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ABSTRACT

This study provides a new algorithm for estimation, forecasting, and
nonlinear optimal control with nonlinear simultaneous equations. This algo-
rithm can be used to forecast the optimal macroeconomic policies by consider-
ing the unprecise estimates due to noises and by combining the Gauss-Seidel
algorithm and the predictor-corrector method for both short-term and long-
term forecasting.

1. Introduction

The two stage least squares method is often used to estimate the simultaneous
equations and the iterative two stage least squares method is used to estimate for
the forecasting period, since the lagged dependent variables will become endogenous
variables even though they are predetermined variables within the sampling period
(Johnston, 1973) by using the Gauss-Seidel algorithm. When the linear equations are
ill-conditioned, we need to introduce the pivotal scaled Gauss elimination. In addi-
tion, we need to take care of the possible misspecification of the model. Due to
omission of residuals, the regression equations could become inequality constraints.
Although the linear equations can be solved as an unconstrained optimization, the
system needs to be solved as a nonlinear optimization if some of the equations are
nornlinear (Powell, 1981). The Gauss-Seidel algorithm, however, is a form of the first
derivative. It neglects the impact of the second or higher order derivatives of non-
linear equations.

In previous studies on the accuracy of forecasts (e.g. Makridakis, 1983), by
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using adaptive exponential smoothing and giving more weights to recent observa-
tions, Lewandowski’s (1982) simultaneous equatiohs are by far the best for longer
forecasting horizons (six periods ahead or longer). The exponential smoothing
method, however, suffers from the lack of an objective procedure for model iden-
tification (Gardner, 1985). For one period’s forecasting, Lewandowski’s method
does clearly worse than most single equations, including combined forecasts and the
Box-Jenkins time series model.

This study proposes an alternative method of estimating and forecasting. Sec-
tion 2 presents a rationale for a new simulation technique and forecasting algorithm
because by combining the structural model and the equations of growth rates of the
same variables, the results of the simulations and forecasts are more robust and able
to take into account the possible missispecifications of the structural model. In sec-
tion 3, we present the nonlinear programming and nonlinear regression. Concluding
remarks are in Section 4.

2. A New Modelling Algorithm

Although the Stein-rule estimator minimizes the predictive error, its coefficient
is fixed and does not improve the forecasts of turning points. Since the residuals are
often not independently and randomly distributed, if the residuals are regarded as
a missing variable and forecasted, we can predict the turning points more accurately
since the residuals may reflect both endogenous and exogenous business cycles and
model misspecifications. The forecasts of the residuals of regression equations im-
ply the forecasts of business cycles and other missing variables which have not been
captured in the structural model. .

Suppose a vector of dependent variables will be fitted with a system of equa-
tions, f(b,x). We will estimate the coefficient matrix, b* which minimizes the sum
of the squares of the errors

min  S(b) = L = (£(b,x) - y;)?

_ In this case we will approximately fit the data with a system of linear equations such
as by using Taylor’s expansion series or a linear regression. The structural model is
assumed to be

Y=XA+e in stead of y=f(b,x)+te Q.1
where Y is an (n x 1) vector of observations of the dependent variable, X is an (n x k)
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matrix of observations for the k independent variables, A is a (k x 1) vector of the
unobserved parameters, and e is an (n x 1) vector of the unobserved disfurbance
terms. The elements e(i) of e are assumed to be independently and normally dis-
tributed with a zero mean and a constant variance, var(e). The partitioned matrices
‘of X and B can be written as

X=|X,X;] and B=IB,B,l

where X, is an (n x k;) matrix; and X, is an (n x k,) matrix; B, is a (k; x1) vector
and B, is a (k, x 1) vector; and k, + k, = k. However, due to ignorance, equation
(2.1) cannot be perfectly specified and may be estimated as

Y=X1B1+V

where v = X, B, + e, i.e., the residuals, v, involve the missing variable X, and its
coefficient B,.
The correct estimate of coefficient B under ordinary least squares (OLS) is

B=X'X)'X'Y

In the case of misspecification and multicollinearity over the sample period, we will
use the Ridge estimator (Oman, 1984):

B*=(X'X+kID'X'Y where k <-‘%f%l is a scalar.

A large class of ridge estimators do not dominate the OLS estimator B uniformly
in the mean square error sense, Min(ﬁ—fB)’(B—B), provided (X'X) is sufficiently ill-
conditioned. Alternatively, if we intend to minimize the prediction error Min(B*-
B)' X' X (B*~B), we can use the Stein-rule estimator (Efron and Morris, 1973; Malin-
vaud, 1980; Milltelhammer, 1984)

+_(1._k=2 1-R%j
B*=(1- x5357 5B for k>2

While the Stein estimator has a smaller mean square error, it is not a significant im-
provement over the prediction of the unrestricted OLS (Judge and Bock, 1973, p.
305). The superiority of the Stein estimator is partly due to a larger number of ex-
planatory variables, k > 2, and partly due to its low explanatory power, as shown in
the coefficient of determination R2 that is less than one. The coefficient estimate of
B, may not be statistically significant since its variance var(v) (X;X,)! isrelatively
greater than the variance, var(e)(X'X)™!, of the correct specification.
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Under our new estimator, the residuals will be regarded as a missing variable
and will be brought back into the equation:

Y=X1B1+V=XIBI+X2B2+6 (22)
or
Y=X1B1+V+u R2=1.0

where the new residuals, u, will be close to zero. The new coefficient of determina-
tion (2.2) will be close to one, viz., R2 =1.0. Thus our new estimator (2.2) is equal
to the above-mentioned Stein-rule estimator. However, the new variance, var(u) of
Equation (2.2), is closer to the true variance, var(e), of the correct specification,
(2.1), than that of the Stein-rule estimator. Under our new estimator, the Stein-rule
estimator is equal to that derived by ordinary least squares (OLS):

*= B if R2=1

In addition, with R? = 1.0, ignorance of causality conditions does not damage
the equality:

Y=XA and X=YB where A =-IIT.

With this proof, the regression residuals can be forecasted with numerical algorithms
since the residuals are often not independently and randomly distributed (i.e. not
ii.d.). This is a treatment of the decomposition of a function into the linear com-
ponent and the nonlinear component (Zirrili, 1982).

After using least squares to estimate the coefficient values, B, we will use es-
timates B to forecast X by using the iterative recursive Gauss-Seidel algorithm as
follows:
where the upper subscript, k, denotes the k-th iteration, k = 0, 1, 2, 3, ... On the
basis of some initial fixed values x®, the values of x® at the k-th iteration will be
immediately substituted by the values of xi(k“) obtained at the k+1-th iteration from
all preceding equations.

The necessary and sufficient condition for absolute convergence under the
Gauss-Seidel algorithm is that its first derivative should be less than 1:
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The system (2.3) can be solved or expressed in terms of eigenvalues:
X&) = MX® + C 2.5)

where M is the eigenvalue matrix of AX-C=0 and C is a constant matrix. Alterna-
tively, the condition of a stationary iteration method is that the matrix M of eigen-
values (or spectral radius) should be smaller than 1:

IMI<1 (2.6)
Thus the error of the solution X in the k+1-th iteration is equal to
dX®D = MdX® 2.7

The error should become smaller and smaller as the iteration proceeds. In other
words, equation (2.5) can be expressed in terms of previous iterative values:

X&) = MMX%D +B)+ B

X&) = MK XO 4 %13

since M < 1, as k approaches infinity, Mk becomes close to zero, and by the fixed
point theorem, X =(1-M)™' B, i.e., the value of x will stabilize itself toward a fixed
point. This is called the stationary state.

The maximal-error after the k-th iteration is close to zero

X(kﬂ) _ X(k)

X® - x© (2.8)

Mk+l
<I-M

At the infinite iteration, our estimate X® will approach a unique fixed point X=
X&),

As shown in equations (2.4)-(2.5), the Gauss-Seidel algorithm is based on the
first-order derivative similar to Newton’s, Euler’s, or the Newton-Raphson equations:

XED = X® 4 p 40X
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where k denotes the k-th iteration. The advantage of the quasi-Newton algorithm is
that x®** depends on only x® and F(x) so that bad effects from the previous itera-
tions are not carried along. The disadvantage is that x® requires a good initial ap-
proximation to the correct solution, x*. The Newton method has a super-linear rate
of convergence. Its recent improvements, including Broyden’s quasi-Newton method
(Powell, 1983), concern the quadratic rate of convergence. They often lead to only
the local minimization, and are applicable only to a smooth minimization function.
When the function is not smooth, the solution is often not globally optimal.
Newton’s method is written as

Gty _ 0, _f(X)
X =x"7+ (%) (2.10)
or

x® = x® 4 error correction

where f'(x) can be approximated by a definite difference.

By further estimating the growth rates (or derivatives) of all variables, we can
gradually improve the estimates by using a several-stage Gauss-Seidel procedure. For
example:

Stage 1: estimate the second-order derivative of x, %
x=(1+%X)x

_ dx dx

where X and X = It
x/d t), is a growth rate of x.

. If x is a logarithmic value, log X, their derivative, (d log

Stage 2: estimate the growth rate X of x,
x(t+1) =x(t)(1+ %)

Due to difficulty in differentiating discrete data, in stage 1 instead of deriving
the first derivative of the function, we use ordinary least squares and estimate the
linear equations for the growth rates for all the variables in the structural equations
(2.2) and use the Gauss-Seidel algorithm to yield the initial values for the stage 2
iteration. In stage 2 we use the Gauss-Seidel algorithm to solve the structural equa-
tions per se. The number of iterations will be the same as the number of equations.
If both the specifications of the structural model and the linear growth-rate equa-
tions are correct, both solutions and forecasts should be equal:

F(B.x) = _‘ﬁdxﬁﬁl -0
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" Since we approximate the structural model with the linear growth-rate model, and
since both models are estimated from the same feasible observations, the combined
forecasts are the forecasts of the variable under the unconstrained optimization. If
we wish to optimize or maximize the values of x subject to nonlinear constraints,
we can estimate the optimal growth-rate equations based on the selected optimal
historical experiences by means of the least squares method. They are the barrier
function within the feasible field. Furthermore, we can introduce and estimate the
" objective function, thereby ascertaining the degree of optimization. With the last
growth rates as initial values, the equations of growth rates will be simulated until
the solutions converge, and these solutions will serve as the initial estimates for the
forecasts of the structural model, as shown in stage 2 above. This will reduce the
possibility of different initial values leading to different estimates or forecasts.

To prove that our algorithm approximates the Taylof expansion series precisely
up to the second or thher order term, this aeveral-stage algorithm can be expanded
as a nested first-order recursive formula:

x(t+1) = x(t) + 9% dx —(1+)'((t)(l+r%it‘-))x(t)

where r is the Newton-step size, and r=1/2 approximately. This algorithm reduces
the high order equations into sets of first-order equations.

Furthermore, we can improve the forecasting algorithm for simultaneous equa-
tions as the predictor-corrector method does (King, 1984), as shown below, which
follows stage 1 on the growth rate equations and stage 2 on the structural model:

Stage 3. x(t+1) = x(t)+ (3dXG) d)égt—l))

Stage 4. x(t+1)=x(t) ++ ( dx(t+1) dx(t))
An advantage of this approach is that it need only one or two iterations.
3. The Constrained and Unconstrained Optimization

We will consider the optimization problem in which the nonlinear least squares
are the unconstrained optimization, which minimizes errors. First, if the original

problem should have a unique or finite optimal solution, it is feasible to combine the
dual and primal problems into one problem, as shown below:
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Max Ax

subject to CTu< ¢
or

Min CTu

subject to Ax> b
thus

A'x-CTu=0 x>0,u=0

The system can be approximated and solved as linear equations under linear con-
straints by using linear programming. Zirrile (1982) combined the linear program-
ming with the second-order Taylor expansion to solve the nonlinear optimization. A
few problems remain unsolved.

Secondly, we can linearize the nonlinear programming by using Taylor series
expansion about x: ‘

Minimize f(x)
Subject to q(x)=0

this problem will be appioximated by 4 linear system:

X=XqtC
minimize f(x)=f(x4)+c¢ % +s
subject to g(x) =g(xo) +¢ di(xxo) +5=0

where s represents the error or the slack variable of the approximation to g(x).

If the objective function is nonlinear and subjective to linear constraints, the
cost function or the Hamiltonian can be minimized through projected Hessian up-
dating algorithms and iteratively approximated at its local minimum. The value of
Lagrangian multiplier can be eliminated in the computation process; A slack variable
(or an arbitrary constant) is used to make the inequality of constraints become
equal. Every time after one of the solutions is found, the values of the slack variable
will be changed such that the algorithm can proceed to find the global minimal solu-
tion.

The Hamiltanian to be minimized is

Minimize H = c(x) + af(x)
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N

x D)’ global extreme

Fig. 1. Nolinear Programming with a Set of Linear Constraints

where a is a Lagrang1an multiplier. ‘If x* is a local interior minimum for all neigh-
boring points x*+ dx, then

H(™) < Hx* +dx)

if H(x) is continuously differentiable, the right hand side of the last equation can
be expanded in a Taylor expansion: ’

* *
HOcM dx) = Ho) + GO0 gy L PHOD) (g,

To derive the first-order linear Euler’s equation instead of the full Taylor expansion
series, let

H(x*+ dx) = Hx") + THT dx + %}'(dx)2 +

at the minimum of H, H(x +dx) = H(x) and both terms can be eliminated, and we
have the Gauss-Newton equation. Alternatively, by optimizing and integrating over
the time horizon, it becomes Euler’s equation:

dH
H= dx+

If neglecting the second and higher order terms, it is the Euler’s equation. Without
integration, it becomes the Gauss-Newton equation:

X (t+1) = x_(t)—2g,;-
or
X(t+1) = x(t) ~rH'
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where x is an optimal policy variable and r the Newton step size. Regardless of the
boundary conditions of the time period and all variables, Euler’s equation must be
satisfied. This is similar to the first order term of the Taylor expansion series. Be-
cause the nondifferentiability of data, we use the finite difference as an approxima-
tion to differential equation:

f(x(k+1))-f(x(k))
x(k+1)-x(k)

ar _
dx

when x(k+1) is the solution of f(x) =0, it becomes the Newton-Raphason equation:
x(k+1) = x(k) + f(x(k))/ (df(x(k))/dx (k))

where k is an integer, k=1,2, .. ..
Similarly, a linear feedback control function is

x(t)=gy(t-1) +gq , 3.1

where x(t) is a vector of optimal policy variables, y(t) is a vector of state variables; g
is a vector of constant output feedback coefficients or the gains of control, and q
is a vector of constant intercept.

The linear feedback function has the advantage of possible stability. It also has
several weaknesses such that we need the use of both linear and nonlinear feedback -
functions. First, this feedback control equation is based on linearization about the
optimal path. Different starting values used to perform the linearization will yield
different feedback coefficients, g. Second, we may not know the controllability of
x(t) since we do not know whether the second derivative of H or y with respect to
x(t) is negative or positive or zero, i.e., we do not know the absolute concavity of
H(x). That is, there may be several local convergent solutions. Euler’s equation with
higher than first order derivatives may yield globally convergent solutions (Zirilli,
1982). Changes in the constraints of economic resources will change the parameters.
of the equations of motion through which the control variables could affect the
growth rates of the state variables.

In .nonlinear least squares or unconstrained optimization, Quasi-Newton meth-
ods and Marquadt’s method have been used to minimize the square errors, R:

minimize H= % E (f(b,x)-y)? = %R(x)T R(x)

The Gauss-Newton equation is

x® = x®_ J:)TI(x) + w1 I(x)TR(x) for %I;I(- = J(xX)R(x)
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2 . 2
where i&%(}gl = Jx)TJ(x) + R(x) %ﬁ; the latter term is denoted by u

If the nonlinear function is not smooth, however, there could be multiple solutions
and the solution yielded here may not be the global solution.

Y
H(x)=0

H((x)=0

X F X

Fig. 2. The Unconstrained Optimization with an Unique Solution

For a nonlinear function with a nonlinear constraint, the constrained function
can be approximated by linear programming (Karmarker, 1985), or by the projected
Hessian updating algorithm and linear constraints (Nocedal, 1985), or by nonlinear
programming (Mottl et al., 1978). If a nonlinear function is to be minimized subject
to constraints, f, some of which are not actively constraining. We will use nonlinear
programming, estimate the optimal feedback control function by the least squares
method, and through the iterative solutions, we approximate the global optimum
(including maximization or minimization) since the historical optimal experiences
on the average are estimated.

Policy feedback control functions have several required properties: 1) passive-
ness: the policy passively and optimally reacts and gears the state variable to the
target; 2) globally optimal and robust to changes in situations; 3) causality of the
policy impact on the state variable; 4) existence and uniqueness of the optimal
policy. During economic modelling, if solutions do not converge or are not unique,
it is necessary to reduce the control cost by eliminating unimportant feedback lines.

Third, we deal with the nonlinear equations subject to nonlinear constraints

minimize c(x) subject to f(x) < 0

Here, as an additional constraint, we add the first derivative of c(x) as a barrier func-
tion:

c'(X)+f(x)+s=0  where s is a slack variable.
subject to the feasibility surface:
F(x) = °® 4 ¢5®
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where both the original surface, c(x), and the mean surface of the first derivative,
¢'(x), should lie on the feasibility surface and both can be estimated by least squares.
After one intersection of c¢(x) and c'(x) has been found, say x, we take another deri-
vative of c(x),

+ 8

" C'(X)
¢"(X) = ——r—
(x) X-X9)
where s is a remaining constant (King, 1984, p. 80-81), and try to find another in-
tersection x**? and gradually migrate to the global extreme. There is no line or grid
search involved. Thus the problem is reduced to a sequence of problems, reestimate
the approximate optimal feedback function each time when the new experimental

result enters, and step by step reach the feasible and optimal domain, as shown in
Fig. 3. '

y=c(x) H H=c(x)+f(x)+u
~
\ e
\ H'=c'(x)+f(x)+u
X et

Fig. 3. Nonlinear Equations with Nonlinear Contraints

Euler’s equation is a feedback control function and also called the law of mo-
tion through which the control variables can affect the state variables. The coeffi-
cient values of the control variables with favorable impacts should be increased and
those with adverse impacts reduced.

We can rearrange the Euler equation into an optimal feedback control equation
where the control variable is the dependent variable which can be estimated while
t}le system parameters serve as fixed independent variables.

By a feedback control function, it means that the current policy, X(t), is a
function of a series of past policies, X(t~i) and interacts with state variables, Y(t-i),
where t=1,2,..., n. By approximating the differential equations of motion with
finite difference equations, we obtain

A(x) = B(y)
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or
x(t) +a;x(t-1) +...+a,  x(t-m) = y(t)+ b, y(t-1)+ ...+ b, y(t-n)

x(t) = G(x(t-1), x(t-2), . . ., x(t-m), y(t), y(t-1), y{t-2), ..., y(t-n))

where x is the control variable, y the state variable or output variable, and G is a
polynomial of the gains of control. n > m is proper or controllable in the sense that
the policy variable, x, can lead the state variable from y(t-n) to the target y(t).

In contrast to the traditional approach of the assumed linear feedback func-
tion, this study may directly estimate third-order feedback control functions and
approximate the differential equations with difference equations and the intergral
value by the sum over the time horizon. For example, let x, the control variable,
be the growth rate of the money supply; y be the state variable which depends on
its previous values y(t-i) and may not be observable at time t; and p be the price
" inflation rate which is called the output variable because it is observable at time t
or because p is one of the leading indicators. Our feedback control functions are

x(t)='a,y(t) + a, y(t-1) + agx(t-1)+....
z_md
x(t) = b, p(t) + byp(t+1) + byx(t-1) +. ...

where a and b are constant parameters, denoting gains of control.

By combining the above two equations, we can directly estimate feedback con-
trol functions in which those annual growth rates of real GNP selected here should,
exceed the average growth rate within the sample period. In order to estimate the
optimal policy variable X(t), the optimal combined feedback function here is

x(t) = a, p(t) + a,p(t-1) + a3 p(t-2) + azx(t-1) + agx(t-2)...fory=>y (3.2)

where a,, i=1,2, ..., 5 are constant; y is the actual annual growth rates of real GNP;
and ¥ is the average growth rate of real GNP in the sample period.

Lyapunov’s stability condition of feedback control is that the sum of coeffi-
cients, c, for all lagged dependent variables, x(t-i), should be less than unity, since
equation (2.2) can be rewritten as

;‘a’%ﬁﬂ =x(t) and X(t) = eA®

where |A]|< 1 denotes the sum of the constant coefficients, and p(t), t=1,2, and 3
are assumed given. However, according to our control theory, an unstable economic
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system should be stabilized (i.e. offset or divided) by unstable control policy func-
tions in such a way that after the resulting system becomes stabilized, the control
policy will stabilize itself.

According to the values of the second-derivative in feedback functions, we can
detect the controllability of the policies, as shown in the strict concavity of the state
variable with respect to the control variable. That is, the first derivative should be
zero and the second derivative negative:

d d?y

qy _ ay
ax 0 and d2x<0

It is equivalent to Pontryagin’s minimal principle, which is as follows:
HE" p*, v, ) < Hx,p, v, t) for y*> ¥, x* is optimal

wheri there are multivariate state and policy variables, the elements of the matrix
need to be in accord with the above-mentioned criteria.

Schittkowski (1982) suggests that a rough ranking of algorithms with respect
to their efficiency is as follows: 1. quadratic approximation, quasi-Newton method;
2. generalized reduced gradient methods; 3. multipliers or Lagrangian methods; 4.
penalty methods. This study combines these methods into a system of simultaneous
equations and solves it by using both the line search and the gradient and minimizing
the penalty objective function.

This study improves Mottl and Mottlova’s (1978) work by linearizing the penal-
ty function. The constrained nonlinear stochastic programming is transformed into
an unconstrained one. Linear programming, especially Euler’s method, could be-
come an unstabilizer due to the error of the first-order derivative (Mottl, 1978). To
solve the simultaneous equations, the identification condition required here is that
the rank of the coefficients of endogenous and exogenous variables should be no
less than the number of equations since the number of unknowns in the sampling
period equals the rank of the regression coefficients, B, and in the férecasting peri-
od, it equals the rank of forecasted observations, X.

4. Concluding Remarks

Due to the impact of noises or regression residuals, we cannot estimate the
coefficients or variables precisely, and we improve the estimates through forecasts
of noises. Next we improve the Gauss-Seidel algorithm for both the structural model
and the growth rate equations, and use the predictor-corrector method to improve
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forecasts. The accuracy of forecasts is much more reliable. . Finally we present the
nonlinear regression and optimization with the barrier function as the growth-rate
equations, which is estimated with regression equations or based on selected optimal
experience after reducing the adverse impact on penalty. The solution will be an
approximation to the global optimal solution; this solution should be iterated.
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