Design Of Product Specifications For Multi-Char acteristic |
Tang, Kwei;Tang, Jen

Management Science; Jun 1989; 35, 6; ABI/INFORM Collection

pg. 743

MANAGEMENT SCIENCE
Vol. 35. No. 6, June (989
Printed in U.5.A.

DESIGN OF PRODUCT SPECIFICATIONS FOR
MULTI-CHARACTERISTIC INSPECTION*

KWEI TANG AND JEN TANG

Department of Quantitative Business Analysis, Louisiana State University,
Baton Rouge, Louisiana 70803
Bell Communications Research, Piscataway, New Jersey 08854

A product often requires inspection on more than one characteristic. The traditional method
determines inspection specifications for each characteristic independently. This practice ignores
the interactions among characteristics in determining the disposition of an item, and prohibits
tradeoffs among the quality of characteristics. In this paper, two multi-characteristic screening
(complete inspection) models are proposed with different information processing requirements.
In both models, screening specifications are jointly determined by considering all the economic
and stochastic factors associated with the characteristics of interest. However, in Model 1, each
characteristic has separate screening specifications and the inspection results of conformance
(acceptance or rejections) of all the characteristics are used to determine the disposition of an
item. In the second model, a joint screening rule based on an aggregation of characteristics is
used to allow direct tradeoffs among the quality of characteristics. To implement the second
model, the exact measured values of all characteristics of an item have to be recorded and used
for a decision on that item. These two models are formulated and the solution procedures are
developed. A numerical study is used to compare the cost performance and other plan characteristics
of the independently-determined single characteristic models and the two multi-characteristic
models.

(TAGUCHI METHOD; PRODUCT SPECIFICATION; SCREENING; MULTI-CHARAC-
TERISTICS)

1. Introduction

The field of quality control is radically different today from what it was just a few
years ago. In particular, screening (100% inspection) becomes feasible and cost-effective
due to the rapid growth in computer-controlled testing and inspection systems (Baird,
Patel, Stitt and Mundel 1982). These automated inspection systems, which use laser,
machine vision, pattern recognition, and other advanced techniques, offer not only ac-
curate and consistent results at low operating costs but also better report preparation,
automated calibration, and malfunction diagnostics (Pryor 1982, Stover 1984). As a
matter of fact, in the modern self-correcting computerized numerical control (CNC)
systems, inspection has become an inherent part for tracking and reporting incipient
equipment or tool failures for corrective actions (Hill 1985, Stiles 1987 ). Moreover, some
modern manufacturing systems, such as the flexible manufacturing system (FMS) and
the just-in-time (JIT) system, have a trend toward smaller production lot sizes to reduce
inventory costs, in which cases screening is more efficient than the traditional lot-by-lot
sampling schemes in both controlling and providing early feedback of the quality of
incoming materials and outgoing items. Consequently, design and implementation of
screening procedures have drawn increased attention in the last several years.

It is well known that items produced by the same production process vary in perfor-
mance due to some inevitable random variations in materials, machine operations and
human operations. In a typical screening procedure, all the outgoing items are subject
to acceptance inspection. If an item fails to conform to the predetermined screening
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specifications, it is rejected and subject to certain corrective actions. For example, a
rejected item may be scrapped or reworked.

Recent papers (Bisgaard, Hunter and Pallesen 1984, Carlsson 1984, Hunter and Kartha
1977) and several earlier papers (Bettes 1962, Burr 1967, and Springer 1951) discussed
the selection of the most profitable process mean for given product specifications. In
their screening procedures, the accepted items are sold at the regular price, and the
rejected items are sold at reduced prices. The manufacturing cost is a function of the
performance variable. The most economic process mean is determined by maximizing
the expected profit, which is a function of the expected selling price and the expected
manufacturing cost. This model is typically applicable to the products with weight, volume,
number or concentration as the most important quality characteristic.

For many industrial products, there are often target (ideal) values—for example, zero
running error for watches and a specific output voltage for power circuits—and specifi-
cation limits need to be set for inspection and control purposes. The payoff of using tight
specifications is a high degree of consistency in product performance. However, this will
be at the expense of high costs associated with the disposition of rejected items. Therefore
the selection of the optimal screening specifications should be based on a balance of the
outgoing quality level and the costs incurred by the corrective actions on the rejected
items. Unfortunately, in practice, product specifications are often set with little or no
critical consideration of the various factors involved (Grant and Leavenworth 1972).

Screening specifications can be designed on the basis of the performance variable of
interest or a surrogate variable which is correlated with the performance variable. The
practice of using a correlated variable in lieu of the performance variable has been widely
found in electronics, machinery, food, medicine, and many other industries when mea-
suring the performance variable is costly, time consuming or destructive. Statistically-
based screening procedures select screening specifications to control the defective ratio
(AOQ) of outgoing items. Owen, McIntire and Seymour (1975) developed useable tables
under one-sided specifications and known distribution parameters. When the distribution
parameters are unknown, the problem becomes an interesting but complicated one and
often requires approximate solutions. There has been considerable research in this area,
including the work by Owen and Boddie (1976), Owen and Su (1977), Thomas, Owen
and Gunst (1977), Li and Owen (1979), Odeh and Owen (1980), Owen, Li and Chou
(1981), Madsen (1982), and Wong, Meeker and Selwyn (1985).

However, the criterion AOQ used in these procedures has been shown to be a poor
measure of quality level (Taguchi 1984, Kackar 1985, Leon, Shoemaker and Kackar
1987). In fact, as indicated by Landry (1976), statistical criteria are often determined
by economic conditions. For example, a low AOQ is desired because the loss resulted
from accepting defective items is large. Therefore it is more appropriate to directly consider
economic factors in designing the screening specifications.

Tang (1987) developed a general economic model for one-sided screening procedure
using a correlated variable. The cost components of the model include the cost incurred
by the disposition of rejected items and the cost incurred by accepting imperfect items.
This work has been extended to a two-sided screening procedure (Tang 1988c), a two-
stage screening procedure (Tang 1988d), and a one-sided screening procedure using
more than one correlated variable (Tang and Tang 1987).

All the previous studies are limited to single-characteristic inspection. However, it is
more often the case that an item requires inspection on more than one characteristic,
such as weight, dimensions and color. The traditional method selects screening specifi-
cations for each characteristic independently and then determines the disposition of the
items using the inspection results of all the characteristic of interest. The two main draw-
backs of this approach are that the interactions among the characteristics in determining
the disposition of an item are ignored, and tradeoffs among the quality of the characteristics
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are prohibited. In this paper, two multi-characteristic models are proposed to overcome
these problems. In both models, screening specifications are jointly determined by con-
sidering all the economic and stochastic factors associated with the characteristics of
interest. However, in Model 1, each characteristic has separate screening specifications
and only the inspection results of conformance (acceptance or rejection ) of all the char-
acteristics are needed to determine the disposition of an item. In Model 2, a joint screening
rule based on an aggregation of characteristics is used to allow direct tradeoffs among
the quality of the characteristics. To implement Model 2, the exact measured values of
all characteristics of an item have to be recorded and used to determine the disposition
of that item.

This paper assumes inspection is based on the performance variables. Nevertheless,
the results of this paper can be extended to the situation where inspection is based on
correlated variables. This paper is organized as follows: In the next section, a single-
characteristic model is presented and the solution and the properties of the model are
studied. In §3, Model 1 is formulated and the interactions among characteristics in de-
termining the optimal screening specifications are analyzed. The results of the interaction
analysis provide not only important insights of the model but also a basis for developing
an iterative solution algorithm. In §4, Model 2 is formulated on the basis of a joint
screening rule and the solution of the model is obtained. In §5, a numerical study is used
to compare the independently-determined single characteristic models and the two pro-
posed multi-characteristic models.

2. Single-Characteristic Model

If screening is directly based on the performance variable of interest, screening spec-
ifications of a single-characteristic model are easy to determine. There are two costs
considered in this decision (Tang 1988a). The first cost is incurred by corrective actions
taken on the rejected items. Typical corrective actions are repairing, scrapping or returning
the items to the supplier. This cost is usually called the rejection cost. The second cost
is the acceptance cost caused by imperfect quality when no corrective action is taken.
This may include loss in sales and goodwill, warranty costs, handling costs, etc. Clearly,
the rejection cost is more objective and easier to determine, but the acceptance cost which
relates to consumer’s perception of quality is difficult to assess. As a matter of fact, this
cost is often determined conceptually.

In traditional inspection by attributes, an item is classified as defective if it fails to
meet predetermined product specifications; otherwise, it is classified as a nondefective
item. This practice implicitly assumes that consumers remain equally satisfied with the
items conforming to the specifications and become completely dissatisfied with the items
which do not conform to specifications. This assumption can be described by the step-
loss function in Figure 1(a), and is actually embedded in many attribute sampling and
process control methods, such as lot-by-lot attribute acceptance sampling (Dodge and
Romig 1929, Hald 1960, Chiu and Wetherwill 1975, Tang, Plante and Moskowitz 1986),
p-charts and np-charts (Duncan 1986).

Taguchi (1984) used empirical evidences to show that the step-loss function does not
adequately reflect consumer’s perception of quality. Instead, he suggests that for a quality
characteristic, is a target (ideal) value and only at this value consumer is completely
satisfied (Loss is zero). Any deviation from this target value would cause consumer
dissatisfaction and result in an economic loss described by the following quadratic function
(see Figure 1(b)):

L(y) = ky*, (1)

where k is a positive constant and y is the measured deviation of the characteristic from
the target value. As explained by Scherkenback (1986), “The issue is not whether the
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FIGURE 1. Two Loss Functions.

loss is exactly quadratic. The issue is that the quadratic model is a lot closer to the real
world than the step-function.” Nevertheless, it should be pointed out that using this
function assumes that the consumer has decreasing risk aversion toward the quality
deviation (Pratt 1964). This quality loss function, now, has been widely accepted and
used in product design, process design and control, and many other areas (Kackar 1985,
Leon, Shoemaker and Kackar 1987, Tang 1988b).

Let [— 4, 6] be the acceptance region and an item is accepted if its y is in this interval.
The per-item expected acceptance cost due to quality deviation is obtained by

6
EAqA = ﬁé ky? f(y)dy, 2)

where f( ») is the probability density function of y. It is assumed that y follows a normal
distribution with mean 0 and variance ¢. It can be shown that (Tang 1988d)

EA = k{c*[28(8/c) — 1] — 206¢(8/0)}, 3)

where ®(+) and ¢(-) are the normal distribution and density functions, respectively.
The probability of rejection is

p(rej) =1 —Lf(y)dy
=2[1 — &/0)]. 4)

Let the per-item cost of rejection be 7, then the expected per-item cost of rejection is
ER = rp(rej). (5)
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The total per-item expected cost is

ETC=FEA + ER. (6)
It can be shown (Tang 1988a) that the optimum specification limit §* is obtained by
solving
L)y=r. )
In other words,
& = Vr/k. (8)

The result can be illustrated by Figure 2. Consider a given value of the deviation, say y,,
the vertical distance between the quadratic function and the rejection cost is the benefit
of rejecting an item when the deviation is equal to y,. Clearly, it is not economical to
reject an item when y is between —§* and 6* but it is economical to reject the items
outside [—6*, 6*]. Consequently, the optimal screening rule is to reject when L(y) > r,
and —é&* and 6* are the specification limits for separating the acceptance and rejection
regions. Notice that the optimal specification limits are independent of the distribution
of the performance variable. Furthermore, as intuitively expected, when the step-loss
function is used the optimal screening rule is simply to reject “defective” items and
accept “nondefective” items. The following obvious result is very important to the analysis
of the proposed multi-characteristic models:
Result 1. p(rej) is decreasing in r.

3. Multi-Characteristic Model 1
3.1. Assumptions

In this multi-characteristic model each characteristic has separate specifications [ —§;,
8;]. Based on these specifications, it is determined whether or not an item is rejected on
that characteristic. According to the disposition of the rejected items, quality characteristics
can be generally classified into two classes (Ailor, Schmidt and Bennett 1975, Tang,
Plante and Moskowitz 1986):

(1) Scrappable characteristics. Rejection results in scrapping the item.

(2) Reworkable characteristics. Rejection results in reworking the item on the char-
acteristics so that their values are exactly equal to the target values.

The item is scrapped if it is rejected on one or more scrappable characteristics; otherwise,
it is reworked according to the inspection results of the reworkable characteristics. For
convenience, let S and W denote the index-sets of the scrappable characteristics and the
reworkable characteristics, respectively. For simplicity, the values of the characteristics
associated with an item are assumed to be statistically independent. Furthermore, the
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FIGURE 2. Single Characteristic Model.
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total loss due to the quality deviations of the characteristics of interest y; Vart o, Ynis
assumed to be additive, i.e. the sum of the single characteristic (marginal ) loss functions:

L.(yi,y2e s yn)=kiyi+ kayd+ - -+ + k,p2. 9)
3.2. The Model

In formulating the model, the outcomes of inspection can be aggregated into the fol-
lowing mutually exclusive events:

(A) One or more rejections are called on the scrappable characteristics.

(B) No rejection is called on the scrappable characteristics.

Due to the independence assumption, the probability of accepting all the scrappable
characteristics is determined by

P(s)=TI i, (10)
€S

where p; is the probability of accepting the ith characteristic. For event (A), since the
item is scrapped the decision cost is the total investment on the item. The per-item
expected cost associated with event (A) is

ER(S) = R[1 — P(S)], (11

where R is the per-item cost of scrapping an item.

In event (B), the item is accepted for shipment after rework is performed on the
rejected reworkable characteristics. Three cost components should be considered: accep-
tance cost associated with the scrappable characteristics, acceptance cost associated with
the accepted reworkable characteristics, and rework costs associated with the rejected
reworkable characteristics. The expected acceptance cost associated with the scrappable
characteristics is given by

A = [[ - 12 et Tso)ay, (12)

3EI=8;8)) ies
JES

where f( y;) is the p.d.f. of y;. It can be shown that
EA(S)= 2 [EA; ] pl, (13)

€S JES, j#i

where E4, is the per-item expected acceptance cost of the ith scrappable characteristic
in the single-characteristic model. Since the cost of acceptance associated with the re-
workable characteristic is incurred only when all the scrappable characteristics are ac-
cepted, the expected acceptance cost associated with the reworkable characteristics is

EA(W) = (3 EA)P(S). (14)

ien

Similarly, the per-item expected rework cost associated with the reworkable characteristics
is

ER(W) =[ 2 r(l = p)IP(S), (15)

ien
where r; is the per-item rework cost for the ith reworkable characteristic. Consequently,
the per-item expected total cost of this model is
ETC = EA(S) + ER(S) + EA(W) + ER(W). (16)
3.3. Analysis of Attribute Interactions

The focus of the interactions analysis is on the direction of changes of a multi-char-
acteristic procedure as compared to the independently-determined single-characteristic
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procedures. The result of the analysis provides not only some important insights of the
model but also the basis for developing the solution procedure.
The model (16) can be written as

ETC = EA(S) + ER(S) + [ 2 ETC]P(S), 7
ew
where ETC; is the expected total cost (6 ) associated with the ith reworkable characteristic
in the single-characteristic model. Consequently, the optimal screening specifications of
the reworkable characteristics are obtained by solving the single-characteristic models
independently. In other words, the determination of the optimal screening specifications
for a reworkable characteristic is independent of the presence of other characteristics. Of
course, if all the characteristics of interest are the reworkable characteristics, the screening
specifications are obtained by considering the characteristics independently.
Using P(S) = 1 — [1 — P(S)], ETC can be expressed as

ETC = EA(S)+ [R— X ETC]](1 — P(S))+ > ETC,. (18)
ien ew
Since ETC;’s are positive, the last expression indicates that the presence of the reworkable
characteristics reduces the cost of rejecting the scrappable characteristics relative to the
cost of acceptance. Let
R'=R- > ETC. (19)

iew
For the ith scrappable characteristic, we use

1-TIp=0=-p)C II )+ - 11 p) (20)

JES JES j#i JES, j#i
to rewrite (18) as

ETC = {EA;+[R'— 3 EA;/pl(1 —p)} I1 »

JES, j#i {ESI#i

+ 3 E4 JI m+RQO- I p)+ = ETC. (21)
JES, j#i €S, I#1,j JES, j#i JEW
The second line of the last expression is actually a multi-characteristic model without
the ith scrappable characteristic and the expression in the brackets { } of the first line
is a single-characteristic model for the ith scrappable characteristic with a “revised” cost
of rejection. This revised cost describes the effects of other characteristics on the ith
scrappable characteristic. Based on Result 1, it is clear that the interaction among the
scrappable characteristics is an increase in the probability of rejection (scrapping). Using
Result 1 and (18), the effect of the reworkable characteristics on the scrappable char-
acteristics is found to be also an increase in the probability of rejection.
We define the following single characteristic model as the subproblem for the ith
characteristic:
Sub; = E4, + [R'— 2 EA;/pi](1 — pi). (22)
JES, j#i
Note that the exact values of the characteristics need not be recorded in this method.
Rather, only the results of acceptance inspection of the characteristics are used to deter-
mine the disposition of an item. It is interesting to point out that, as a result of this
information structure, the effects of other characteristics on a characteristic are in terms
of expected values (see (17), (18) and (21)) not the exact values of the characteristics.
More specifically, the solution to the subproblem (22) is to scrap an item when
kiyi+ X EAj/p;> R, (23)

JES, j#i
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where EA;/p; is the per-item conditional expected acceptance cost E [4 yf | =6 =y
= ¢;] associated with the jth scrappable characteristic. This optimal decision rule scraps
an item when the sum of the acceptance cost caused by y; and the total expected cost of
accepting other characteristics is larger than the rejection cost R’. Since EA ,/p; is non-
negative, VR'/k; actually provides an upper bound for the optimal specification limit for
the ith scrappable characteristic 6 *.

1

3.4. Solution Procedure

Based on the discussion in the last section, the solution obtained by the following
iterative search algorithm will satisfy the first partial derivative condition for optimality:

Step 1. Obtain 8;* by using (8) for the reworkable characteristics.

Step 2. Evaluate ETC; associated with the reworkable characteristics by using (6) and
obtain R'.

Step 3. lIteratively solve and update the subproblem (22) for each scrappable char-
acteristic until the solution converges.

The initial condition of Step 3 can be obtained by solving single-characteristic models
independently using R’ as the rejection cost (i.e., §; = VR'/k;). Since the solution of each
subproblem in each iteration is actually given by (8) using “updated” EA4 i/ pj, the algorithm
consumes very little computing time even in a very large-sized problem. As mentioned,
this algorithm provides approximate solutions which satisfy the first derivative conditions
for optimality. The Hessian matrix can be derived by using (21) and evaluated numerically.
The diagonal elements of the Hessian matrix are given by

O*ETC/86} = 4 T pilkidif i(8)], (24)

1es
1#i

and the off-diagonal elements of the matrix are
OETC/88:05; = 4 T1 pil(k;8} — EA;/p)£i(3:)£(5)]. (25)

=
1#i,j
However, it is difficult to analytically show that the matrix is positive definite. Our ex-
tensive computational experience indicates that this algorithm does provide the optimal
solutions and converges very fast in many problems we tested.

In the following illustrative example, various expected costs and other plan character-
istics are evaluated by using FORTRAN and IMSL (International Mathematical and
Statistical Libraries) subroutines in double precision on an IBM 3081 computer. The
total computing time is only a fraction of a second.

3.5. An Ilustrative Example

Consider a five-characteristic problem with the parameters given in Table 1, where 0;
and p; are obtained by treating the characteristics independently. For simplicity, the
variances of all the characteristics are assumed to be 1.0. The total expected cost associated

TABLE 1
Model Parameters Used in the Example

Characteristic Type k; Rorr? ap p
1 Scrappable 1.5 6 2.00 0.955
2 Scrappable 1.5 6 2.00 0.955
3 Scrappable 1.5 6 2.00 0.955
4 Reworkable 1.2 2 1.29 0.803
5 Reworkable 1.2 2 1.29 0.803

# Scrapping cost R for Characteristics 1, 2, and 3; Rework cost r; for Characteristics 4 and 5.
® Obtained by independent single characteristic models.
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with the single-characteristic models is 5.236, the probability of scrapping an item is
13.04%, and the expected acceptance cost associated with the scrappable characteristics
EA(S) is 3.028. Using (19), R’ is found to be 4.360. The search procedure stops when
the differences of é,’s between two successive iterations of all the scrappable characteristics
are smaller than 0.0001. The search process and the results are shown as follows:

Iteration 5 D 8, D2 83 D3
1 1.1657 0.617 1.3252 0.815 1.4384 0.850
2 1.3877 0.835 1.3758 0.831 1.3876 0.835
3 1.3876 0.835 1.3854 0.834 1.3858 0.834
4 1.3862 0.834 1.3863 0.834 1.3860 0.834
5 1.3860 0.834 1.3860 0.834 1.3860 0.834
6 1.3860 0.834 1.3860 0.834 1.3860 0.834

The algorithm stops after only six iterations. As expected, the probabilities of acceptance
of the scrappable characteristics are, respectively, lower than those in the single-charac-
teristic models. The percentage of scrapped items is 41.9% and the expected per-item
acceptance cost associated with scrappable characteristics is 1.2876. The expected total
cost associated with the optimal solution is 4.756, which is about 10.11% lower than that
of the single-characteristic models. It is obvious that the higher cost of the single-char-
acteristic models is caused by accepting too many poor quality items.

4. Multi-Characteristic Model 2

Model 1 essentially prohibits the direct tradeoffs among characteristics. For example,
an item is scrapped if it is rejected on one scrappable characteristic even though the
values of other characteristics are perfectly equal to the target values. Consequently, to
allow possible tradeoffs among characteristics, joint specifications based on an aggregation
of all the characteristics is desired.

For a given method of aggregating all the characteristics, the problem is reduced to a
single characteristic problem. As shown in §2, the optimal screening specifications of a
single-characteristic problem are determined by equating the loss caused by quality de-
viations and the cost of rejection, and are independent of the distribution of the aggregated
variable. Consequently, a reasonable and promising method of aggregating the charac-
teristics is based on the consumer’s quality loss function of the characteristics. For illus-
tration, we consider a two-characteristic problem with the following loss function

Ly(y1, ¥2) = kiyi + kay3. (26)

Assume that both characteristics are scrappable characteristics, then the joint screening
rule is simply to

rejeCt lf Lz(yl ’ y2) > Rs
accept if Ly(y,,y2) = R. 27

Let the ellipse in Figure 3 be the contour of L,(y,, y») = R. According to the screening
rule, all the items outside the ellipse should be rejected. It is interesting to compare this
screening rule with that of Model 1. In the same figure, the inner rectangular area represents
the acceptance region of Model 1. The acceptance cost at point “A” is lower than that
at point ““B”. However, in Model 1, “4” is in the rejection region and “B” is in the
acceptance region. Consequently, the proposed method should have some definite eco-
nomic advantages over Model 1. Note that the area bounded by the outer rectangle is
the acceptance region of the single-characteristic models.

Since the decision as to whether or not an item should be reworked has to be made
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FIGURE 3. Acceptance Regions under Additive Loss Function.

separately for each of the reworkable characteristics, we still use separate screening spec-
ifications for the reworkable characteristics and use the joint screening rule for the scrapp-
able characteristics. In other words, we determine whether or not an item is scrapped by
the joint screening rule and if the item is not scrapped then the item is reworked, if
necessary, according to the inspection outcomes of the reworkable characteristics. The
procedure is as follows:

1. Determine the optimal screening specifications for the reworkable characteristics
independently.

2. Compute R’ by using (19).

3. Scrap the item if

qg= 2 kiyi > R. (28)
ieS

4. Ifthe item is not scrapped, rework the item on the rejected reworkable characteristics.

Notice that equations (23) and (28) describe the difference between Models I and 2:
Model 2 uses the exact values of the scrappable characteristics to make a decision on
scrapping, and Model 1 makes separate decision on each of the scrappable characteristics
by considering the expected acceptance cost of other characteristics.

In Model 2, the probability of accepting all the scrappable characteristics is

P(S) = OR’ h(q)dq, (29)

where h(q) is the p.d.f. of g. EA(S) and ER(S) are given, respectively, by
EA(S) = OR, qh(g)dq and 30)
ER(S) = R[1 — P(S)]. 31

EA(W) and ER(W) of this model are identical to those in Model 1 ((14) and (15)).
The expected total cost of this model then is obtained by (16). It can be proved, following
Robbins (1948), that P(S) can be written as a series of chi-square distributions with
coeflicients being calculated iteratively. The result is given in the following theorem where,
without loss of generality, we assume that the variances of the deviations of all the scrapp-
able characteristics are 1.0 and k; is the smallest value among k;’s of the scrappable
characteristics by rearranging the indices if necessary.

THEOREM. Let m be the number of the scrappable characteristics of interest. Then

P(S)= 3 ¢;Fmn/(R'Ik)),  where (32)

j=0
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(1) Foeai(+) is the Chi-square distribution function with m + 2 j degrees of freedom.
(2) ¢ is obtained by

CJ=Bj[H (ki/kl)—l/z]! .]=07 17 2,---’ Wl[h
=2

(l) ap = z_1"='2(l _kl/kj)h/zh, h = 1’ 27 3-- "

(i) Bo =1, _

(iii) 8, = (1/4) Zj-, hawByn forj=1,2,. ...

It has been shown (Robbins 1948) that if the infinite series in (32) is truncated at the
t + 1th term, the error is bounded by

0= P(S)— 3 ;FmafRIk)S 1= ¢, (33)

Jj=0 j=0

Note that for a given value of error, the smaller k, is the more terms (larger ¢) are
required. Also note that in Model 1 when k, is very small, it is likely that most of the
items will be accepted on the characteristic. In this situation, if we drop the first char-
acteristic from Model 2 by subtracting the expected acceptance cost k; from both sides
of (26), then the number of terms needed is significantly reduced and the result is very
close to the optimal solution. However, this approach is not needed for most problems.
Using the fact that zf,(z) = nf,.2(2), where f,(z) = F,(z) is the probability density
function of the Chi-square distribution with n degrees of freedom, we can show that

EA(S)= 2> {klcj(m + 2j)}Fm+2j+2(R’/kl)- (34)

Jj=0

A computer program has been developed for computing P(S) and EA(S) and the error
bound used in this paper is 10 ~>. We use the same example in the last section and obtain
P(S) = 0.594 and EA(S) = 1.2852. It is interesting to note that in this example Model
2 accepts a larger proportion of items but has a lower expected acceptance cost. However,
the per-item cost difference is not very substantial. The expected total cost of Model 2
in this example is 4.6967, which is approximately 1.3% lower than that of Model 1.
Nevertheless, the actual cost savings of using Model 2 may be substantial in high volume
production and/or where the costs involved are significant.

5. Numerical Results

In this section, a numerical study is carried out to investigate the comparative perfor-
mance of the single-characteristic models and the two multi-characteristic models. In
particular, we study the effects of the variation in k;’s of the scrappable characteristics
on the performance of the three models. We use the same parameter values of the example
in the last two sections with the exception of k;’s associated with the scrappable char-
acteristics. We randomly generate k;’s of the scrappable characteristics by a uniform
distribution over {0, 1]. Then these values are multiplied by an appropriate constant so
that their sum is equal to 6.0. The reason is to allow a fair comparison among different
testing problems. A total of 100 testing problems are generated and the solutions and
plan statistics are obtained for the three models. For each problem, we compute the
percent cost difference between the single-characteristic models and Model 1

¢, = [ETC(0) — ETC(1)]/ETC(1), (33)

and that between Models 1 and 2
& = [ETC(1) — ETC(2)]/ETC(2), (36)
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where ETC(0), ETC(1), and ETC(2) are the total expected costs associated with the
single-characteristic models, Models 1 and 2, respectively. In addition, the standard de-
viation of k;’s denoted by oy, P(S) and EA(S) associated with three models are also
recorded. Note that ¢, measures the variation in k;’s in determining the multi-characteristic
loss function. In other words, ¢4 provides an index of the variation of the importance
among the scrappable characteristics. The correlations among these parameters in the
testing problems are given in Table 2. All the correlations in the table are statistically
significant at 0.1% level.

It is clear from the results that when o, is large the advantages of Model 1 over the
single-characteristic models and Model 2 over Model 1 reduce. In fact, both ¢, and ¢ in
the illustrative example (where o; = 0) are larger than those in all the test problems.
Note that the averages of ¢, and ¢, are 7.5% and 1.0%, respectively. It is also found that
when o, increases P(.S) of the single-characteristic models decreases but P(.S) of Models
1 and 2 increase. However, although P(.S) moves in different directions, EA(.S) decreases
not only for the single-characteristic models but for all of the three models. This phe-
nomenon is also indicated by the negative correlations between P(S) and EA(S) in the
multi-characteristic models. As a result, ETC decreases as oy increases. The strong cor-
relation between ¢, and ¢, indicates that when Model 1 has more cost advantage over
the single-characteristic models, Model 2 also tends to have more cost advantage over
Model 1. The results also suggest that when P(.S) is high the multi-characteristic models
lose cost advantage. This is expected, since one of the main disadvantages of the single-
characteristic models is the ignorance of the dominance of the scrappable characteristics
over the reworkable characteristics in determining the disposition of an item. If P(S) is
high the effect of the dominance becomes less significant and consequently the cost
advantage of the multi-characteristic models becomes small.

6. Discussion

One of the assumptions used in developing Models 1 and 2 is that the multi-charac-
teristic quality loss function is additive. The acceptance region of Model 1 actually is not
much different from that of Model 2 (see Figure 3). As a result, the cost difference is
not substantial. This is especially true when the probability density in the nonoverlapping
area is small. It is well known that there are several important conditions for using an
additive loss function (see Keeney and Raiffa 1976). When these conditions are not met,

TABLE 2
Correlations among the Plan Characteristics in the Numerical Study

ox € € P0) P(1) P(2) EA(0) EA(1) EAQ) ETC(0) ETC(1)
€ —0.993
€ -0.952 0972
P(0) —-0.958 0976 0.991
P(1) 0978 —-0.976 -0.921 -0.909
P2) 0977 -0.973 -0.920 -0.907 0.999
EA(0) —-0.981 0.993 0991 0991 -0.954 —0.953
EA(1) -0.738 0.767 0.882 0.874 -0.656 —0.665 0.839
EAQ2) —0.822 0.848 0.937 0930 -0.754 —0.760 0.906 0.990
ETCO) | —0986 0994 0986 0.982 -0.968 —0.968 0.998 0.819 0.890
ETC(1) | —0.973 0982 0988 0977 -0.957 —-0.960 0.994 0847 0912 0.997
ETC(2) | —0973 0982 0985 0.974 —0.959 -0.962 0993 0.844 0909 0.99  0.999

1. All the correlations are statistically significant at 0.1% level.
2. P(0), P(1) and P(2) are P(S) of the single-characteristic models, Models | and 2, respectively.
3. EA(0). EA(1), and EA(2) are EA(S) of the single-characteristic models, Models 1 and 2, respectively.
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FIGURE 4. Acceptance Region under Multiplicative Loss Function.

other forms of loss function should be considered. Another possible loss function is of
multiplicative form:

Lo(y1, Y2, .., ¥u) = K(kiy1)(kap3)+ « = (kay3),

where K is a scaling constant. This loss function may not be theoretically adequate for
use in this paper since the loss is zero if an item is reworked on any one of the reworkable
characteristics. This function can be modified to overcome this problem. We use this
function here only for illustrative purposes. Consider a model of two scrappable char-
acteristics. Based on the discussion in §4, the joint screening rule of Model 2 is to reject
an item when K(k,y?)(k;y%) > R. The acceptance region is shown in Figure 4, which
is almost completely different from that of Model 1. Consequently, when a multiplicative
loss function is used Model 2 is expected to perform much better than Model 1. It can
be verified that if the step-loss function is used the results of the multi-characteristic
models will be either identical to that of the single-characteristic models (accept non-
defective items and reject defective items) or just scrapping all the items.

The above discussion suggests that a correct use of the loss function is very important
to a multi-characteristic problem. Although some general procedures for assessing multi-
characteristic loss (utility ) functions are available (Keeney and Raiffa 1976), specialized
methods in quality control context may be worth the effort of developing. The result of
this paper may draw the attention of the researchers and the practitioners in the quality
control area to the research and the recent development of the decision analysis area.

One rather restrictive assumption used in this paper is the independence assumption
of the characteristics. To relax this assumption requires extensive research to derive the
solution and evaluate the cost components of Model 1. Of course, these can be done by
using numerical search methods. However, the exact solutions of Model 2 are not difficult
to obtain.'

! This research was supported, in part, by National Science Foundation Grant #DMC-8857557.
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