attribute models for both classes of
attributes. Properties of these single attribute models, such as cost sensitivity, are
investigated. These properties will prove useful in our development and examination of
the multiattribute niodels. _ ,

3.1. Cost
The economic consequences associated with a sampling plan essentially consist of

three costs; inspection, lot acceptance and lot rejection (Hald 1960, Moskowitz et al.
1984) Inspection cost is that incurred by the examination of a random sample and is
proportional to the size of the sample. The cost of acceptance is that caused by
defective items encountered in accepted lots. Acceptance cost, then, is directly asso-
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ciated with the number of defective items in an accepted lot. The cost of rejecting a lot
depends on the corrective action taken on a rejected lot. For screenable attributes, the
cost is associated with identifying defective items in the uninspected portion of the lot.
Therefore, the cost is proportional to the number of uninspected items.

If a lot is downgraded or sold at a reduced price, the loss, generally, depends on the
quality level of the lot. To keep the model simple, the per-item cost due to downgrad-
ing or price reduction is assumed to be constant. Since inspected samples are free of
defectives (no inspection error is assumed), the cost due to downgrading or price
reduction is proportional to the number of uninspected items. As a result, attributes
which, upon rejection, result in downgrading the value of a lot are considered to be
screenable attributes. Finally, for scrappable attributes the cost is the investment on
the entire lot, which is the maximum possible loss for attribute rejection. This cost is
proportional to the lot size. We now incorporate these costs in the development of the
acceptance sampling model.

3.2. The Model

An inspection lot of size N is drawn from a production process having a quality
level/J where the variation of j ^ from lot to lot is described by a density function/(j?).
It is assumed that the production process is under binomial control, such that the
distribution of the number of lot defectives; X is

(1)

The number of sample defectives x is a random variable described by the conditional
distribution t{x\X), such that the marginal distribution of x can be obtained by

g{x)=J:t{x\X)h{X). (2)

Various forms of prior distributions of p have been proposed (Chin and Wetherill
1975, Hald 1960). Throughout this study a beta distribution Beta (a, fi) is used a.sf(p).
The selection of the conditional distribution t(x \ X) is primarily based on probabilistic
and computational considerations. Three commonly-used distributions are the hyper-
geometric, binomial and poisson mass functions. We advantageously use the hypergeo-
metric distribution as the conditional distribution of x, since the distributions of X and
X then fall into a well-known family of "reproducible distributions" (Hald 1960) in
which X and x have the same distribution but with different parameter values.
Specifically, h(X} is Beta-Binomial with parameters N, a and /S while g(x) is also
Beta-Binomial but with parameters n, a and /8. Other distributions with this property
can be found in Hald (1960).

An important characteristic of a sampling plan («, c), the probability of acceptance,
can now be presented as

The cost of acceptance is determined by the product of the per-item cost of
acceptance A and the number of defective items in the uninspected portion of the lot.
Averaging this cost over all possible values of X and x < c, the expected cost of
acceptance is

c N

c ) = 2 ^ A(X-x)t{x\X)h(X). (4)
0 ^ 0



742 KWEI TANG, ROBERT PLANTE AND HERBERT MOSKOWITZ

The cost of rejection is the product of the per-item cost of rejection jR and the
number of uninspected items. Hence, we obtain the expected cost of rejection by

n N

ER(n,c)= 2 ^ R{N-n)t(x\X)h(X)

= R(N-n) J] g(x)

= R(N - n){l -p(n,c)). (5)

The cost of inspection is the product of sample size and the per-item cost of
inspection S, that is nS. The expected total cost of the model for a screenable attribute
is then

ETC = EA («, c) + ER(n, c) + nS. (6)

The only difference between the model for a scrappable attribute and that for a
screenable attribute is the cost of rejection. The cost of rejection for a scrappable
attribute is proportional to the lot size. Consequently, the expected total cost for a
scrappable attribute can be obtained by substituting the following expected cost of
rejection in (6)

ER(n,c)^RN(l-p{n,c)) (7)

where R denotes the per-item rejection cost for scrapping or returning a lot item.

3.3. Cost Sensitivity of an Optimal Single Attribute Sampling Plan

We state three important properties that characterize the sensitivity of an optimal
single attribute sampling plan with respect to the cost parameters, S and R, which will
prove useful in analyzing the multiattribute model.

We first state the following two intuitively plausible properties of an optimal single
attribute sainpling plan (proofs in Appendix I):

Property 1. An optimal sample size is nonincreasing in S for both scrappable and
screenable attributes. This simply means that as sampling costs increase, the number of
items sampled decreases.

Property 2. The probabihty of acceptance of an optimal sampling plan is nonde-
creasing in R for scrappable attributes. This means that as the cost of scrapping a lot
increases, the probability of accepting the lot increases.

A simultaneous change in R and S does not iniply that a combined result of
Property 1 and Property 2 must apply. If we increase the per-item cost of inspection
and reduce that of rejection, it is not necessarily economical to take a smaller sample
and also reduce the likelihood of a£ce^ the lot. In fact, it is sometimes even
impossible to make such a change from the original sampling plan. For example,
suppose that the original sample plan calls for the inspection of two items and lot
acceptance if none of the items are found djfecti.vejnsucli^a case, we cannot reduce
the sample size and acceptance probability simultaneously. However, it is economical
to reduce the sample size or the acceptance probability or both in response to a
simultaneous châ nge in S and R (proofs in Appendix II). Hence we have:

Property 3. For a simultaneous change in S and R, at least one of the following
statements is true for scrappable attributes:

1. The optimal sample size is nonincreasing in S.
2. The probability of acceptance associated with an optimal sampling plan is

nondecreasing in R.
We have shown the qualitative (directional) sensitivity of an optimal single attribute

acceptance sampling plan to changes in the cost parameters R and S for scrappable
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attributes. However, due to the discrete nature of n and c an optimal sampling plan is
very robust with respect to changes in the parameters R and S (Tang 1984). This
robustness property becomes important in analyzing the response surface of the
multiattribute model developed subsequently.

We have completed the development and analysis of the single attribute models for
both scrappable and screenable attributes. The models and the results are now used as
the basis for developing and analyzing the multiattribute model in the following
sections.

4. Multiattribute Acceptance Sampling Plan

We first develop a multiattribute acceptance sampling model. We then establish,
through an analysis of attribute interactions, weak necessary conditions for an optimal
multiattribute acceptance sampling plan.

4.1. The Multiattribute Model

For convenience, let Q and $ denote the index-sets of scrappable attributes and
screenable attributes respectively. Due to the independence assumption about the /?,'s,
the joint distribution of the X'% is simply the product of the h^{X>i\. Similarly, the joint
distribution of the X/s and x,'s is

\{Pi=Tlh{^i\^i)h{^i)' where (8)

Pj = the joint marginal probability of x,- and J , .

The probability of accepting the lot on all the scrappable attributes P(fl), an important
characteristic of the model, is then given by

ii s s n M o ( )
ieQ x,=0 Xi / en

In determining the total cost of the model, the outcomes of inspection can be
aggregated into the following two mutually exclusive events:

(A) One or more rejections are called on the scrappable attributes.
(B) No rejection is called on the scrappable attributes.
For event (A), the decision cost is the total investment on the lot, that is NR. Hence

the total expected cost associated with (A), ER{U), is

ER{Q,) = RN[l-P{Q)\ (10)

In event (B), the lot is accepted on all the scrappable attributes, and corrective
actions are carried out for those screenable attributes on which lot rejections are
called. Thus, the costs in (B) are the cost of acceptance on the scrappable attributes
and the cost of acceptance or rejection on the screenable attributes.

The cost of acceptance on the /th scrappable attribute is determined by the product
of the per-item cost of acceptance A^ and the number of items possessing the iXYi
attribute in the uninspected portion of the lot X^ — x,. Notice that this cost is incurred
only when the lot is accepted on all the scrappable attributes. Therefore the expected
cost of accepting the lot on the /th scrappable attribute EAi{Q) is given by
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Hence, the total expected cost of acceptance for the scrappable attributes EA (fi) is

^ n A^J^C^)- (12)

Since the cost of accepting the lot on a screenable attribute is incurred only when the
lot is accepted on all the scrappable attributes, the expected cost of acceptance on the
ith screenable attribute EA^(^) is

EA^i^) = S 2 2 2 ^M^^ - ^^Pi n Pk

(13)

Then, the total expected cost of acceptance for the screenable attributes EA ($) is

(14)

Similarly, the total expected cost of rejection for the screenable attributes ER((^) is
given by

(15)

The last cost component to be considered is the total cost of inspection. Since
inspection on the sample selected for each attribute is carried to completion, the total
cost of inspection / is

Consequently, the expected total cost of the multiattribute model is the sum of
equations (10), (12), (14), (15) and (16), i.e.,

ETC = EA (2) -I- ER(Q) -f EA ($) -h ER(^) -\- I. (17)

4.2. Analysis of Attribute Interactions

Three types of interactions occur among attributes that affect an optimal multiattri-
bute sampling plan: (1) the interactions among screenable attributes, (2) the interac-
tion between classes of scrappable attributes and screenable attributes, and (3) the
interaction among scrappable attributes. As previously mentioned the investigation of
these interactions results in y/eakjiecessary conditions for an optimal multiattribute
sampling plan.

4.2.1. Interaction Among Screenable Attributes. Consider the following model
which consists entirely of screenable attributes:

ETC=^[ EA,(n,, c,) + ER,{n,, c,) + («,S,) ]. (18)

Clearly, the model cari be separated into a set of independent single-attribute models.
An optimal multiattribute sanipling plan can thus be obtained by determining an
optimal sampling plan on each of the attributes independently (Moskowitz et al. 1984).
Hence, for the case described above no interaction exists among screenable attributes
in determining an optimal multiattribute sampling plan.

4.2.2. Interaction Between Scrappable Attributes and Screenable Attributes. For
purposes of illustration and without loss of generality, we will consider the following
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two-attribute niodel in which the first attribute is scrappable and the second attribute
is screenable. From (17) we have

[ ^^. (19)

The following equivalent expression shows the influence of the scrappable attribute
on the selection of the sampling plan for the screenable attribute.

ETC =£'yii(n, ,c,)-(-£'/?,(«, ,Ci)-I-Mis',

"! -^i)]- (20)

Equation (20) indicates that the probability of accepting the scrappable attribute
becomes a factor that essentially increases the "effective" cost of inspection of the
screenable attribute (n2S2/pi(ni,Ci) > 1^282). It is apparent that, as the probabihty of
accepting the scrappable attribute becomes smaller, inspection on the screenable
attribute becomes more costly than the corresponding expected decision losses for that
attribute [EA2{n2,c.^ + ER2{n2,c^]. Per Property 1 (§3.3) this results in a smaller
optimal sample size for the screenable attribute. Thus the economic sample sizes for
screenable attributes in an optimal multiattribute sampling plan which includes
scrappable attributes are equal to or less than those which do not.

On the other hand, expression (19) indicates that the decision costs of the screenable
attribute are a multiplier of/7i(«i,C]) and consequently increase the expected cost
associated with the decision to accept the lot on the scrappable attribute. This becomes
clearer if we express/'](nj,C]) in (19) as 1 — [1 ~/'i(«i,Ci)] and rewrite (19) as:

ETC = EA,{n,,c{) + N[R-

X [1 -/>,(n, ,c,)] + n^Sy + EA2(n2,C2) + £i?2(«2><̂ 2) + «2'S'2- (21)

Equation (21) suggests that the presence of the screenable attribute reduces the
per-item rejection cost of the scrappable attribute relative to the acceptance cost. Per
Property 2, this results in a lower likelihood of accepting the lot on the scrappable
attiribute. It also implies that the probability of acceptance of a scrappable attribute
will be further reduced by the introduction of new screenable attributes to the model.
Furthermore (20) and (21) indicate that expected total cost increases as each addi-
tional attribute is introduced into the model.

4.2.3. Interaction Among Scrappable Attributes. Consider the following model
consisting of two scrappable attributes.

ETC = EA,(«,, c,)/?2(«2 > ^2) + £'^2(«2 > C2)Pi(ni > c,)

+ i?4l-;;,(«,,c,)/;2(«2,C2)] + «,Si + n2^2- (22)

Rewriting 1-/?,(«,,c,)j!72(«2.<^2) in (22) as I -P2(n2,C2) + P2(n2,C2)[l -p^inuC^)]
gives

ETC = p2(n2 ,C2)[EA^(n^ ,c{)

+ N{R - EA2(n2,C2)/[Np2(n2,C2)]][l -pi(ny,c,)] -i- n,S,/p2(n2,C2

+ EA2(n2, C2) + ER2(n2, C2) + «2^2 • (23)

Note that the influence of one scrappable attribute on another is, in fact, a
combined influence of a scrappable attribute on a screenable attribute and a screen-
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able attribute on a scrappable attribute; e.g., an increase in inspection cost and a
decrease in rejection cost. Consequently, according to Property 3, either a smaller
sample size, a tighter sampling plan, or both are taken for scrappable attributes.

Summarizing, we state two weak necessary conditions for an optimal multiattribute
sampling plan:

1. An optimal sample size of a screenable attribute in a multiattribute model is equal
to or less than that in a single attribute model for the same attribute.

2. A smaller sample size, a lower probability of acceptance, or both should be taken
for a scrappable attribute in a multiattribute model than that in a single-attribute
model for the same attribute.

5. Subproblem Heuristic

We first develop a heuristic solution procedure to obtain near optimal multiattribute
acceptance samphng plans. We then illustrate the implementation of this procedure
through use of a 4-attribute example problem.

5.1. Algorithmic Development

Due to the complexity of the model, there is no known algorithm, other than
complete enumeration, that can be used in obtaining an optimal sampling plan.
However, the response surface of the model in the neighborhood of an optimal
solution is extremely flat with respect to ETC; thus it allows us to make use of a good
heuristic algorithm to obtain near optimum solutions. The algorithm's concept is
simple. The notion is to improve the objective function by changing the sampling plan
of one attribute at a time until no iinprovement is possible. The solution provided in
each step of the algorithm satisfies the weak necessa,ry conditions for optimahty
discussed in the previous section.

If we seek an improvement on the objective function (17) by changing the sampling
plan of a scrappable attribute, we have the following single-attribute problem (sub-
problem), a generalization of (21) and (23), for the ith scrappable attribute.

SUB,(B) = EA,{n^, c,) + TV f /? - (1 /TV)[ ^ EAj{nj, cf)/pj{nj, cf)

Similarly, the subproblem for thejth screenable attribute SUBy($) is defined as

SUB/<I>) = EAj{nj,Cj) + ERj(nj,Cj) -H «JSj / U /'.(n^i,c,)l. (25)

The algorithm iteratively solves and updates the subproblem of each attribute until
the solution converges. The initial conditions of the algorithm are established by letting
all the cost components in the model be zero and letting the probability of each
attribute's acceptance be equal to one. In the first iteration, initiated by solving a single
attribute model, attributes are successively introduced. Once all attributes haye been
introduced, the algorithm recursively updates and solves the subproblem associated
with each attribute until two successive iterations yield the saine sampling plan for
each attribute.

Each subproblem is solved using an extended discrete pattern search, which essen-
tially adds a third exploratory search to the usual pattern search algorithm (Himmel-
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blau 1972, Hook and Jeeves 1961) and maintains an integer step size at each iteration
of the search procedure (Moskowitz et al. 1984). The sequence of introducing attri-
butes affects the efficiency of the algorithm, particularly when the pattern search is
used in solving the subproblems. Our experience is that it is more difficult to introduce
scrappable attributes before screenable a.ttributes when t̂ ^̂^ is used as the
starting point in each subproblem. The main reason for this is that the effort to find
optimal sample sizes (and acceptance numbers) for screenable attributes is reduced in
the first iteration. Furthermore, the sampling plan obtained in the previous iteration is
used as the starting point for the current iteration. An example is now used to illustrate
the procedure.

5.2. An Illustrative Example

Consider a lot with 100 items for four-attribute inspection. The model parameters
are listed as follows:

Attribute Type Si

Scrappable
Scrappab'le
Screenable
Screenable

$1.0
1.0
0.2
0.2

$10.0
10.0
2.0
2.0

$2.0
2.0
0.3
0.3

The initial conditions of the algorithm are set by letting all the cost components in
the model be equal to zero and the probability of acceptance for each of the four
attributes be equal to one. In the initial iteration of the algorithm, subproblem (24) for
the first scrappable attribute is solved. The resulting sampling plan is (11,3); the
probability of acceptance is 0.932; and the costs of acceptance and rejection are $72.55
and $13.62 respectively. Subproblem (24) for the second scrappable attribute is
updated by these results and then solved. The acceptance probabilities of the first
attribute and the second attribute are used to update each of the subproblems (25) for
the two screenable attributes. The procedure solves these two subproblems indepen-
dently for the screenable attributes and starts the second iteration by considering again
the first scrappable attribute. The procedure is repeated until two successive iterations
yield the same sampling plans for all the attributes.

For this example, the proposed algorithm reached the optimal solution during the
second iteration and terminated at the erid of the third iteration. The search process
and the results are shown as follows:

Iteration

1
2
3

« i

11
5
5

3
0
0

PI

0.932
0.643
0.643

"2

5
5

1
0
0

P2

0.765
0.643
0.643

«3

15
3
3

^3

2
0
0

P3

0.705
0.700
0.700

«4

15
3
3

2
0
0

P4

0.705
0.700
0.700

ETC

$208.80
198.31
198.31

In a single attribute model, optimal sampling plans for the first and second
scrappable attributes are identical, with a sampling plan of (11,3) and an acceptance
probability of 0.932. In the multiattribute model, however, the sample sizes and
acceptance probabilities of the two attributes are 5 and 0.643 respectively (both are
reduced). For screenable attributes, the sample sizes are reduced significantly from
those of a single attribute model, but the probabilities of acceptance stay almost
unchanged. It is interesting to point out that if the sampling plans for each attribute
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are obtained independently, the total resulting cost is $219.0 in the multiattribute
model, more than that obtained by solving for all attributes simultaneously ($198.31).

6. Computational Results

A sample of 16 problems was used to evaluate the efficiency of the proposed
algorithm. The results were concerned with the cost performance as well as the
computational time required to reach final solutions. All the problems in the study
were based on a four-attribute model whose parameters are listed in Table 1. Two
levels of per-item inspection cost were set for each type of attribute. Through different
combinations of these inspection costs 16 problems were constructed. In addition, for
comparison purposes, the optimal single attribute acceptance sampling plan for each
of the attributes is also Hsted. These single attribute plans were obtained using the
difference algorithm in Moskowitz and Plante (1984) with CPU times ranging from
0.50 to 1.10 seconds.

The efficiency of the proposed subproblem algorithm was examined by using a
multidimensional pattern search (Moskowitz et al. 1984) to also solve each of the 16
problems. Efficiency was measured by comparing the solution and the solution time of
both algorithms.

Table 2 shows the results obtained by the two algorithms. The computer programs
for both algorithms were written in FORTRAN IV and run on a CDC 6500/6600.
The time required to solve each problem is reported in seconds of CPU time. The
proposed algorithm obtained a smaller ETC in 13 out of the 16 cases, and an identical
ETC in the remaining problems. The largest relative cost difference was as much as
9%. Moreover, the proposed algorithm generally needed less run time to reach final
solutions when cost performances of the two algorithms were close. Also in three cases
the pattern search obtained less economical solutions after consuming considerably
more time. Finally, the proposed algorithm showed a fast rate of convergence in each
of the problems. The required number of iterations was between two and four. A
complete study of the convergence properties of the proposed algorithm is presented in
Tang (1984) as well as the near optimal properties of solutions obtained by the
proposed algorithm.

7. Summary

A general Bayesian multiattribute acceptance sampling model which accommodates
various dispositions of rejected lots was developed. We also discuss a classification
scheme of scrappable and screenable attributes which facilitates the design of such
models. The analysis of interactions between and within these two classes of attributes

TABLE 1

Characteristics of a Four-Attribute Model {Lot Size = 100)

Prior Optimal Single
Parameters Costs Attribiute Plans

Attribute
i dj Pj i>,- Aj R^ fij Cj

1 1 9 $0.50 $10.0 $2.0~ lOO" ~' T00~'
1 1 9 1.00 10.0 2.0 11 3
2
2
3
3
4
4

1
1
1
1
1
1

10
10
7
7
8
8

0.50
1.00
0.18
0.20
0.18
0.20

10.0
10.0
2.0
2.0
2.0
2.0

2.0 ,.
2.0
0.3
0.3
0.3
0.3

100
6

100
36
54
28

100
2

100
5
8
4
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establishes optimal design principles of Bayesian multiattribute acceptance sampling
plans. A subproblem heuristic algorithm was also developed and shown to be very
efficient in obtaining near optimal multiattribute acceptance sampling plans for a
larger number of attributes than was previously possible.'

Appendix I. Derivation of Properties 1 and 2

Let {n\ c') be an optimal sampling plan for a critical attribute with R = r and S = s. Further, let (n-̂ ,c-̂ )
be an optimal sampling plan for a scrappable attribute with /? = /• — Ar, 5' = '̂ + As, where A/- > 0 and
Ai > 0. We can now write

EA(n\c') + Nr(l -/>(«', c')) <i{n^)s+ EAin^c^) + Nr{l -p(n^,c^)) and (I-l)

N(r - Ar)(l - ;>(« ' ,c ' ) )

^,c^) + N{r - Ar)(l -p(n\c^)). (1-2)

By subtracting each side of expression (I-l) from that of (1-2) we have

(«' - n^)As > Aripin\c^)-p(n\c^)). (1-3)

Using (1-3) we can now state three important properties.
Letting Ar = 0 in (1-3), it is apparent that the optimal sampling plan for scrappable attributes is

nonincreasing in S. This is also true for screenable attributes.

PROOF. Let («', c') be the optimal sampling plan when the per-item inspection cost is s, and (n^,c^) be
the optimal sampling plan when the per-item inspection cost is ̂  + As. Then

n\s + As) + EA(n\c^) + ER(n\c^) > n\s -\- As) -h EA{n\c^) + ERin^,c^). (1-4)

Suppose «^ > n'; the inequality still holds if we delete the terms associated with As. We obtain

n's + EA(«',c') + ER{n\c^) > nh + EA{n^,c^) + ER{n^,c% (1-5)

which contradicts the fact the sampling plan (n' ,c ') is the optimal sampling plan when the per-item
inspection cost is i. Therefore, we conclude n^ must be equal to or less than «'. Q.E.D.

Further, letting Ai = 0 in (1-3), it is evident that the acceptance probability of an optima! sampling plan
for a scrappable attribute is nondecreasing in R.

Appendix II. Proof of Property 3

If n^ > n', then according to (10), p{n^,c^) must be less than /)(«', c'). On the other hand, if p{n^,c^)
> />(«', c') then n' must be larger than n^. In brief, both n^ > «' and p{n^, c^) > />(«', c') cannot be valid
simultaneously in response to an increase in S and a decrease in R. Q.E.D.

'The research was supported, in part, by National Science Foundation Grant Number 8007103A2.
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