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Abstract

Market basket analysis (also known as association-rule mining) is a useful method of discovering customer purchasing

patterns by extracting associations or co-occurrences from stores’ transactional databases. Because the information obtained

from the analysis can be used in forming marketing, sales, service, and operation strategies, it has drawn increased research

interest. The existing methods, however, may fail to discover important purchasing patterns in a multi-store environment,

because of an implicit assumption that products under consideration are on shelf all the time across all stores. In this paper, we

propose a new method to overcome this weakness. Our empirical evaluation shows that the proposed method is computationally

efficient, and that it has advantage over the traditional method when stores are diverse in size, product mix changes rapidly over

time, and larger numbers of stores and periods are considered.
D 2004 Elsevier B.V. All rights reserved.
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1. Introduction by extracting associations or co-occurrences from
Because of advances in information and communi-

cation technologies, corporations can effectively ob-

tain and store transactional and demographic data on

individual customers at reasonable costs. One of the

challenges for corporations that have invested heavily

in customer data collection is how to extract important

information from their vast customer databases in

order to gain competitive advantage. Market basket

analysis (also known as association rule mining) is a

method of discovering customer purchasing patterns
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stores’ transactional databases. Discovering, for exam-

ple, that supermarket customers are likely to purchase

milk, bread, and cheese together, or that bank custom-

ers are likely to use a set of services jointly, can help

managers in designing store layout, web sites, product

mix and bundling, and other marketing strategies.

The methodology was introduced by Agrawal et al.

[2] and can be stated as follows. Given two non-

overlapping subsets of product items, X and Y, an

association rule in form of X! Y indicates a purchase

pattern that if a customer purchases X then he or she

also purchases Y. Two measures, support and confi-

dence, are commonly used to select the association

rules. Support is a measure of how often the transac-

tional records in the database contain both X and Y,
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and confidence is a measure of the accuracy of the

rule, defined as the ratio of the number of transac-

tional records with both X and Y to the number of

transactional records with X only. By far, the Apriori

algorithm [1] is the most known algorithm for mining

the association rules from a transactional database,

which satisfy the minimum support and confidence

levels specified by users.

Since association rules are useful and easy to

understand, there have been many successful business

applications, including, for example, finance, telecom-

munication, marketing, retailing, and web analysis

[5]. The method has also attracted increased research

interest, and many extensions have been proposed in

recent years, including (1) algorithm improvements

[6,12,18,21]; (2) fuzzy rules [13,14]; (3) multi-level

and generalized rules [7,10]; (4) quantitative rules

[20,24,25]; (5) spatial rules [7,15]; (6) inter-transac-

tion rules [19]; (7) interesting rules [4,9]; and (8)

temporal association rules [3,16,17]. Brief literature

reviews of association rules are given by Chen et al.

[8] and Han and Kamber [11].

In today’s business world, it is common for a

company to have subsidiaries, branches, dealers, or

franchises in different geographical locations. For

example, Wal-Mart, the largest supermarket chain in

the world, has more than 4400 stores worldwide. For a

company with multiple stores, discovery of purchas-

ing patterns that may vary over time and exist in all, or

in subsets of, stores can be useful in forming market-

ing, sales, service, and operation strategies at the

company, local, and store levels.

There are two main problems in using the existing

methods in a multi-store environment. The first is

caused by the temporal nature of purchasing patterns.

An apparent example is seasonal products. Temporal

rules [3,16,17] are developed to overcome the weak-

ness of the static association rules that either find

patterns at a point of time or implicitly assume the

patterns stay the same over time and across stores. A

literature review on temporal rules is given by Rod-

dick and Spiliopoulou [22]. In temporal rules, selling

periods are considered in computing the support

value, where the selling period of a product is defined

as the time between its first and last appearances in the

transaction records. Furthermore, the common selling

period of the products in a product set is used as the

base in computing the ‘‘temporal support’’ of the
product set. The results of the method may be biased,

however, because a product may be on shelf before its

first transaction and/or after the last transaction

occurs, and a product may also be put on-shelf and

taken off-shelf multiple times during the data collec-

tion period.

The second problem is associated with finding

common association patterns in subsets of stores.

Similar to the problem in using existing temporal

rules in a multi-store environment, we have to con-

sider the possibility that some products may not be

sold in some stores, for example, because of geo-

graphical, environmental, or political reasons. This is

seemingly related to spatial association rules. Howev-

er, the focus of spatial rules is on finding the associ-

ation patterns that are related to topological or

distance information in, for example, maps, remote

sensing or medical imaging data and VLSI chip layout

data [23].

To overcome the problems, we develop an Apriori-

like algorithm for automatically extracting association

rules in a multi-store environment. The format of the

rules is similar to that of the traditional rules. How-

ever, the rules also contain information on store

(location) and time where the rules hold. The results

of the proposed method may contain rules that are

applicable to the entire chain without time restriction

or to a subset of stores in specific time intervals. For

example, a rule may state: ‘‘In the second week of

August, customers purchase computers, printers, In-

ternet and wireless phone services jointly in electron-

ics stores near campus.’’ Another example is: ‘‘In

January, customers purchase cold medicine, humidi-

fiers, coffee, and sunglasses together in supermarkets

near skiing resorts.’’ These rules can be used not only

for general or localized marketing strategies, but also

for product procurement, inventory, and distribution

strategies for the entire store chain. Furthermore, we

allow an item to have multiple selling time periods;

i.e., an item may be put on-shelf and taken off-shelf

multiple times. We further assume that different stores

can have different product-mixes in different time

periods. That is, each store can have its own prod-

uct-mix, and the product-mix in a store can be

dynamically changed over time.

Because the time and store (location) factors are

considered, the rule generation procedure is more

complicated than the Apriori algorithm. The simula-



Y.-L. Chen et al. / Decision Support Systems 40 (2005) 339–354 341
tion results presented in the paper show that the

proposed method is computationally efficient and

has significant advantage over the traditional associ-

ation method when the stores under consideration are

diverse in size and have product mixes that change

rapidly over time.

The paper is organized as follows. We formally

define the problem in Section 2 and in Section 3

propose an algorithm. In Section 4, we compare the

results generated from the proposed algorithm and the

traditional Apriori algorithm in a simulated multi-store

environment. The conclusion is given in Section 5.
2. Problem definition

We consider a market basket database D that

contains transactional records from multiple stores

over time period T. Our objective is to extract the

association rules from the database. For convenience

in presentation, the cardinal of a set, say R, is denoted
by ARA. Let I={I1, I2,. . ., Ir} be the set of product

items included in D, where Ik (1V kV r) is the iden-

tifier for the kth item. Let X be a set of items in I. We

refer X as a k-itemset if AXA = k. Furthermore, a

transaction, denoted by s, is a subset of I. We use

W(X, D)={sAsaD^Xps} to denote the set of trans-

actions in D, which contain itemset X.

Definition 1. The support of X, denoted by sup(X, D),

is the fraction of transactions containing X in database

D; i.e., sup(X, D) =AW(X, D)A/ADA. For a specified

support threshold rs, X is a frequent itemset if sup(X,

D)z rs.

Note that the definitions of the support and the

frequent itemset are those used in the traditional

association rules, and, therefore, the store and time

information is not considered in determining the

support of an itemset.

Let {T1, T2,. . ., Tm} be the set of mutually disjoint

time intervals (periods) and form a complete partition

of T. Furthermore, they are ordered, such that Ti + 1

immediately follows Ti for iz 1. Note that the time

periods are defined according to specific needs of the

problem, such as 1 h, 6 h, 1 day, 1 week, and so on.

Let P={P1, P2,. . ., Pq} be the set of stores, where Pj

(1V jV q) denotes the jth store in the store chain. We

assume that each transaction s in D is attached with a
timestamp, t, and store identifier, p, to indicate the

store and time that the transaction occurs.

Let SkpP and RkpT be the sets of the stores and

times that item Ik is sold, respectively. We define

VIk
= Sk�Rk as the context of item Ik; i.e., the set of

the combinations of stores and times where item Ik is

sold. Furthermore, the context of itemset X, denoted

by VX, is the set of the combinations of stores and

times that all items in X are sold concurrently. For

example, if itemset X consists of two items Ik and Ik’,

the context of X is given by VX=VIk\Vik’.

Definition 2. Let X be an itemset in I with context VX,

and DVX
the subset of transactions in D whose

timestamps t and store identifiers p satisfy VX. We

define the relative support of X with respect to the

context VX, denoted by rel_sup(X, DVX
), as AW (X,

DVX
)A/ADVX

A. For a given threshold for relative

support rr, if a frequent itemset X satisfies rel_sup(X,

DVX
)z rr, we call X a relative-frequent (RF) itemset.

In the last definition, we require that a relative-

frequent itemset X be frequent. We add this restriction

for two reasons. First, it enables us to preserve the

well-known downward-closure property, by which the

candidate set of the next phase can be obtained by

joining the frequent sets of the preceding phase; this

will greatly improve the performance of the algorithm.

Second, this restriction does not present any real

problem to the mining algorithm, because none of

the important patterns would be missing because of

using a low rs value. Therefore, we prefer using a low

rs value. However, it should not be too low because

an itemset that occurs only in few transactions has no

practical significance.

Furthermore, the minimum threshold for the rela-

tive support of an itemset is used to determine whether

a sufficient percentage of transactions exists in its

context to warrant the inclusion of the itemset as a

relative-frequent (RF) itemset. Its use and purpose are

similar to those of the traditional minimum support

threshold. Consequently, we can set its value the same

way as we set the traditional minimum support

threshold.

Definition 3. Consider two itemsets X and Y. The

relative support of X with respect to the context Vx[y,

denoted by rel_sup(X, DVX[Y
), is defined as AW(X,

DV )A/ADV A. The confidence of rule XZ Y,

X[Y X[Y
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denoted by conf(XZ Y), is defined as rel_sup(X[Y,
DVX[Y

)/rel_sup(X, DVX[Y
).

The above definition implies that the context of

rule XZ Y is Vx[y; i.e., the base used to compute the

confidence of rule XZ Y is the common stores and

time periods shared by all the items in X[Y.
Definition 4. Let Z be an RF itemset, where Z =X[Y,
XpI, and Yp I \X. Given a confidence threshold rc, if
conf(XZ Y)z rc, we call XZ Y a store-chain (SC)

association rule, and Vx[y as the context of the rule.

Based on Definitions 1 and 4, it is clear that the

selection criteria and outputs for the store-chain asso-

ciation rules are different from those of the traditional

association rules. For the store chain rules, the output

includes the confidence, support, and a context indi-

cating the stores and times the rules hold.

It can be shown that the traditional method under-

estimates the support and the confidence values (a

proof is given in Appendix A). Consequently, impor-

tant purchasing patterns that satisfy the criteria of the

SC association rules may not be identified by the

traditional association-rule methods.
3. Algorithm

We propose an Apriori-like algorithm for mining

the store-chain association rules. The algorithm is

outlined in Fig. 1. We first explain the general concept

for developing the algorithm and then use five sub-

sections to give detailed information on several key

steps of the algorithm.

In describing the algorithm, we use RFk to denote

the set of all relative-frequent k-itemsets; Fk, the set

of all frequent k-itemsets; and Ck, the set of candi-

date k-itemsets. Note that, in the traditional Apriori

algorithm, a k-item candidate itemset must be a

combination of k� 1 frequent itemsets because of

the anti-monotone property [1]. Therefore, the Apri-

ori algorithm can generate the candidate itemsets in

the kth phase by joining the frequent itemsets in the

(k� 1)th phase. However, for the SC association

rule, a subset of an RF itemset may not be an RF

itemset because the base for calculating the relative

support value varies in different phases. Consequent-

ly, in the proposed algorithm, we generate candidate

itemsets from the frequent itemsets, instead of the
RF itemsets. Furthermore, when we use the frequent

itemsets to generate the candidate set in the next

phase, it still satisfies the anti-monotone property,

because we use the same base to compute the

supports for all itemsets.

As the first step of the algorithm, we build a table,

called the PT table, for each item in I to associate the

item with its context (i.e., the stores and times it is

sold) and use the table to determine the context of an

itemset. The algorithm proceeds in phases, where in

the kth phase we generate Fk from Ck and RFk from

Fk. In the first phase, we scan the database for the first

time and build a two-dimensional table, called the TS

table. In this table, the entry at the position

corresponding to Ti and Pj, denoted by TS(Ti, Pj),

records the number of transactions that occur at store

Pj in period Ti. Using this table and the PT table for a

given itemset X, we can determine the number of

transactions associated with the context of X, i.e.,

ADVX
A. In the kth phase of the algorithm, we first

derive Ck, and, then, generate Fk by evaluating their

supports, which can be done by scanning the database

and removing all infrequent itemsets. Since an RF

itemset must be a frequent itemset, we generate RFk

from Fk by evaluating the relative supports of the

itemsets X in Fk.

In the following subsections, we give detailed

descriptions for the key elements of the algorithm,

including methods of (1) building the PT table, (2)

building the TS table in the first phase, (3) finding

RFk, (4) generating candidate itemsets, and (5) gen-

erating the store-chain association rules.

3.1. The PT table

The purpose of the PT table is to efficiently store

the time and store information for each product item

in the database. We use a simple example to illustrate

the procedure for constructing the table. Consider the

bit matrices in Fig. 2 for items I1, I2, and I3, in which

there are six stores and six selling periods, and ‘‘1’’

and ‘‘0’’ indicate, respectively, that the item is or is

not for sale in the corresponding store and time.

Because an item normally does not switch between

on- and off-shelf very frequently in a typical applica-

tion, we store an item’s context information in the PT

table instead of the bit matrix in order to conserve data

storage space. In the PT table, we need only to record
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Fig. 1. Algorithm Apriori_TP.
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Fig. 3. The PT tables for I1, I2, and I3.
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the time that the item changes its status between on-

shelf and off-shelf. (Initially, we assume that the item

is on-shelf in all the stores.) For example, in Store P1,

item I1 changes its status only in time T4. Therefore,

we need only to record ‘‘4’’ in the PT table to reflect

the time and store information for item I1 in Store P1.

Following this procedure, the information of the

original bit matrices for items I1, I2, and I3 is con-

verted into the PT tables shown in Fig. 3.

As mentioned previously, the PT tables for indi-

vidual items can be used to determine the PT table for

a given itemset. The procedure given in Fig. 4 shows

how to generate the jth row (store) of the PT table for

an itemset X by combining the jth rows of the PT

tables for all items in the itemset. We start with an m-

dimension bit array, denoted by PTj, for the itemset

with initial values of ‘‘1’’ for each of the m time

periods. These initial values are replaced by ‘‘0’’

found at the corresponding position in the PT tables

for all the items in the itemset. Finally, we transform

PTj into PT(X, j), the jth row of the PT table for

itemset X.
Fig. 4. The method to compute the jth r
Let us use an itemset consisting of I1 and I2 as an

example. In order to generate the second row (store)

of the PT table, we start with an initial bit array: [1 1 1

1 1 1]. Since the corresponding row of the PT table for

I2 is [1 2 5], the first, fifth, and sixth elements of the

bit array are replaced by ‘‘0’’, resulting a new bit

array: [0 1 1 1 0 0]. Following the same method, the

third through the sixth elements of the new bit array

are replaced by ‘‘0’’ when I2 is considered. As a result,

the final bit array is [0 1 0 0 0 0], and the

corresponding (second) row of the PT table for the

itemset is [1 2 3].

Using the concept described above, we develop the

procedure in Fig. 4. In the procedure, PT(k, j) denotes

the jth row of the PT table for item k, and its S th
element is PT(k, j, S ), where S is an odd number. The

elements of PTj are replaced by 0’s according to the

rule stated in lines 4 through 6 in the algorithm: a

segment of PTj is replaced by ‘‘0’’, starting from

position PT(k, j, S ) and ending at position PT(k, j,

S + 1)� 1. PT(k, j) is inserted in sequence into PTj for

every item j in itemset X. The process of developing

the PT table is included as line 8 in the algorithm

given in Fig. 1.

3.2. The TS table

After building the PT table, the first phase of the

algorithm is to build the TS table, where each entry at

the position corresponding to Ti and Pj is the number

of transactions that occur at store Pj in period Ti. This

can be done by a scan through the database. An
ow of the PT table for itemset X.
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example of the table is given in Fig. 5. Using the TS

and PT tables for itemset X, we can determine the

value ADVX
A by summing all the values in the entries

of the TS table according to the store and time

information of the items in X. The process of con-

structing the table is described in lines 2 through 4 in

Fig. 1.

3.3. Relative-frequent itemset

Because an RF itemset must be a frequent itemset,

we can generate RFk from Fk by computing the

relative supports of those itemsets X in Fk. It is evident

that AW(X, DVX
)A equals AW(X, D)A because it is not

possible for X to appear in a transaction not in DVX
.

Further, ADVX
A can be obtained from the TS and PT

tables of X. As a result, we can find the RF itemsets by

first computing the relative supports of all X in Fk and

then pruning those itemsets whose relative supports

are less than rr.

3.4. Candidate itemsets

As discussed, we generate the candidate itemsets

from the frequent itemsets, instead of the RF itemsets,

from the last phase. Furthermore, when we use the

frequent itemsets to generate the candidate set in the

next phase, it still satisfies the anti-monotone property,

because we use the same base to compute the supports

for all itemsets. We illustrate the computation process

by the following example.

Example 1. Suppose there are 15 periods, from T1 to

T15, and the numbers of transactions occurring in

these 15 periods are 19, 17, 14, 25, 20, 17, 15, 27, 21,

20, 22, 18, 25, 21, and 19, respectively. Assume that

the selling periods of product A are from T1 to T10,

and that there are 60 transactions containing product
Fig. 5. An example of the TS table.
A. Furthermore, assume that the selling periods for

product B are from T6 to T15, and that 80 transactions

of them include product B. Finally, there are 50

transactions containing both products A and B, and

they are sold in periods from T6 to T10.

In order to compute the supports and the relative

supports for itemsets {A}, {B}, and {A, B}, we

identify the following values: AW({A}, Dv{A})A =

AW({A}, D)A = 60, AW({B}, Dv{B})A = AW({B},

D)A = 80, and AW({A, B}, Dv{A,B})A =AW({A, B},

D)A = 50. Since the base for computing the support is

ADA = 300, the supports for the three itemsets are

given by sup({A}, D) = 60/300 = 0.2, sup({B},

D) = 80/300 = 0.267, and sup({A, B}, D) = 50/

300 = 0.167, respectively. On the other hand, the bases

for computing the relative support are ADv{A}A = 195,

ADv{B}A = 205, and ADv{A[B}A = 100, respectively,

for the three itemsets. As a result, the relative supports

a re re l_sup ( {A} , Dv {A} ) = 60 /195 = 0 .308 ,

rel_sup({B}, Dv{B}) = 80/205 = 0.39, rel_sup({A, B},

Dv{A,B}) = 50/100 = 0.5 for the itemsets.

Suppose we set rs at 0.1 and rr at 0.35. Then, we
find that {A}, {B}, and {A, B} are frequent. Further-

more, {A} is not relative-frequent, but {B} and {A,

B} are relative-frequent.

3.5. The store-chain association rules

Having found the RF itemsets, we proceed to

calculate the confidence values and to find all the

SC association rules. As defined in Definition 3,

the confidence value is given by conf(XZ Y) =

rel_sup(X[Y, DVX[Y
)/rel_sup(X, DVX[Y

). If the confi-

dence value exceeds rc, the SC association rule holds.

There is an issue that must be dealt with in

computing the confidence value. In the calculation

of rel_sup(X[Y, DVX[Y
)/rel_sup(X, DVX[Y

), we obtain

the numerator after the phase of processing X[Y. But
the denominator is still undetermined after the phase

of processing X[Y, because the length of X is smaller

than that of X[Y, and we process the itemsets of the

same length in a single phase. One possible solution

to this problem is to add one step after the phase of

processing X[Y. In this new step, we compute support

levels of all subsets of X[Y under the context of VX[Y;

i.e., the support levels of X in database DVX[Y
, where X

is a subset of X[Y.
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If the RF itemset produced in each phase needs

another scan to produce the confidence value, then the

number of scans of the database in this algorithm is

twice that required by the Apriori algorithm. In order

to reduce this requirement, we use another method: if

Z is an RF itemset found in the kth phase, we compute

rel_sup(X, DVZ
) in the (k + 1) phase by ‘‘hitchhiking,’’

where X is a subset of Z. In other words, in phase

k + 1, we perform two operations: the first is to find

the RF itemset of length k + 1, and the second is to

compute the relative supports, such as rel_sup(X,

DVZ
). All these values are calculated during the same

scan of the database. Consequently, the proposed

method requires only one more scan than the Apriori

algorithm to obtain the confidence value when the RF

itemset of the last phase is produced. This process is

included as line 11 in the algorithm, and in Fig. 6, we

give the process of computing rel_sup(X, DVZ
) for all

subsets X of Z.

In order to compute rel_sup(X, DVZ
) for all subsets

X of Z, we must enumerate all the subsets, X, of each

RF itemset, Z, in the previous phase—if the length of

the RF itemset is k, the number of subsets is 2k� 2.

Because each Z has its own PT table (built in line 8 of

Fig. 1), we need to check whether a transaction

happens in the PT tables of all RF itemsets Z every

time a transaction is read in, after computing the

supports of the candidates in Ck. If not, it indicates

that this transaction does not happen under the

context of Vz, and it can be ignored. On the other

hand, if the answer is positive, it indicates that this

transaction happens under the context of Vz, and, as a

result, we need to check if the transaction includes

any subset X of Z. This enables us to determine the
Fig. 6. Compute the support coun
support levels of all the subsets X of Z under the

context of Vz.

For example, suppose that two RF itemsets are

generated in the third phase: {A, B, C} and {C, D, E}.

In the fourth phase, we build the PT tables for all the

RF itemsets in RF3. And when a transaction is read,

we need to check whether it includes any candidates

in C4, as well as whether its time and store combina-

tion is in the contexts of {A, B, C} or {C, D, E}. If the

time and store combination of the transaction does not

conform to the context of {A, B, C}, we need to check

whether it does to that of {C, D, E}. If it does, we

proceed to check whether it includes any subsets like

{C, D, E}: {C}, {D}, {E}, {C, D}, {C, E}, and {D,

E}. If it does, the counters of all the matching subsets

are increased by one.

Finally, line 14 in Fig. 1 shows the step for

generating the store chain association rule XZ Y,

where X[Y is in RFk� 1. It is not difficult to compute

the confidence of the rule—i.e., rel_sup(X[Y, DVX[Y
)/

rel_sup(X, DVX[Y
)—because rel_sup(X[Y, DVX[Y

) has

already been found in the previous phase and

rel_sup(X, DVX[Y
) found in the current phase.

3.6. Complexity analysis

In this section, we analyze the time complexity and

memory space complexity of the algorithm. Let m be

the number of items, n the number of transactions in

the database, l the number of items in a transaction.

Further, let x denote the largest value of ACkA. Note
that, although ACkA can theoretically be as large as

O(mk), ACkA is very unlikely to be larger than O(m2)

in practice. This is because, in an Apriori-like algo-
ts of all the subsets X of Z.
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rithm [1,2,6,20], C2 usually has the largest size among

all candidate sets. We discuss the time complexities of

the steps of Apriori_TP algorithm separately, as well

as the total time complexity of the algorithm, as

follows.

1. In step 1, we construct the PT table for each item.

To produce the table for an item, its Bit Matrix

table with APA rows and ATA columns needs to be

linearly scanned and processed. Thus, the time for

step 1 is O(m�APA�A TA).
2. In steps 2 to 4, two operations are performed: (1)

compute the supports of all itemsets in C1, and

(2) construct the TS table. Since the first

operation requires a linear scan of all the items

in every transaction, its time is O(n� l). The time

needed for the second operation is O(n) because

we examine the attached time and store identifier

of each transaction, it requires time O(n). As a

result, the total time for the three steps is

O(n� l).

3. Step 5 is for determining F1 by examining the

support of every itemset in C1. Since C1 has n

itemsets, the time needed for the step is O(n).

4. There is a loop from steps 6 to 18. The time

complexities of the steps in iteration k of the loop

are discussed as follows.

4.1. In step 7, we generate Ck. Consequently, the

required time is O(ACkA). Because we assume

O(ACkA)VO(x ), the time is O(x ).
4.2. In step 8, we build a PT table for each itemset

z in RFk� 1. We need k� 2 merging operations

for this step because the k� 1 PT tables of

every individual item in z need to be merged.

Because each merging operation can be done

in time O(APA�ATA), the total time for step

8 is O(ARFk � 1A� k�APA�ATA). Since

RFk � 1pCk � 1 , we have O(ARFk� 1A)VO(x )
and the total time becomes O(x � k�
APA�ATA).

4.3. In steps 9 to 11, there are two tasks: (1)

compute the supports of all itemsets in Ck, and

(2) compute the supports of all subsets of

itemsets in RFk� 1. The time required for the

first task is O(n� l�ACkA), because it can be

done by first reading every transaction and

then adding the counts to the corresponding

itemsets. In the second task, we add the counts
to all subsets of itemsets in RFk� 1 rather than

all itemsets in RFk� 1. Therefore, it can be

done by first reading every transaction and

every itemset in RFk� 1, generating all subsets,

and finally adding the counts. Performing

these operations requires time Oðn � l �
ARFk � 1A � 2k � 1Þ . Since OðARFk � 1AÞV
OðACk � 1AÞ , the time required for this

part is Oðn � l � x � 2k � 1Þ.
4.4. Step 12 is used to generate Fk from Ck. Since

the support of each itemset in Ck must be

checked if it is no less than rs, the time is

OðACkAÞ ¼ Oðx Þ.
4.5. Step 13 is for generating RFk from Fk. Because

the support of each itemset in Fk must be

checked if it is no less than rr, the time is

O(AFkA). Since OðAFkAÞVOðACkAÞ, we have
the total time O(x ).

4.6. In steps 14 through 17, we compute the

confidence of xZ y where x[y in RFk� 1.

That means, for each z = x[y in RFk� 1, we

need to check all of its subsets. Therefore,

there are totally ARFk � 1A � 2k � 1 possible

combinations. Since each combination needs

a simple division, the total time for this part is

OðARFk � 1A � 2k � 1Þ. Furthermore, because

OðARFk � 1AÞVOðACk � 1AÞ , the total time

required is O(x � 2k� 1).

From the above analysis, we know that two parts of

the algorithm are most time consuming. The first is

step 8, and the second is steps 9 through 11, which

require times Oðx � k � APA � ATAÞ and Oðn �
l � x � 2k � 1Þ , respectively. Let K denote the total

number of the phases in the loop from step 6 to step 17.

Then the total time is Oðx � K2 � APA � ATAÞ þ
Oðn � l � x � K � 2KÞ.

Next, we analyze the memory space required for

the algorithm. We perform the analysis by examining

the space needed to store the data structures used in

the algorithm.

1. Because the space requirement for the PT-

Interval table for each item is OðAPA � ATAÞ,
the total requirement for all individual items is

Oðm � APA � ATAÞ.
2. The requirement for the PT-Interval table for each

itemset in RFk� 1 is OðARFk � 1A � APA � ATAÞ.



Table 1

Parameters used in simulation

D Number of transactions

q Number of stores

m Number of periods

r Number of items

L Average length of transactions

Fl Average length of maximum potentially frequent itemsets

Fd Number of maximum potentially frequent itemsets

Su,Sl The maximum and minimum sizes of stores

Id Replacement rates of items
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Since OðARFk�1AÞVOðACk�1AÞ, the total require-

ment for all itemsets is Oðx � APA � ATAÞ.
3. The requirement for the TS table is OðAPA � ATAÞ,

because it is a single table.

4. The space requirements for Ck, RFk, and Fk are

O(x ) individually. Note that, because the same

space can be shared by different iterations in the

loop from steps 6 to 17, we only need one copy of

them rather than multiple copies.

5. The space for storing the supports of all subsets

of itemsets in RFk� 1 is OðARF k � 1A � 2k � 1Þ .
Since OðARFk � 1AÞVOðACk � 1AÞ , the required

space is Oðx � 2k � 1Þ.
6. Combining all the space requirements, we find the

total space is Oðx � 2KÞ þ Oðx � APA � ATAÞ.
4. Performance evaluation

In this section, we perform a simulation study to

empirically compare the proposed and traditional

association-rule mining methods. The main objective

of the simulation study is to identify the conditions

under which the proposed method significantly out-

performs the traditional method in identifying impor-

tant purchasing patterns in a multi-store environment.

Three factors are considered in the study: (1) the

numbers of stores and periods, (2) the store size,

and (3) the product replacement ratio. In addition,

we evaluate the computational efficiency of the pro-

posed Apriori_TP algorithm using the Apriori algo-

rithm [1] as the baseline for comparisons. The

proposed algorithm is implemented by Borland C+

language and tested on a PC with a Celeron 1.8 G

processor and 768 MB main memory under the

Windows 2000 operating system.

4.1. Data generation

In the experiment, we randomly generate the

synthetic transactional data sets by applying the data

generation algorithm proposed by Agrawal and Sri-

kant [1]. The factors considered in the simulation are

listed in Table 1. In addition, we generate the time

and store information for each transaction in the data

sets.

To generate the store sizes, we use two parameters,

Su and Sl, to represent the largest and smallest store
sizes, respectively, and the size of store i for 1V iV q,

denoted by Si, is generated by a uniform distribution

between Su and Sl. We assume that the total number of

transactions and the number of products are dependent

on a store’s size. In addition, we also allow the stores

to have different product replacement (turnover) ra-

tios. In the simulation, these relationships are estab-

lished by generating m random numbers for the store i

from a Poisson distribution with mean Si, and we use

the jth number, denoted byWij, as the weight of store i

in period j. Let Dij denote the number of transactions

of store i in period j. The total number of transactions,

D, is distributed to the store i, and period j is

determined by:

Dij ¼
D

XP

m¼0

XT

n¼0

Wmn

Wij

Furthermore, we assume that the number of prod-

ucts in a store is proportional to the square root of its

size. Thus, let ISi ¼
ffiffiffiffi
Si

p
for i = 1, 2, . . ., q. Then, the

number of products in store i, denoted by Ni, is

determined by the following formula:

Ni ¼
r

MaxðISiÞ
� ISi

Note that the products sold in a store may change

over time, although Ni is kept the same in all periods.

Since the parameter Id is the proportion of products

that will be replaced in every period, store i replaces

Ni� Id products in each period. Furthermore, we

follow the method used by Agrawal and Srikant [1]

to generate Fd maximum potentially frequent itemsets

with an average length of Fl.
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Finally, we generate all the transactions in the data

sets. To generate the transactions for store i in period j,

we generate Dij from a Poisson distribution with mean

L and a series of maximum potentially frequent item-

sets. If an itemset generated from the process has

some items not sold at store i in period j, we remove

these items, and repetitively add the items into the

transaction until we have reached the intended size. If

the last itemset exceeds the boundary of this transac-

tion, we remove the part that exceeds the boundary.

When adding an itemset to a transaction, we use a

‘‘corruption level,’’ c = 0.7, to simulate the phenome-

non that all the items in a frequent itemset do not

always appear together. Information on how the

corruption level affects the procedure of generating

items for a transaction is included in the paper by

Agrawal and Srikant [1]. To generate the nine types of

data sets shown in Table 2, we use the following

parameter values: r = 1000, D = 100 K, L= 6, Fl = 4,

and Fd = 1000. For each type of the data sets, 10

replications are generated for statistical analysis of the

results.

4.2. Performance measures

As discussed in Section 2, the traditional method

underestimates the support and the confidence values

and, as a result, may fail to identify important pur-

chasing patterns in a multiple-store environment. We

define three measures (errors) for empirically assess-

ing the magnitudes of the deviations in support,

confidence, and the number of association rules when

we use the traditional association rules for the store-

chain data.
Table 2

Data sets

Data set Number

of stores

Number

of periods

Range of

store sizes

Product

replacement

rate

1 5 5 50–100 0.001

2 10 10 50–100 0.001

3 50 50 50–100 0.001

4 50 50 10–100 0.001

5 50 50 50–100 0.001

6 50 50 90–100 0.001

7 50 50 50–100 0.001

8 50 50 50–100 0.005

9 50 50 50–100 0.010
The type A error measures the relative difference

in the support levels of all frequent itemsets gener-

ated by the traditional and proposed methods. It is

determined by rel_sup(X, DVX
) � sup(X , D)/

rel_sup(X, DVX
). For example, if the support and

relative support for an itemset X are sup(X, D) = 0.02

and rel_sup(X, DVX
) = 0.03, respectively, then the

type A error rate is rel_sup(X, DVX
)� sup(X, D))/

rel_sup(X, DVX
) = 33.33%. By averaging the error

rates of all frequent itemsets, we obtain the overall

type A error rate. Similarly, the type B error is used

to compare the difference in confidence levels of all

rules generated by the traditional and proposed meth-

ods. It is defined as conf(XZ Y)�conf V(XZ Y))/conf

(XZ Y), where conf V(XZ Y) is the rule confidence

computed by the traditional methods. By averaging

the type B error rates of all common rules in the two

methods, we obtain the overall type B error rate.

Finally, the type C error is used to compare the relative

difference in the numbers of rules generated by the two

methods. Note that we set rs and rr at the same level

when evaluating the types A and B error rates. It is

because the frequent itemsets found by the two algo-

rithms have to be the same in order to have a common

base to compare the results produced by the two

algorithms. Furthermore, we set rc at 1% in the

comparison based on the type B error. Using this

low value, we can include almost all possible rules

in the comparison. However, because in a practical

situation the minimum confidence threshold could be

higher than this value, we also obtain the results for

selected minimum confidence values ranging from

40% to 60%. Finally, we set rs at 0.5% in the

comparison based on the type C error.

4.3. Simulation results

The first comparison is carried out based on the

first three types of data sets in Table 2. Because these

three types of data sets have different numbers of

stores and periods, the results show the effects of the

size of store chain and the length of time on the errors

associated with using the traditional method. In order

to study the effect of rs, we also obtain the results for

selected minimum support thresholds ranging from

0.3% to 0.6%. The averages of the types A, B, and C

errors are shown in parts (a), (b), and (c), respectively,

of Fig. 7. The two-factor ANOVA model is used to



Fig. 7. (a) Effects of the numbers of stores and periods on the type A

error rate. (b) Effects of the numbers of stores and periods on the

type B error rate. (c) Effects of the numbers of stores and periods on

the type C error rate.

Fig. 8. (a) Effects of store size on the type A error rate. (b) Effects of

store size on the type B error rate. (c) Effects of store size on the

type C error rate.
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analyze the results. We find that all the three error

rates are significantly larger in the cases involving

larger numbers of stores and periods. We also notice

that the error rates generally increase as the minimum

support decreases. All these results suggest that the

traditional method is not suitable for the store-chain

data. The result in part (c) of the figure further

supports this conclusion, where, in the worst case
reported, 40% of the SC rules are not successfully

discovered when rc is 60%.

The second comparison is used to study the effects

of the store size on the error rates. The data set types

4, 5, and 6 are used, and the average error rates are

shown in Fig. 8. The results of statistical analysis

based on the two-factor ANOVA model indicate that

the error rates are significantly larger when the store

size has a larger variation. As shown in parts (a) and



Fig. 10. The type B error rates vs. minimum confidence thresholds.

Fig. 9. (a) Effects of product replacement ratio on the type A error

rate. (b) Effects of product replacement ratio on the type B error

rate. (c) Effects of product replacement ratio on the type C error rate.
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(b) of the figure, when the variation of the store size is

the largest, the types A and B errors rates are close to

35% and 23%, respectively. In part (c), we find that

more than 50% of the SC rules are not generated by

the traditional method when rc is 50%, and the error

rate reaches almost 70% when rc is 60%.

In the third part of the simulation study, we

compare the error rates under different replacement

rates. We use data set types 7, 8, and 9 for the
comparison. The results, shown in Fig. 9, indicate

that the error rates associated with larger replacement

ratios are significantly higher than those associated

with smaller replacement ratios. We also notice that

the error rates increase as the minimum support

decreases. These observations are supported by the

results of our statistical analysis. Consequently, we

conclude that the performance of the traditional meth-

od deteriorates as the product replacement ratio

increases.

In the second part of the simulation study, we

observe how the type B error rate changes when rc

is varied from 40% to 60%. In this experiment, we set

rs at 0.5% and use data set types 2, 4, 5, and 9 for

comparison. We use data set type 5 as the baseline;

data set type 2 to study the effect of smaller numbers

of time periods and stores; and data set types 4 and 9,

to study a larger variation in store size and a larger

product replacement rate, respectively.

The simulation results are summarized in Fig. 10,

where lines 1, 2, 3, and 4 correspond to the results of

data sets 5, 2, 4 and 9, respectively. The result

indicates that the error rate decreases significantly as

we increase rc. This is because, when rc is higher,

only those rules with higher confidence values are

used in comparison, causing the type B error rate to

decrease. Furthermore, we found that the effect of the

product replacement rate is very similar to that of the

numbers of periods and stores, and both factors are

stronger than that of the variation in store size.



Fig. 11. Run times.
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To summarize the simulation study, we conclude

that the traditional association rules may not be able to

extract all important purchasing patterns for a multi-

store chain, especially when there are large numbers

of stores and periods, a large variation in store sizes,

and high product replacement ratios. This finding is

significant because many store chains are growing in

size to maintain the economy of scale and, at the same

time, dynamically localize their product-mix strate-

gies. All these trends support the need for the pro-

posed method.

Finally, we evaluate the computational efficiency

of the proposed algorithm by comparing it with the

Apriori algorithm. We show the result in Fig. 11,

where the running time is obtained by averaging the

running times of all the data sets in Table 2. From the

figure, we find that the proposed algorithm requires

larger process times, but the differences are not

substantial. This result is reasonable, because the

proposed algorithm requires one more scan of the

data than does the Apriori algorithm, and also requires

additional basic operations in each phase of the

algorithm.
5. Conclusion

Association-rule mining is a useful method of

discovering customer purchasing patterns by extract-

ing associations or co-occurrences from stores’ trans-

actional databases. Since the method was first
proposed by Agrawal et al. [1] in 1993, it has become

an established and active research area. The existing

methods, however, may fail to discover important

purchasing patterns in a multi-store environment,

because of an implicit assumption that products under

consideration are on-shelf all the time across all

stores.

To overcome the problem, a new method, called

store-chain association rules, is proposed specifically

for a multi-store environment, where stores may have

different product-mix strategies that can be adjusted

over time. The format of the rules is similar to that of

the traditional rules. However, the rules also contain

information on store (location) and time where the

rules hold. The rules extracted by the proposed

method may be applicable to the entire chain without

time restriction, but may also be store- and time-

specific. These rules have a distinct advantage over

the traditional ones because they contain store (loca-

tion) and time information so that they can be used not

only for general or local marketing strategies (depend-

ing on the results), but also for product procurement,

inventory, and distribution strategies for the entire

store chain.

An Apriori-like algorithm is developed for mining

chain-store association rules. A simulation is used to

empirically compare the proposed and traditional

association-rule mining methods. Three factors are

considered in generating stores’ sales data: (1) the

numbers of stores and periods, (2) the store size, and

(3) the product replacement ratio. The analysis of the

simulation result suggests that the proposed method

has advantages over the traditional method especially

when the numbers of stores and periods are large,

stores are diverse in size, and product mix changes

rapidly over time. Furthermore, the time complexity

of the proposed algorithm is discussed, and the

simulation results show that the algorithm is compu-

tationally efficient.

Store-chain association rules represent a promising

research area in data mining. The results of this paper

can be extended by considering time constraints,

spatial constraints, quantitative attributes and/or tax-

onomy, and other kinds of time- or location-related

knowledge. Furthermore, it is important to explore the

strategies of generating the store-chain association

rules incrementally, in an on-line model, in a distrib-

uted environment, or in parallel models.
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Appendix A

The support values and the confidence values

obtained by the traditional association mining are

underestimated, compared with the true value dis-

cussed in this paper. First, it is easy to see that the

traditional support value is lower because its base is

larger. As to the confidence value, say conf(XZ Y),

the traditional approach defines it as follows.

conf ðXZY Þ
¼ supðX [ Y ;DÞ=supðX ;DÞ
¼ ½AW ðX [ Y ;DÞA=ADA
=½AW ðX ;DÞA=ADA

¼ AW ðX [ Y ;DÞA=AW ðX ;DÞA: ðA1Þ

But the correct one should be

conf ðXZY Þ
¼ rel supðX [ Y ;DVX[Y Þ=rel supðX ;DVX[Y Þ
¼ ½AW ðX [ Y ;DVX[Y ÞA=ADVX[YA


=½AW ðX ;DVX[Y ÞA=ADVX[YA

¼ AW ðX [ Y ;DVX[Y ÞA=AW ðX ;DVX[Y ÞA ðA2Þ

By comparing Eq. (A1) with Eq. (A2), we find that

the numerators are the same, because it is not possible

that X[Y appears in a transaction not in DVX[Y
, and

that the denominator of Eq. (A1) is no less than that

of Eq. (A2), because AW(X, D)AzAW(X, DVX[Y
)A.

Thus, we conclude that the confidence value of Eq.

(A1) is no larger than that of Eq. (A2).
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