
‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

國立政治大學資訊管理學系

碩士學位論文

指導教授:郁方博士

Gnafuy:基於行動裝置下的分散式運算研究

Gnafuy: a framework for ubiquitous mobile

computation

研究生：陳晉杰

中華民國一零五年六月

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

摘要

隨著科技日新月異的發展，智慧型手機本身通訊與運算能力也隨著軟體和硬

體的改善而不斷地增強，其便利性與高機動性的特色使得越來越多人持有智慧型

手機，最後成為人們生活中不可或缺的部份。總觀來說，持有與使用率的上升，

不知不覺的形成一種共享經濟與無所不在的行動運算網絡。

基於普及性與相對優秀的運算效能，我們設計與實作出 Gnafuy，一個基於

行動裝置下的分散式運算框架，希望借用世界上所有閒置行動運算裝置的資源來

實行無所不在的運算。

我們發展出一套應用程式介面(API)供開發者依照自己的需求來撰寫自己的

分散式運算程式，藉由遵循 Gnafuy所制定的應用程式介面，開發者可只專注在

演算法本身的開發，而不需要在意其演算法如何被分配到手機上以及待處理資料

的分配情形。本篇文章還討論了 Gnafuy所採用的分散式運算的程式模型，以及

我們如何藉由一個手機應用程式將任務部署至自願者的智慧型手機中，我們發展

出一套伺服器端的機制來增加訊息傳遞的成功率，以及偵測計算後回傳結果是否

正確，排除被惡意程式污染的客戶端結果。

除了分散式運算框架與基本運算之外，本篇文章還介紹了如何使用 Gnafuy

取得人類使用者的輸入來解決 Google reCAPTCHA所提出的圖像辨識問題。

關鍵詞：行動運算、雲端運算、分散式運算、群眾外包

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

ABSTRACT

Along with the clipping evolution of technology, the bud of smartphone has

germinated and sprang up in this decade. The increasing popularity and the improving

computation and communication power of smart mobile devices facilitates shared

economics of ubiquitous mobile computation.

We present the design and implementation of Gnafuy, a framework utilizing

crowd-smartphones to fulfill ubiquitous distributed computation, offering a novel

crowd-based computation service platform and programmable APIs for developers to

take leverage of the spare capacity of smartphones among the world.

We discuss programming models of parallel computation, detail how tasks can

be deployed on massive smartphones via mobile applications, and propose a server

side mechanism to increase the probability of successful delivery and detect the

corrupt results from the viciously slaves.

The demonstration on google scholar paper reference construction solicits

smartphone users to solve the image recognition challenged by reCAPTCHA,

showing the unique advantage of leveraging crowdsourcing ability to distributed

mobile computation.

Keywords: Mobile computing, Cloud computing, Distributed computing,

Crowdsourcing

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Contents

Abstract i

Contents ii

1 Introduction 1

2 Related Work 2

3 Overview 4

4 Programming Model 7

5 Control Center 10

5.1 Facade . 10

5.2 Task Manager . 11

5.3 Fault Correction . 12

6 Computing Node 12

6.1 Job Loading . 15

6.2 States of Computing Node . 16

6.2.1 Library Required . 16

6.2.2 Task Required . 16

6.2.3 Data Required . 17

6.2.4 Stop . 17

6.3 Permissions . 17

7 Experiment 19

7.1 Citation network . 19

7.2 IP Location Finder . 22

8 Future work 23

8.1 Security . 23

ii

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

8.2 Permission control . 24

9 Conclusion 24

References 25

iii

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

1 Introduction

Batch processing systems for huge volume of data have become an indispensable part of

modern business and scientific research [1, 2]. To provide promising capability to handle

massive datasets, these systems often featured with scale-out architecture that makes it

easy to scale both capacity and performance beyond the physical limitations [3]. Frame-

works and corresponding APIs they provided is dedicated to lowering the threshold for

developers to launch clusters for distributed computation and design their own applica-

tions [4, 5].

On the other hand, the significant progress of hardware and software improvement on

mobile devices in recent generations allow developers to design delicate applications from

cloud services to smartphone platforms [6, 7]. The derived application could be classified

into three categories [8]. In the early stage, due to the capability of smartphones, one

application category falls in the extension of the existing cloud service, such as Gmail,

Facebook and YouTube. To amplify the capability of mobile devices, another application

category falls in applications with complicated computation but submitting resource-

consumption tasks to cloud service providers to exceed the computation power of mobile

device [9, 10]. As mobile device technology evolves, the last category of mobile applications

is to consider the mobile device as part of the cloud service provider which can be an

individual computation node to solve problems without exceeding the limitation [11, 12].

Our work facilitates the last category mobile applications by proposing a general purpose

framework Gnafuy) that adopts common distributed APIs for developers to develop their

applications and distribute their computations to mobile devices.

We aim to provide programmable interfaces for developers to design distributed com-

puting applications on mobile devices and take the efforts on porting their applications

into mobile devices. The ability to port applications to mobile devices provides devel-

opers the advantage on developing crowd-sourcing applications. Problems like Chinese

word segmentation and image recognition are easy to solve for humans, but are relatively

difficult for computers without large inputs. These features are commonly used to distin-

1

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

guish humans and programs in web services such as google to prevent systematic queries

or crawling. With Gnafuy, developers may take advantage of crowd resources to develop

applications that cross the barriers. In our demonstration, by importing web browser

automation tool such as Selenium [13] to Gnafuy, we develop an application that ports

to smartphone users to solve the image recognition challenged by their web browsers.

Revealing the problem to be solved on their screen with the resultant of crowd-sourcing,

we are able to bypass google checking.

For encapsulating developers’ algorithm and porting applications to mobile devices,

we adopt the reflection mechanism in the contemporary programming languages that

offers the capability to load library and invoke instance dynamically in the run-time.

The approach reduces the burden of learning a new framework and retains the effort for

developers to reinvent the wheel.

Gnafuy enables mobile volunteers to be part of computation resources in the framework

without additional certificate. It is hence essential to ensure correctness of computation

results from end devices. We further apply a fault correction mechanism based on Con-

dorcet’s jury theorem [14, 15] to improve the correctness of collected computation results

from the end users.

2 Related Work

We summarize previous works on distributed framework design in mobile computing,

crowd-sourcing applications and resource correction techniques in this section.

On the topic of distributed framework design, the famous MapReduce [16] and Hadoop [1]

both provide high level programming interface to simplify the complex problems by divid-

ing them into several map/reduce block and keep developers from miscellaneous details

of parallel and distributed computation like job scheduling or compute node manage-

ment. Apache Hive [4] and Apache Phoenix [17] both offer a mechanism to transform the

SQL-like (HiveQL in Hive and standard SQL query in Phoenix) statement into Hadoop

map/reduce jobs. This approach facilitates the development of some data analysis in par-

2

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

allel. Compared to MapReduce, Spark [2] features in-memory computing which has better

performance than Hadoop MapReduce. Moreover, Spark’s resilient distributed datasets

(RDD) [3] offers a concise view for developers to manipulate huge data sets in parallel

unconsciously since it imports functional programming model as operations on RDD. The

developers who familiar with Scala [18] would learn Spark without much pain since it’s al-

most the same thing on manipulating both RDDs and data structures in Scala. Dryad [19]

is another distributed computing platform that aims for providing a flexible programming

interface. It allows developers to compose complex computation instead of the procedure

of a map function followed by a reduce function in Hadoop. Meanwhile, DryadLINQ [5]

is the programming model provided by Dryad which offers developers to write parallel

applications in SQL-like style. The developers could easily catch up DryadLINQ if they

were familiar with .NET Language Integrated Query. These frameworks accepts func-

tional programming model to a certain extent which offers concise expressive style and

exempt developers from suffering concurrency problems.

Our work is also related to the mobile computation field especially on considering

smartphones as cloud service providers [20]. BOINC [21] is the pioneer of volunteer com-

puting which uses the idle time of computers to perform scientific researches. It provides

tools to build application for several platforms (Windows, Mac OS X, Linux). Addition-

ally, the support on Android platform extends the ability of volunteer computing to mobile

phones. The other distinguished projects using the BOINC platform are SETI@home [22]

and Rosetta@home [23]. The Ibis framework [12] also provides a room for integrating An-

droid devices into the grid to intensify the overall computing power. Hyrax [11] reveals

the capability in porting Hadoop to the Android platform which offers reasonable perfor-

mance in data sharing. Serendipity [24] advocates PNP-block as the basic component for

job execution. The implementation of Serendipity uses Java reflection to execute tasks

dynamically and achieve the ad hoc communication among devices by using WifiMan-

ager’s hidden API. The methodologies of those works inspire Gnafuy on porting tasks to

mobile devices.

3

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Finally, it is possible that the involved computing nodes are ineffective, e.g., randomly

replying results, or are contaminated, e.g., compromised by malware. In this case, the

results from these end devices may not be trustful. To address this issue, various fault

correction mechanisms have been proposed [15] to reduce the impact of problematic results

from untrustful devices.

Some studies that propose reputation systems to determine the reduce the influence

of unreliable agents [25, 26, 27]. Anis et al. [15] propose a learning automata approach

that is able to distinguish between reliable and unreliable sensors without a knowledge

of the ground truth. We adopt the similar idea for its applicability to uncertain mobile

scenarios when performing fault correction.

3 Overview

This section outlines the operation mode of three Gnaguy framework components, Job-

Builder API, computing nodes and control center, by demonstrating the classic word

counting example. We perform a survey of software skill requirements from the employ-

ment agency website. Through splitting several job hiring requirements into single words

and counting the occurrence of each word, a term-frequency table for each requirement

comes into being, and then further merge all the respective table into one integrated table.

Finally, the outcome represents the approximate popularity of the mentioned skills. For

example, we can infer that Java is twice the popularity of Python in this period of hiring

for the same reason that Java (295) is more than double the occurrence of Python (116).

To achieve the survey of the Gnafuy framework, we divide the algorithm into three

parts for adapting the Gnafuy-provided APIs. Firstly, developers have to create an iter-

ator which generates URLs to represent the initial data. The figure 1 demonstrates the

interface of iterator and its implementation named URLGenerator in this case. Since the

initial data set can be too large to fit into the memory, the iterator splits the whole set

into relatively small parts as the abstraction of a memory-saving model. In general, there

are two ways to implement the iterator. One is to put all the targeting URLs into a list

4

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Figure 1: Iterator interface

<<interface>>
Iterator

+hasNext() : Boolean
+next() : Boolean

URLGenerator

+hasNext() : Boolean
+next() : Boolean

data structure without considering the memory issue, and then convert the list to fit the

form of iterator. The other is to hold a cursor to mark up the last visited link and identify

another link following the location of current cursor when the next() method is called.

In spite of occupying more memory, the first way performs better than the second when

launching the initial data since the data already exists. However, the second way is more

appropriate to adopt when the developer would like to generate initial data by reading a

large text file line by line for saving memory.

Secondly, in addition to perform the algorithm of transforming contents of hiring

requirements into separate term-frequency tables as stated in algorithm 1, developer also

has to select an appropriate operation from the given API. In this case, Mapper interface

is a proper target to implement since the basic form of the processing algorithm is K → V

which means to transfer the type of one element into another.

Thirdly, in case that all the URLs have been converted into term-frequency tables

which stand for the condensed information for each requirement, the developer has to

design an algorithm resembling the algorithm refalg:wcr for the purpose of merging schis-

matic tables into a unified one. Meanwhile, we have to reiterate that Reducer interface

is a perfect selection for this merging task due to the nature form of merging algorithm,

(K,K) → K, which means the two given elements would merge into one with the same

data type through processing.

It is notable that both algorithm 1 and 2 focus on dealing with the minimum amount

5

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Algorithm 1 Word Count Mapper
Input: The targeting URL with hiring requirement
Output: Term frequency table
1: content← visitAndDownload(url)
2: termFreqTable← φ
3: for each word ∈ content do
4: if ∃word ∈ getKeys(termFreqTable) then
5: current← termFreqTable[word]
6: termFreqTable[word]← current+ 1
7: else
8: termFreqTable[word]← 1
9: end if

10: end for
11: return termFreqTable

of elements since these algorithms are designed to deploy to smartphones as computing

nodes for parallel computing. Therefore, the last thing is to combine the two algorithms

Algorithm 2 Word Count Reducer
Input: Two term frequency tables
Output: Term frequency table
1: termFreqTable← φ
2: tables← table1 ∪ table2
3: for each (key, count) ∈ tables do
4: if ∃key ∈ getKeys(termFreqTable) then
5: current← termFreqTable[key]
6: termFreqTable[key]← current+ count
7: else
8: termFreqTable[word]← count

9: end if
10: end for
11: return termFreqTable

and specify the control flow. Listing 1 reveals how the control flow determined by provided

API. JobBuilder possesses the ability to communicate with the control center, asking it

to establish queues as a temporary data storage, organize the tasks, submit the encoded

jar file, and activate the current job. As for queues, QueueRef is merely an abstract

data storage in our framework, working as a specification to notify the control center to

establish proper data container. In the flow, we create two queue references, named "urls"

and "tables", to stand for data containers of initial links and term-frequency tables tasks

6

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

respectively. With specifications of data containers and processing algorithms, developers

could chain tasks by specifying the data flow.

The code segment appendTask(urls, WordCountMapper.class, counts) demonstrates

the data flow that invokes an instance of WordCountMapper on every smartphone, ask

them to process the data from urls, and then place the result into counts until all the

elements of urls are exhausted. A more complex control flow might be constructed while

the appendTask method is followed by appendTask many times.

Listing 1: Job Initialization
public class JobInitialization {
public static void main(String[] args) throws Exception {
Iterator<URLData> iter = new Generator();
QueueRef urls = new QueueRef("urls");
QueueRef tables = new QueueRef("tables");
List<QueueRef> out = new ArrayList<>();
outcome.add(tables);
JobBuilder.createInstance("name.prefix","path/to/file.jar")
.initialData(iter, urls)
.appendTask(urls, WordCountMapper.class, out)
.appendTask(tables, WordCountReducer.class, out).build();

}
}

After all the configuration are settled down, the job would be submitted to designated

host by calling build() method. Technically speaking, instead of performing a server to

manage the computing nodes, JobBuilder would only validates the correctness of the

task chain by checking each data types, encapsulates the information into a request,

and then sends it to the designated host for constructing the required components when

build() method being called. As long as the job is submitted, the control center will start

deploying tasks to smartphones, collect and organize data till all the tasks end processing.

4 Programming Model

As a distributed computing framework, Gnafuy’s APIs offer developers to specify the

control flow of their application. Each job contains an iterator as the abstraction of the

7

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

initial data set and a series of parallel tasks to compose the control flow which is known

as embarrassingly parallel. Since the initial data set may not fit into the memory of

developer’s local device, we propose the iterator interface as the memory-saving model

for developers to launch their application. Each task encapsulates an algorithm with

a specific pattern which would deploy to smartphones and manages the data flow by

defining the queue where it would take data from and the queues it would put data in.

The type of task determines the programming pattern which could be considered as a

function to be applied to each element from a queue. By definition, the general form of

a function is a relation between a set of inputs and a set of outputs. There are some

variant functions which derived from functional programming model were predefined in

Gnafuy such as map, flatMap, foreach and reduce. The predefined functions give a more

precise definition, especially for the data type of both inputs and outputs. For example,

map function takes one element with type A from a queue and converts it to instance of

type B; reduce function takes two elements with the same type and merge them together.

The table 1 refers a brief view of these functions. In Gnafuy, all the input/output types

Table 1: Programming patterns

Function Name Transformation
map (A) → (B)

flatMap (A) → list(B)
reduce (A, A) → A
foreach (A) → ∅

have to implement an interface to make sure all types of data would be able to convert

from string to object and vice versa. This limitation guarantees that we could perform

the following action easily and correctly: 1. Save data into persistence layer (object to

string) 2. Deliver message through network (object to string) 3. Retrieve object from a

string (string to string) The ability of bidirectional converting is also known as serialization

and deserialization.

Listing 2 illustrates the contract of mapper. The input K and output V have to follow

the interface ImmutableResource to make sure the ability for serialization. The abstract

8

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

method map is a template method for developer to implement their task to produce a

element with type V by giving a element with type K. QueueConsumer is the ancestor of

all Ganfuy task types listed in table 1. It injects the Activity provided by Android API

also wrap some method to create Intent for developers to launch other existing apps like

browser or google map.

When activating a job, JobBuilder introspects the configuration by validating the task

chain then creates a task table indicating the control flow by predefined tasks and asks

control center to prepare the components accordingly. On receiving the permission from

control center, it starts to roll the iterator and asks control center to put the generated

input data into the queue which is specified to consume it by the first task. The listing

1 in the previous section reveals the way to build a classic control flow of map-reduce

pattern. Once the job is submitted, the computing nodes (smartphones) would be able

Listing 2: Mapper Abstract Class
public abstract class Mapper<K extends ImmutableResource, V extends

↪→ ImmutableResource> extends QueueConsumer{
public Mapper(String fromQueueName, List<String> toQueueName) {

super(fromQueueName, toQueueName);
}
public abstract V map(K from) throws Exception;

}

to receive tasks and process data individually and simultaneously. In the end, the job

terminates until all tasks are finished. Besides, Gnafuy’s API also formulates the format

of HTTP POST body for every request and response from the computing node. This

approach provides loose coupling and less dependency between computing nodes and

control server. In other words, developers could implement their own control center by

hosting a service and complying the format of requests and responses since the computing

nodes communicate with control center via HTTP protocol.

9

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

5 Control Center

Through the minimum requirement is to host an web service for handling requests send

from computing nodes properly, there are still some practical suggestions that we strongly

recommend developers user to take care. Since the computing nodes communicate with

control center via HTTP protocol, the control center have to provide a corresponding

service for handling a tons of requests. Therefore, it’s necessary to take the scalability into

consideration. Although the contemporary smartphone is good enough for calculation,

it is still not stable compared to the workstations or even laptop computers due to the

limitation of hardware or unknown network problems. The mechanism of message delivery

is another issue we have to take care since it’s possible that an unstable computing node

asks data for processing and never replies. We promote a Task Manager for controlling

task status and handling message delivery. Besides, the queue implementation should

follow the competing consumers pattern and guarantees that a message is delivered at least

once. The Advanced Message Queuing Protocol (AMQP) essentially fit our requirement.

Meanwhile, fault correction of processed results is another important issue to be addressed

in this paper since not all computing nodes are trustful and could be contaminated by

other malwares. The following sections describe these components in more detail.

5.1 Facade

The component Facade is basically a service for handling requests from the computing

nodes. In order to achieve scalability and maintainability, the recommended implemen-

tation of Facade is to build a RESTful service. With the REST architecture, we separate

requests from different states through URI and maintain several caches for improving

performance. For example, the available task information will be retrieved on the Task

Required stage several times, it’s wise to perform a cache for the task status without

querying against database. Moreover, for handling lots of requests that send by numerous

computing nodes on different states, our service is implemented with actor model [28]

provided by spray framework [29] which gives the potential to scale up and scale out

10

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

easily.

5.2 Task Manager

There are three responsibilities that task manager concentrates on in our implementation,

one is job status tracking, another is message delivery, and the other is queue implemen-

tation.

For the job status tracking, it’s important for task manager to keep which task is

available for the current job and the remaining amount of elements of the working queue.

Since there would be a tons of computing nodes to inquiry the next task information for

each of them, the information should be kept persistent in memory instead of performing

query against database on every request. Furthermore, it’s possible to introduce server

load balance mechanism by making read-only copies of cache and spread them to different

servers. Since the cache is just a read-only copy for the real status, the timing of refreshing

cache is another issue we have to addressed. By design, a task should terminate when

the corresponding queue is exhausted and it’s the proper timing to update job status

and notify all listening servers to refresh their cache. However, in the period of notifying

servers, computing nodes may inquiry the server which does not update to the latest task

information. This scenario would lead some performance loss because some computing

nodes are directed to an empty queue and back to Task Required state then inquiry control

center again till they find a proper task.

Since the target computing nodes are mobile devices, which imply they are fragile

and unreliable due to the network, power limitation and could be interrupted by any

phone call. One duty of task manager is perform a mechanism to make sure the message

deliver to the device correctly. Task manager makes copies of data with a delivery tag

and sends the copy to multiple devices when popping a data from queue. Meanwhile, task

manager maintains a list of delivery tags. Once the data being processed come back to

control center with a delivery tag, task manager will acknowledge the processed data and

remove the delivery tag from the outgoing data list. The mechanism of acknowledgment

11

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

with delivery tag should place into a synchronize block as the critical section to prevent

the duplicated data issue. This mechanism increase the successful probability of message

delivery and gives the potential for verifying data correctness.

The minimum requirement of queue implementation should follow the competing con-

sumers pattern and guarantees that a message is delivered at least once. It’s nice to have

other properties like high availability and fault tolerance. Our implementation adapts

RabbitMQ [30] as the data provider since it follows AMQP model and features with

non-blocking operations.

5.3 Fault Correction

The mechanism of spreading duplication to different devices increases the successful prob-

ability of message delivery and give the potential for fault correction especially on checking

the corrupt data and crowdsourcing correction. Condorcet’s jury theorem provide a simple

solution that the majority group performs better than any selection of superior individual

under the assumption that the probability of making the right judgment is greater than

0.5 for every member in jury.

Instead of dropping out the redundant result with the same delivery tag, task manager

could collect them into a small group and check by the result of each other. This alter-

native approach could apply to task rely on human judgment or sniff out the malicious

computing node by sampling.

6 Computing Node

In order to take leverage of computation power on mobile phone among the world, Gnafuy

framework offers an app for users to install. As soon as the app starts running, it enters the

initial state and communicates with specific control center to ask for the next instruction.

Once the control center receives the request from computing node, it would start to

diagnose the condition of computing node and assign tasks to the app accordingly. This

approach makes smartphones to contribute its computing power as a cloud service provider

12

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

while running the Gnafuy app. The Gnafuy app would maintain a state machine to imply

the computing node what to do next. There are 4 states inside the state machine:

• Library Required

• Task Required

• Data Required

• Stop

Specifically speaking, when the state machine turns to a new state, computing node

would check the current condition, send a HTTP request to control center after it finishes

preparing the prerequisite of the next state, and then wait for the instruction of the next

step. The name of the state implies which resource computing nodes desire for, and the

flow reveals in algorithm 3 and figure 2. Algorithm 3 states the mechanism we sealed in

the computing node is composed by a global dictionary and an infinite loop. For every

iteration, the computing node takes an activity from the dictionary according to current

state then sends a request via the retrieved activity. To be brief, the term dictionary

here is a key/value hash table structure. The key is the activity status code and the

value is the activity instance. These activities basically abide by the same interface which

has the ability to send a request and create the activity for next state according to the

response. The exact flow of each activity would be: 1. Collect required information. 2.

Send request to control center. 3. Create an activity then put into global dictionary. The

iteration continues until control center changes the state to stop which is the only way to

stop this infinite loop. Another thing that needs to be mentioned here is that algorithm 3

must be placed into AsyncTask or Service provided by Android sdk since Android would

raise NetworkOnMainThreadException if main thread program tries to send request or

performs network communication. Android apps run by default on the main thread, also

called the UI thread which handles all the user input as well as the output so it designs to

avoid time-consuming operations on the main thread to prevent UI freeze and to have a

better user experience. Gnafuy itself relies on lots of network communication to retrieve

13

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Library

Required
start

Task

Required

Data

Required

Stop

Figure 2: A brief view of state machine in the computing node

task or data to accomplish distributed computing so we create an AsyncTask then launch

Ganfuy’s state machine inside. Listing 1 demonstrates activity which requires library

Algorithm 3 State Machine of Ganfuy Computing Node
1: activityTable← anEmptyDictionary
2: currentState← libraryRequired
3: activityTable[currentState]← libraryRequiredActivity
4: while currentState 6= stop do
5: nextActivity ← activityTable[currentState]
6: currentState← nextActivity.execute()
7: end while

information from control center. Each activity follows the contract of GnafuyStateActivity

interface which implies the execute method must return an instance of the same interface

for the next round.

Listing 3: class LibraryRequiredActivity
public class LibraryRequiredActivity implements GnafuyStateActivity {

@Override
public GnafuyClientState getGnafuyClientState() {

return GnafuyClientState.LibraryRequired;
}
@Override
public GnafuyStateActivity execute(){

checkExistingLibs();
LibarayMeta meta = electLibraryFromControlCenter();
cleanUnnecessaryLibs();
return GnafuyStateActivityFactory.createTask(meta);

}
}

14

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

6.1 Job Loading

The goal we want to achieve here is to encapsulate developers’ predefined library as a

response and send back to mobile phone when the computing node required. With the

library and reflection mechanism provided by the programming language of the platform,

each computing node could invoke corresponding instances and execute methods accord-

ingly. Though we could invoke arbitrary methods with proper hints, Gnafuy forces users

to follow some programming pattern such as map and flatMap which is mentioned at the

previous chapter in order to limit the domain of input/output types and keep the code

structure clear.

As the computing node of Gnafuy framework, we aim to perform the implementation

on mobile phones on the Android Platform. By narrowing down the target platform, the

task deployment could be simplified as "How to load/reload classes at runtime in Java."

since the Android SDK is written in Java-like language. Meanwhile, Java Reflection

provides the following feature:

• Classes inspecting at runtime

• Instance invoking at runtime

• Dynamic Class Loading / Reloading

With the ability of dynamic class loading and instance invoking at runtime, we could

load classes outside the JVM and invoke an instance without knowing its type at runtime.

The following Java sample code reveals the idea of dynamic loading in Android.

Another issue we have to mention here is that Android runs on Dalvik VM or Android

Runtime instead of JVM because the bytecode generated by Java is not compatible with

Dalvik VM at all. Therefore, we have to convert developers’ predefined Java bytecode

to dex file before performing the runtime loading technique. Fortunately, Android-sdk

provides some tools for converting Java bytecode to Dalvik bytecode that meets our re-

quirement. Finally, for the purpose of loading some third party libraries from the bytecode

15

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

imported by the developers, the developers have to make sure all the dependencies of pre-

defined Java bytecode have been packaged into the .jar file correctly, which could be done

by some project management tools like maven.

Though Gnafuy computing node’s current implementation is based on Android, it’s

possible to take the same approach on other platforms which support reflection mechanism

such as Swift, Objective-C and C#. Either it could be easier for task deployment if all

the platforms run the same environment such as Node.js [31], and we could thus focusing

on task deployment with only one programming language.

6.2 States of Computing Node

6.2.1 Library Required

In the stage of Library Required, computing node would create a candidate list of existing

library files by looking into the job folder. The candidate list represents the remaining

libraries downloaded by the computing node not long ago but got interrupted by some

unknown reasons or just not clean yet. The computing node would ask control center to

recommend at least one qualified library which contains all the definition of pending tasks

from the list. If the control center could not elect a qualified library from the candidate

list because they are all out of date, the control center will package one qualified library

into the response for client to create. In addition to specifying at least one qualified library

for applying dynamic loading technique in the next stage, control center have to suggest

a list of file that computing node should eliminate in order to save the disk space since

the job was no longer needed. In some cases, the state would become Stop since there is

no job to run on the control center.

6.2.2 Task Required

Since a library contains a succession of tasks, computing node has to clarify which task

to launch in this stage. The computing node would give the chosen name of library

from the previous state to control center. With the Task Required request wrapped with

16

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

library name, the control center will prepare the task name and the permitted queues for

committing the result. With the task name and library, computing node could perform

dynamic loading technique and invoke an instance for further computing. If all the tasks

are done at some point, the control center would ask computing node to go back to the

previous state for the other jobs. The state would go to Data Required if the client invoke

the instance successfully.

6.2.3 Data Required

In this stage, computing node holds an instance as a computing unit and asks control

center for data to process. The computing node would send a request with task informa-

tion and the previous outcome if it exists. Once the control center gets the request from

a computing node, it starts to prepare a data list for computing node to process. The

amount of elements contained in the data list would be determined by task type in the

task information. By definition, map, flatMap and foreach requires at least one element

but reduce requires at least two. Meanwhile, if the request contains the previous outcome,

the control center would push the outcome into the queue that specified by the task. The

state will not change till the target queue running out of the data; otherwise the state

would back to Task Required for invoking another instance of the task.

6.2.4 Stop

As the only accepting state, only a few conditions happens could arrive here. One is

running out of the jobs to do, the other is the occurrence of unexpected error such like

network error or device runs out of memory.

6.3 Permissions

For achieving the goal of porting tasks dynamically to clients, Gnafuy app requires lots of

permission [32] from users. Gnafuy app requires permission of reading/writing file to SD

card since it would create a temporary jar file in Library Required state for performing

17

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

dynamic loading via reflection mechanism. Also we have to ask users for permission of

accessing network state and permission of accessing power connected so we could detect

that the device have Wi-Fi connected and the current charge state if users prefer to

contribute their computing power when both Wi-Fi connected and battery is charging.

In order to offer more information for developers, we also give permissions to access

approximate/precise location and the string uniquely identifies the device (IMEI on GSM,

MEID for CDMA). Table reveals the permissions that we acquire from users who install

our app. By giving the permissions listed above, Ganfuy app is able to work correctly

Table 2: Android permissions that Gnafuy enabled

Android permissions Description

WRITE_EXTERNAL_STORAGE Allows an application to write to
external storage.

READ_EXTERNAL_STORAGE Allows an application to read from
external storage.

READ_PHONE_STATE Allows read only access to phone state.

ACCESS_NETWORK_STATE Allows applications to access
information about networks.

BATTERY_STATS Allows an application to collect
battery statistics.

INTERNET Allows applications to open network
sockets.

ACCESS_FINE_LOCATION Allows an app to access precise
location.

ACCESS_COARSE_LOCATION Allows an app to access approximate
location.

and shares computing power only when Wi-Fi connected and charging is charging. Also

our developers would able to retrieve information from smartphones such as battery state,

network state and precise location of computing nodes.

18

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

7 Experiment

7.1 Citation network

In this section we design an application to build a citation network of academic publishing.

As the link of an initial paper from google scholar is entered, our application could find

papers that had once cited the premier one by inspecting the Cited by hyperlinks on

the google scholar page. Then, when the next round initiate, papers that had cited

the original paper would become the next starting point thus performing the algorithm

iteratively. Since the input is a paper and the output is a list of cited papers, the proper

programming model of our fetching algorithm is described as flatMap, which takes one

element of type K and produces a list of type T For the algorithm convergence, we only

adopt the first n papers from the original paper. The value n is determined by the formula

n =
√
c/r where c stands for the amount of cited by papers and r stands the r round

of current iteration. The algorithm stops to adopting papers on the condition when r is

greater than n.

The next thing is to configure the control flow by Job Builder then activate build()

method to send job with algorithm 4 to control center. Once control center received the

job, it starts to federate smartphones to achieve this job. By far it’s a simple application

for experienced developers to implement as described below by mocking requests from

the web browser to deceive the server. However, the response would redirect to the

reCAPTCHA [33] page after some iterations which stops our robot fetching papers until

our robot solve the problem. The problem would vary over time and the problem could

be "Select all squares with street signs" or "Select all rivers and mountains". It’s hard

for us to figure out a general solution to answer the question like the example in figure 3

challenged by reCAPTCHA since it requires the knowledge of natural language processing

to understand the question and image recognition to answer the question. Google offers

reCAPTCHA as the protector of websites from spam and abuse with the slogan "Tough

on bots, Easy on humans" which indeed keeps our application out.

19

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y
Figure 3: reCAPTCHA example

Instead of figuring out a general solution for the puzzles, a more reasonable approach is

to redesign our application by involving an user interface for retrieving user’s suggestion on

facing the reCAPTCHA problem. Though Ganfuy gains computation power by launching

our app on mobile devices, the app itself does not display anything on the screen. Also we

didn’t provide API for developer to compose the user interface on the screen. It’s seems not

possible to achieve the goal of taking user input in this framework. Fortunately, Selenium,

a well known utility for web browser automation, provides the capability to automates

browsers and gives a slim chance of survival to solve the problem. By importing Selenium

into the previous algorithm, we could manipulate the browsers on the mobile device as

the user interface. Once our fetching robot get stuck, the algorithm could stop to wait

for user’s rescue to solve the puzzle. The function waitForUserToSolveThePuzzle() in

algorithm 4 should be called on every time when we manipulate the browser.

In this case, the result in algorithm 4 will send to the original queue where we get the

link of an initial paper from and the initial link is updated with its descendants then send

20

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Algorithm 4 Citation Network FlatMapper
Input: Link of an initial paper
Output: Papers that had once cited the initial paper
1: result← φ

2: bound←
√
c/l

3: adoption← 0
4: if bound > l then
5: browser ← openBrowser(initialLink)
6: while adoption < bound do
7: waitForUserToSolveThePuzzle()
8: result← result ∪ fetchContent()
9: adoption← adoption+ 1

10: browser.goToNextPage()
11: end while
12: end if
13: initialLink.setChildren(result)
14: sendToQueue(initialLink, processed)
15: return result

to the processed queue. The processed queue contains all the information we need for

building a citation network since we have all papers with its descendants. By sorting out

Figure 4: Citation Network

the outcome and utilizing some visualization tool, we build a graph as shown in figure 4

which provide a concise view for scholars to check the lineage of the paper they interest.

21

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

7.2 IP Location Finder

There are already some data provider such as IPInfoDB, IP2Location and MaxMind that

offers API for users to find a geolocation of an IP address including latitude, longitude,

city, region and country. All of them charges annual fees or buy-out payment for accessing

their service since it’s hard to collect this kind of data. With Gnafuy framework, we could

easily retrieve the geolocation of IP addresses by only acquiring user’s current location. In

order not to send this task to the same device in a short period which would lead to many

duplicate IP/geolocation pair in our result, Gnafuy API provides a hook for computing a

unique key on each task which could prevent the redundant computation, this hook would

be called when computing node asks for the next task. In this case, the implementation of

this unique key could describe as the combination of device IP and geolocation. Once the

computing node acquired the task and sends the result with unique key to control center,

the control center would put the result into a queue as usual and persist the unique key

into a bloom filter [34] for memorizing the executed computing node. After memorizing,

the control center would ask computing node to switch to another task for contributing

compute power. Meanwhile, the computing node would save a copy of current unique key

for the executed task and would not apply the executed task until the unique key changes.

This approach helps us to prevent from retrieving redundant data and it’s easy to

launch by simply add a flag distinct=true as listing 4. The initial data varies from the

amount of result we desired. We could simply create n rows in an iterator as the initial

data if we aim to collect n geolocations of IP address. Since the input is just a dummy

counter and the output is a pair of IP and geolocation, the proper programming model

of this converting algorithm could be described as Map, which takes one element of type

K and produces a element of type T . The task terminates when the initial queue get

exhaust. Through the result of this job is a mapping table of IP and geolocation, it’s still

possible to export the bloom filter for the next time if we want to launch the some job

but keep the redundant data out.

22

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Listing 4: Job Builder of IP Location Finder
public class Geolocation {
public static void main(String[] args) throws Exception {
Iterator<URLData> nIter = new Generator();
QueueRef initialData = new QueueRef("initialData");
QueueRef result = new QueueRef("result");
JobBuilder.createInstance("name.prefix","path/to/file.jar")
.initialData(nIter, initialData)
.appendTask(initialData, GetGeolocationMapper.class, result, true)
.build();

}
}

8 Future work

8.1 Security

Since our framework provides API for developers to port their program/algorithm to

volunteers’ smartphones dynamically which means developers could do whatever they

want on volunteers’ smartphones. This feature would raise lots of security issues and so

far we categorized the malicious behavior into two parts:

1. Damage to volunteers’ smartphones.

2. Damage to the whole network system.

From the aspect of the damaging to volunteers’ smartphones, developer could simply write

an infinite loop with some commands that drive the CPU crazy or create unnecessary files

as a worm. Worst of all, we found that Android SDK provides some built in function

that would "help" developer with evil intentions to invade volunteers’ privacy by taking

screenshots, viewing profiles generated by other apps or get volunteers’ location by lever-

aging GPS module. For the damaging to the whole network system, the developer could

simply write a program to harass targeting web site by invoking tons of request from

numerous clients from this framework, it turns volunteers’ smartphone into part of their

zombie networks. For fixing these kind of problems we did some survey and found there

are several ongoing researches including runtime memory introspection [35] and static

23

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

program analysis [35] for discovering malicious behavior.

However, the hardest thing for us is to determine what’s the real intention of the

submitted program or which behavior is malicious. For example, the mapper of the

word count example mentioned in the previous section asks every smartphones to visit

different hiring requirements and split the content into a word-frequency table for further

computing. Though the visited URLs are distinct but actually these URLs are in the same

web site and it could burden the targeting web server when smartphones are crawling the

same web site simultaneously from different location of the network. The intention of

word count example is not to harass someone but it does.

8.2 Permission control

By far we gained permissions from users that enable Gnafuy app to receive data and per-

form tasks dynamically without upgrading or reinstalling the whole app. However, these

enabled permissions increases the dangerousness of some smartphone users. Developers

could retrieve information like International Mobile Equipment Identity(IMEI) and GPS

location continuously within one task.

Unfortunately, the combination of IMEI and GPS location helps us to track specific

user’s daily routine and this would lead some invasion of privacy definitely. In order to

prevent the abuse of crowd computing power, we could offer a configurable settings for

smartphone users to limit the information they would like to provide. Meanwhile, we have

to isolate Android SDK from Gnafuy API to prevent developers to invoke these native

method directly. We could provide a series of functions in Gnafuy API that has the capa-

bility to retrieve these personal data only when user has acknowledged in configuration.

9 Conclusion

We present Gnafuy, a framework utilizing crowd-smartphones to fulfill ubiquitous dis-

tributed computation. Gnafuy provides flexible APIs for general purpose applications

equipped with the ability of porting computation to mobile devices. Integrating the

24

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

power of crowd sourcing with mobile applications, tasks that ask for human wisdom

could advance in a fluent way.

Acknowledgment

We thank anonymous reviewers for their valuable comments. This work was supported in

part by Taiwan Information Security Center (TWISC), Academia Sinica, and Ministry of

Science and Technology, Taiwan, under the grant MOST 104-2218-E-001-002 and MOST-

103-2221-E-004 -006 -MY3.

References

[1] “Apache Hadoop.” http://hadoop.apache.org/. (Visited on 02/16/2016).

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

Computing with Working Sets.,”

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing,” in Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation, pp. 2–2, USENIX Association, 2012.

[4] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu,

and R. Murthy, “Hive-a petabyte scale data warehouse using hadoop,” in Data Engi-

neering (ICDE), 2010 IEEE 26th International Conference on, pp. 996–1005, IEEE,

2010.

[5] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey,

“DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing

Using a High-Level Language.,” in OSDI, vol. 8, pp. 1–14, 2008.

25

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

[6] “Dashboards.” http://developer.android.com/about/dashboards/index.html,

2015. Online; Accessed 4 January 2015.

[7] “Compare iPhone models..” http://www.apple.com/in/iphone/compare. Online;

Accessed 4 January 2015.

[8] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for parti-

tioning and execution of data stream applications in mobile cloud computing,” ACM

SIGMETRICS Performance Evaluation Review, vol. 40, no. 4, pp. 23–32, 2013.

[9] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for mobile de-

vices,” in Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Ser-

vices: Social Networks and Beyond, p. 6, ACM, 2010.

[10] J. H. Christensen, “Using restful web-services and cloud computing to create next

generation mobile applications,” in Proceedings of the 24th ACM SIGPLAN confer-

ence companion on Object oriented programming systems languages and applications,

pp. 627–634, ACM, 2009.

[11] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using MapReduce,” tech.

rep., DTIC Document, 2009.

[12] N. Palmer, R. Kemp, T. Kielmann, and H. Bal, “Ibis for mobility: solving challenges

of mobile computing using grid techniques,” in Proceedings of the 10th workshop on

Mobile Computing Systems and Applications, p. 17, ACM, 2009.

[13] “Selenium - web browser automation.” http://www.seleniumhq.org/. (Accessed on

02/22/2016).

[14] P. J. Boland, “Majority systems and the condorcet jury theorem,” The Statistician,

pp. 181–189, 1989.

26

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

[15] “On Distinguishing between Reliable and Unreliable Sensors Without a Knowledge of

the Ground Truth (2015), author=Yazidi Anis, Oommen John and Goodwin Morten,

year=2015,”

[16] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[17] “Apache phoenix.” https://phoenix.apache.org/. (Visited on 06/13/2016).

[18] “The Scala Programming Language.” http://www.scala-lang.org/. (Visited on

02/17/2016).

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-

parallel programs from sequential building blocks,” in ACM SIGOPS Operating Sys-

tems Review, vol. 41, pp. 59–72, ACM, 2007.

[20] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,”

Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106, 2013.

[21] D. P. Anderson, “Boinc: A system for public-resource computing and storage,” in

Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on,

pp. 4–10, IEEE, 2004.

[22] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “SETI@ home:

an experiment in public-resource computing,” Communications of the ACM, vol. 45,

no. 11, pp. 56–61, 2002.

[23] “Rosetta@home.” https://boinc.bakerlab.org/. (Visited on 02/18/2016).

[24] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: enabling remote

computing among intermittently connected mobile devices,” in Proceedings of the

thirteenth ACM international symposium on Mobile Ad Hoc Networking and Com-

puting, pp. 145–154, ACM, 2012.

27

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

[25] S. Buchegger and J.-Y. Le Boudec, “A robust reputation system for peer-to-peer and

mobile ad-hoc networks,” in P2PEcon 2004, no. LCA-CONF-2004-009, 2004.

[26] C. Dellarocas, “Immunizing online reputation reporting systems against unfair rat-

ings and discriminatory behavior,” in Proceedings of the 2nd ACM conference on

Electronic commerce, pp. 150–157, ACM, 2000.

[27] S. Sen and N. Sajja, “Robustness of reputation-based trust: Boolean case,” in Proceed-

ings of the first international joint conference on Autonomous agents and multiagent

systems: part 1, pp. 288–293, ACM, 2002.

[28] “Akka.” http://akka.io/. (Visited on 02/17/2016).

[29] “spray | rest/http for your akka/scala actors.” http://spray.io/. (Visited on

02/17/2016).

[30] “RabbitMQ - Messaging that just works.” https://www.rabbitmq.com/. (Accessed

on 02/22/2016).

[31] “How to Run Node.js with Express on Mobile Devices.” http://www.sitepoint.

com/how-to-run-node-js-with-express-on-mobile-devices/. (Accessed on

02/22/2016).

[32] “Android Permission.” https://developer.android.com/reference/android/

Manifest.permission.html. Online; Accessed 4 May 2016.

[33] “Google reCAPTCHA.” https://www.google.com/recaptcha/intro/index.html.

(Accessed on 04/22/2016).

[34] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance: Building a better

bloom filter,” in Algorithms–ESA 2006, pp. 456–467, Springer, 2006.

[35] L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis,” in Presented as part of the

21st USENIX Security Symposium (USENIX Security 12), pp. 569–584, 2012.

28

	pref
	abs
	content

