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ABSTRACT

The quality of an approximate solution for combinatorial optimization problems with a single objective can
be evaluated relatively easily. However, this becomes more difficult when there are multiple objectives. One
potential approach to solving multiple criteria combinatorial optimization problems when at least one of the
single objective problems is NP-complete, is to use an a posteriori method that approximates the efficient
frontier. A common difficulty in this type of approach, however, is evaluating the quality of approximate
solutions, since sets of multiple solutions should be evaluated and compared. This necessitates the use of a
comparison measure that is robust and accurate. Furthermore, a robust measure plays an important role in
metaheuristic optimization for “tuning” various parameters for evolutionary algorithms, simulated annealing,
etc., which are frequently employed for multiple criteria combinatorial optimization problems. In this paper,
the performance of a new measure, which we call Integrated Convex Preference (ICP) is compared to that of
other measures appearing in the literature through numerical experiments—specifically, we use two a posteriori
solution techniques based on genetic algorithms for a bi-criteria parallel machine scheduling problem and
evaluate their performance (in terms of solution quality) using different measures. Experimental results
show that the ICP measure evaluates the solution quality of approximations robustly (i.e., similar to visual
comparison results) while other alternative measures can misjudge the solution quality. We note that the ICP
measure can be applied to other non-scheduling multiple objective combinatorial optimization problems, as
well.
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1. INTRODUCTION

Multiple criteria combinatorial optimization problems have received relatively little attention com-
pared to single criterion combinatorial optimization problems in the literature. However, multiple
objective optimization has become more important in today’s competitive environment where con-
tinuous improvement along all fronts is essential to business success. Manufacturing operations
must constantly choose a good alternative considering conflicting criteria such as maximizing
throughput and minimizing cycle time, or minimizing WIP (work in process) inventory and maxi-
mizing on time delivery. As such, job scheduling is an area that requires optimization of conflicting
performance criteria for most manufacturers. A scheduling solution that minimizes makespan will
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not necessarily minimize the total weighted tardiness. Using methods to solve these types of prob-
lems expeditiously can be a key to maintaining a company’s profitability or market share.

Many single criterion scheduling problems are NP-hard due to their inherent combinatorial
nature and complicated problem structures (Pinedo, 1995). When multiple criteria are considered,
these problems become even more difficult to solve optimally. In fact, for conflicting objectives, it is
hard to even say what “optimal” means. As Fry, Armstrong, and Lewis (1989) pointed out, general
combinatorial optimization techniques such as branch and bound and dynamic programming
methods have limitations when applied to practical problems (e.g., number of jobs is more than 20
or 30). Thus, an approximate solution approach is a proper way to attack these real sized multiple
criteria scheduling problems.

Until the early 90’s, multiple criteria scheduling research was almost exclusively focused on sin-
gle machine problems (Fry, Armstrong, and Lewis, 1989; De, Ghosh, and Wells, 1992; Lee and
Vairaktarakis, 1993; Nelson, Sarin, and Daniels, 1986). From the middle of the 90’s, research has
been extended to more complicated multiple criteria scheduling problems such as parallel ma-
chine scheduling problems with sequence dependent setups (Cochran, Horng, and Fowler, 2003;
Serifoglu and Ulusoy, 1999; Tuzikov, Makhaniok, and Manner, 1998) and flow shop schedul-
ing problems with sequence dependent setups (Marett and Wright, 1996; Murata, Ishibuchi, and
Tanaka, 1996). In these cases, each single objective problem is NP-hard (Pinedo, 1995). Hence the
multiple criteria problems are clearly NP-hard. Many approximate algorithms such as genetic algo-
rithms, simulated annealing, tabu search, and filtered beam search are introduced in the literature
(Cunha, Oliveira, and Covas, 1997; Fonseca and Fleming, 1993; Loughlin and Ranjithan, 1997;
Louis and Rawlins, 1993; Schaffer, 1985) to solve multiple criteria combinatorial optimization
problems, including scheduling problems. The majority of these algorithms take an a posteriori
approach. A posteriori approaches attempt to generate exact or approximate efficient solutions.
The decision maker then selects the most preferred solution from the efficient solutions. This kind
of solution approach is well suited to complicated scheduling problems. Hence research to develop
more effective and robust algorithms for multiple criteria scheduling problems is needed.

In this case, however, evaluating the solution quality of competing algorithms or algorithms with
different parameter sets, is not easy, since the “solution”, which is an approximation of the efficient
frontier is a set of near Pareto-optimal solutions (also called non-dominated solutions, efficient
solutions) in the objective space. When the set of all true non-dominated solutions (i.e., efficient
frontier) can be generated by competing algorithms, their performance can be compared by the
computational effort needed to solve the same problem instance as is done in the single objective
case. However, computational effort is not sufficient to compare competing algorithms when the
true set of Pareto-optimal solutions cannot be obtained in a reasonable amount of time. This is
the case for most multiple criteria scheduling problems. To compare the performance of heuristic
algorithms, one approach is to run competing algorithms for the same amount of computational
effort (CPU time or number of evaluations) and then compare the quality of solutions. Another
approach is to run each algorithm to its own stopping criteria and then compare both solution
quality and computational effort (Schaffer, 1985). In both cases, robust and efficient methods to
compare the quality of sets of near Pareto-optimal solutions are required. We note that equating
the CPU time of different algorithms can be impacted by different coding methods and data
structures; thus this may not be a perfect comparison.

However, there seems to be no generally accepted measure(s) in the multiple criteria optimization
literature, as pointed out in Carlyle et al. (2003). This is primarily due to the difficulties in comparing
the various geometric features of sets of near Pareto-optimal solutions. These difficulties include
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the fact that a non-identical number of non-dominated solutions are generated by heuristics and
the fact that heuristics generate non-identical tail points (extreme solutions for each objective).
Often, only visual comparison of alternative sets of Pareto-optimal solutions is employed in bi-
criteria optimization problems. However, visual comparison is not efficient, since typically many
experiments are required to verify the effectiveness and robustness of heuristic algorithms. Hence,
a new measure called Integrated Convex Preference (ICP), was proposed in Carlyle et al. (2003) to
evaluate the quality of sets of Pareto-optimal solutions efficiently. Carlyle et al. (2003) provides a
more detailed description of the theoretical development and properties of ICP. In this paper, the
robustness and efficiency of the ICP measure for comparing a posteriori solution techniques are
examined through extensive experiments using a bi-criteria parallel machine scheduling problem.
These results are followed by a discussion on the properties of ICP based on the analysis of the
experimental results.

The ICP has some similarities with Data Envelopment Analysis (DEA). Both methods assume
weighted sum objective functions (outputs), do not determine a specific weight for each objective
(output) a priori, and consider all envelopment points as efficient. Thus both methods require an
efficient way to find all envelopment points from a given set of non-dominated solutions (Decision
Making Units). However DEA and ICP have different purposes (i.e., DEA measures the relative
efficiency of decision making units (DMUs) in the presence of multiple inputs and outputs and
sets targets for inefficient DMUs), and thus need different methods or algorithms. For example,
a method to find the optimal weight region for each envelopment point in weight space and
integration over the optimal weight region are essential for ICP to evaluate the solution set quality
(the decision maker’s expected value for the set). However, these calculations are not needed in
DEA.

In the next section, the literature concerning solution techniques for multiple criteria scheduling
problems and the measures used to compare sets of Pareto-optimal solutions are reviewed. Then,
a summary of the ICP measure is presented, which is followed by the experimental scheme used to
compare alternative heuristics. The results are then discussed in the experimental results section
and ICP properties are discussed. Finally, conclusions and future research topics are provided.

2. LITERATURE REVIEW

In this section, two topics are reviewed. First, solution approaches for multiple objective op-
timization problems are reviewed, with particular emphasis on methods for multiple objective
scheduling problems. This is followed by the measures appearing in the literature to compare the
solution quality of sets of Pareto-optimal solutions.

2.1. Solution approaches for multiple objective optimization problems

The majority of solution approaches for multiple criteria scheduling problems that have ap-
peared in the literature can be divided into two categories (Fry, Armstrong, and Lewis, 1989). The
first category is ‘a priori’ solution approaches, which assume that the decision maker’s preference
information, such as a priority, weight, or goal (target) for each criterion, can be obtained before
the solution procedure starts. A good example of an objective priority method is found in Lee and
Vairaktarakis (1993), which dealt with bi-criteria single machine scheduling problems. The authors
assumed that the priority of each objective is given and that the second objective is optimized sub-
ject to the constraint that the first criterion meets its minimum value. The paper provides the proof
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of NP completeness or provides polynomial time algorithms for almost all pairwise combinations
of performance criteria considered in the literature. Applications of an objective weighting method
can be found in Serifoglu and Ulusoy (1999) and Marett and Wright (1996). Serifoglu and Ulusoy
(1999) suggested a genetic algorithm to solve the problem of Qm |s jk| wE� Ej + wT� Tj . They
consider two types of machine groups, identical and proportional. In Marett and Wright (1996),
compare a tabu search method to a simulated annealing method to solve the problem of F3 |prmu,
s jk| (1) Cmax, (2) total setup cost, (3) total holding time (job waiting), (4) total late time (machine
idle), for 30 jobs. They assume that the weight of each objective is given, and the objective function
is linear.

The second category is a posteriori solution approaches where the decision maker’s preference is
not considered in advance of the solution methods. The decision maker eventually selects the single
best solution. Nelson, Sarin, and Daniels (1986) suggested an optimal algorithm (non-polynomial
time) for a single machine with the following pairs of performance measures; (1) mean flow time
and number of tardy jobs; (2) number of tardy jobs and maximal tardiness; and (3) mean flow time
and maximal tardiness. De, Ghosh, and Wells (1992) suggested an approximate algorithm (filtered
beam search) to generate a set of efficient extreme solutions for a single machine problem with
mean and variance of completion times criteria. They assumed that the scalar objective function
is a convex combination of objectives and the weight of each objective is unknown. Due to the
convex combination of objectives assumption, only the efficient extreme points in the objective
space are obtained. Tuzikov, Makhaniok, and Manner (1998) suggested an optimal polynomial
time algorithm to generate a set of non-dominated solutions for Qm |p j = p, r j | (1) �ϕ j (c j (S)),
(2) max{ψ j (c j (S))}, where ϕ j (c j (S)) and ψ j (c j (S)) are regular (non decreasing) cost functions
for the completion time of job j . The problem is to schedule jobs with identical processing times
on a uniform processor.

Genetic algorithms are often applied to multiple criteria optimization problems to generate a set
of near Pareto-optimal solutions in a reasonable amount of computational effort. Schaffer (1985)
proposed the Vector Evaluated Genetic Algorithm (VEGA) method to find a set of near Pareto-
optimal solutions for general multiple objective problems. In this method, a population is divided
into disjointed sub-populations and each sub-population is optimized with respect to one of the
objectives. This method, by the nature of its ‘disjointing approach (vector optimization)’, tends to
form the extreme solutions of the approximate efficient frontier since its search is unidirectional.
The lack of a combined search in the Pareto-optimal solution set will naturally restrict the decision-
maker’s choices. Murata, Ishibuchi, and Tanaka (1996) proposed the Multi-Objective Genetic
Algorithm (MOGA). MOGA selects individuals for a crossover operation, based on a weighted
sum of linear objective functions with variable weights, which are not constant but are randomly
specified for each generation. With these variable weights, MOGA searches in various directions.
The method generally produces more diverse Pareto-optimal solutions, enabling the decision maker
a broader choice of solutions. They applied MOGA to solve a multiple criteria flow shop scheduling
problem, F10 |prmu| (1) Cmax, (2)

∑
w j Tj , (3)

∑
w j Cj , for 20 jobs and compared the solution

quality of a set of near Pareto-optimal solutions generated by MOGA to that generated by VEGA.
They showed that MOGA generates a better approximate efficient frontier than VEGA by visual
comparison.

Cochran, Horng, and Fowler (2003), proposed the hybridized Multi-Population Genetic Al-
gorithm (MPGA) to solve multiple criteria parallel machine scheduling problems with sequence
dependent setups, P5 |s jk, r j | (1) Cmax, (2)

∑
w j Tj , (3)

∑
w j Cj , for 100 jobs. In their study, a genetic

algorithm is hybridized with dispatching rules. The GA is used to assign jobs to machines, and
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dispatching rules such as setup avoidance and apparent tardiness cost with setups rules (Pinedo,
1995), are used to schedule the individual machines. The method consists of two stages. In the first
stage, multiple objectives are combined as the multiplication of the relative objective functions.
In the second stage, the solutions of the first stage are rearranged and divided into several sub-
populations, which are the initial populations of the second stage. Each sub-population evolves
separately (similar to the VEGA approach). They also sought to find the best time to change
between the two stages (called the turning point). MPGA outperformed MOGA when comparing
them by the number of Pareto-optimal solutions and the number of combined Pareto-optimal
solution measures, which will be defined in the next section (Cochran, Horng, and Fowler, 2003).

2.2. Comparison methods used in the literature

The methods to compare the solution quality of approximate algorithms used in the litera-
ture belong to four main groups. The first group involves the visual comparison of the sets of
non-dominated solutions using graphical displays of the solution points in the objective space
(Murata, Ishibuchi, and Tanaka, 1996; Cieniawski, Eheart, and Ranjithan, 1995). Although this
method can compare solution sets of various shapes effectively, it can only be used for bi-criteria
optimization problems and it is especially inefficient when a large number of numerical experiments
(or replications) need to be performed. Also, such a method clearly cannot be embedded into an
algorithm that automatically selects the best heuristic from among many alternative procedures
or the best set of heuristic parameters from among a set of possible choices.

The second group of measures focuses on geometric features of the solution sets plotted in the
objective space. Measures in this group include (1) length and area measures (De, Ghosh, and
Wells, 1992) and (2) distance measures (Czyzak and Jaszkiewicz, 1998; Viana and Sousa, 2000).
The length and area measures proposed by De, Ghosh, and Wells (1992) can only handle problems
with two objectives and are not applicable when the solution set contains only one or two points.
Although the distance measures evaluate the approximate solution set on the characteristics of
diversity (coverage), uniformity and closeness defined in Carlyle et al. (2003) to the true set of
Pareto-optimal solutions, they are not applicable when the true set of solutions is not available,
which is often the case in scheduling problems.

The third group of comparison techniques uses the cardinality of the set of Pareto-optimal
solutions. The measures in this group are (1) the number of Pareto-optimal solutions and (2)
the number of combined Pareto-optimal solutions (Cochran, Horng, and Fowler, 2003; Schaffer,
1985; Hyun, Kim, and Kim, 1998). To obtain the number of combined Pareto-optimal solutions,
all non-dominated solutions are compared together with respect to the Pareto-optimal criterion. If
any solution is dominated, then it is discarded. After that the number of non-dominated solutions
found by each algorithm is counted. While the number of generated solutions is important, it
certainly cannot determine the solution quality quantitatively.

The fourth group uses the value (utility) function of the decision maker to obtain a scalar
value of a set of Pareto-optimal solutions. Daniels (1992) suggested two measures, maximum
and average approximation error (ε) of the discrete approximation from true efficient solutions
under the assumption of a linear weighted sum utility (value) function. These measures and the
ICP measure suggested in Carlyle et al. (2003) are similar in the sense that both methods utilize an
assumption on the decision maker’s value (unknown) function in evaluating the solution quality of
multiple objective heuristics. However, Daniels’ methods evaluate the solution quality of heuristics
based on the known discrete true efficient frontier. Hence, they are similar to geometric measures
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in the sense that they are not applicable when the true set of solutions is not available, whereas
ICP is designed for such cases. Hansen and Jaszkiewicz (1998) suggested three types of measures –
probability difference, expected value difference, and relative ratio. The probability difference (R1)
measure is obtained from the cumulative probability that Set-1 gives a better solution than Set-2,
and vice versa. The expected value difference (R2) measure is similar to the difference between
ICP values. The relative ratio (R3) measure is the same as the average approximation error (ε)
in Daniels (1992). They assumed that p(u) is the probability that utility function, u, is held by
the decision maker. The authors also note that these three methods can be applied whether true
efficient solutions are known or not. However they did not provide exact calculation methods
for the three measures due to the difficulty of the high dimensional integration of smooth or
non-smooth functions. Instead, the approximate method of sampling a set of utility functions
according to its distribution is suggested in Hansen and Jaszkiewicz (1998). In comparison, ICP is
an exact method to obtain a scalar value of a set of near Pareto-optimal solutions when a convex
combination of objective functions is assumed.

3. INTEGRATED CONVEX PREFERENCE (ICP)

The basic concept of ICP begins with the fact that the most preferred single solution among
feasible solutions would be eventually selected by the decision maker(s), regardless of the employed
solution approach: a priori, interactive, or a posteriori. To select the most preferred solution among
the feasible solutions, the decision maker applies his/her value function. Hence, we seek to use
this value function approach in comparing the quality of sets of near Pareto-optimal solutions.
ICP is, in short, the expected value or utility of a set of Pareto-optimal solutions for an assumed
value function. The exact extraction of the value function of the decision maker is difficult and
this is a research area itself. Hence, the most frequently used value function, a convex combination
(weighted sum) of objective functions, is assumed in this paper to obtain ICP for a set of Pareto-
optimal solutions although other types of value functions can be incorporated.

3.1. Integrated convex preference (ICP)

Consider a bi-criteria minimization problem. When the decision maker’s preference can be
represented as a convex combination of linear objective functions with varying weights, then an
optimal solution x∗ is selected by min j∈J{w f1 j + (1 − w) f2 j }, where J is a set of non-dominated
solutions, fi j is the i th objective value of the j th non-dominated solution, and w is in the interval
(0, 1). In Figure 1, for example, five efficient extreme points (lower-envelope points) are candidates
for an optimal solution among the nine Pareto-optimal points. If the decision maker’s preference
(i.e., weight) for objective 1, w, equals 0, then the non-dominated point p1 is the optimal solution
since the decision maker only considers objective 2. If w equals 0.5 (both objectives are equally
important), then p2 will be the optimal solution. If w equals 1.0 then p3 is the optimal solution.
As shown in Figure 1, the weight interval for which an efficient extreme point p2 is optimal can be
obtained by a polar cone. This polar cone can be generated by the orthogonal vectors of the faces,
which contain p2. Then, ICP is obtained by Eq. (1).

ICP =
∫ 1

0
min
j∈J

{w f1 j + (1 − w) f2 j } dw. (1)
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Figure 1. Optimal weight range for each efficient extreme solution in the objective space

The first step to obtain ICP is to find all efficient extreme points from a given set of Pareto-
optimal solutions. This is the well-known convex hull problem (i.e., find all extreme points among
a set of given points). A pseudo code for a convex hull algorithm in bi-criteria problems is provided
below.

� Sort the ( f1, f2) points in increasing order of f2 value;
/* Finding an adjacent extreme point sequentially */

� Let starting point ( f 0
1 , f 0

2 ) be the first point in the sort list;
� Do until the last point in the sort list is selected as an adjacent point.
� Calculate the slope between the starting point ( f 0

1 , f 0
2 ) and all the remaining points;

� Assign an adjacent point, which has the minimum slope to be the adjacent extreme point;
� Delete the non-extreme points between the starting point and the adjacent extreme point
� Assign adjacent extreme point to be the new start point ( f 0

1 , f 0
2 );

The second step is to calculate the weight intervals within which each extreme point is an optimal
solution for a convex combination of the objective functions. There are several methods to obtain
these optimal weight intervals (details can be found in Carlyle et al. (2003)). One of the efficient
ways for the bi-criteria case is provided here, which can also be applied to more than two objective
cases. Assume n efficient extreme solutions f•i , i = 1, 2, . . . , n are obtained from Step 1. Then a
system of linear inequalities can be generated for each efficient extreme solution as Eq. (2).

{wf 1i + (1 − w) f2i } − {wf 1k + (1 − w) f2k} ≤ 0, i �= k, k ∈ K, (2)

where K is the set of adjacent efficient extreme points of f•i .
The system of inequalities above is derived from the fact that if a solution f•i is an optimal

solution for a convex combination of objectives, then there should be a weight w for which w f1i +
(1 − w) f2i is less than or equal to that of all other solutions. In a bi-criteria optimization problem,
every efficient extreme point has two adjacent extreme points except for the two tail points. Thus,
two linear inequalities can be generated from these two adjacent extreme points. The two linear
inequalities give the lower and upper bounds on the optimal weight interval. The two tail points
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have one adjacent extreme point, which gives a bound on the optimal weight interval. And the
other bound is 0 or 1 since w is assumed to belong to (0, 1). Then the optimal solution f ∗ in the
objective space can be decomposed as a function of w as in Eq. (3).

f ∗(w) =




(w f11 + (1 − w) f21), 0 ≤ w ≤ w1

(w f12 + (1 − w) f22), w1 ≤ w ≤ w2

· · · · · ·
(w f1n + (1 − w) f2n), wn−1 ≤ w ≤ 1


 , (3)

where wi means the breakpoint for the range of w for which extreme solution i is optimal.
Finally, ICP for a given set of Pareto-optimal solutions can be obtained by Eq. (4).

ICP =
∫ 1

0
f ∗(w) dw

=
∫ w1

0
(w f11 + (1 − w) f21) dw +

∫ w2

w1

(w f12 + (1 − w) f22) dw

+ · · · +
∫ 1

wn−1

(w f1n + (1 − w) f2n) dw (4)

3.2. Integrated convex preference with triangular weight function (ICP T)

The decision maker(s) typically does not know his or her weight value for each objective pre-
cisely, but is able to specify some relations between weights. In comparing sets of Pareto-optimal
soluitions, one practical assumption is that the decision maker wants to give more weight to so-
lutions that are well compromised (good for both criteria: elbow solutions) than to solutions that
are only good for one objective (tail solutions). This consideration can be modeled as a weight
density function such as a triangular weight function. The ICP described earlier can be considered
to have a uniform weight function. As shown in Figure 2, a set of Pareto-optimal solutions which
has better solutions in the elbow area and worse solutions in the tail areas, may be preferred by a

Figure 2. Comparison of two sets of Pareto-optimal solutions by ICP with a uniform weight function and a triangular
weight function



EVALUATING SOLUTION SETS OF A POSTERIORI SOLUTION TECHNIQUES 83

decision maker over a set of Pareto-optimal solutions which has worse solutions in the elbow area
and better solutions in both tail areas. In Figure 2, the circle shaped solutions have a lower ICP
(i.e. are preferred) when compared to ICP with a uniform weight function. On the other hand, the
rectangular shaped set of Pareto-optimal solutions has a lower ICP when compared to ICP with
a triangular weight function. A detailed calculation procedure of ICP T can be found in Carlyle
et al. (2003).

3.3. Integrated convex preference with scaled objective values (ICP * S)

As stated before, the ICP uses a blended value function (unknown) to represent the preference
of the decision maker. When objectives are incommensurable like number of tardy jobs and total
completion time, it is hard to interpret a blended objective value. Also, when the difference between
the ranges of each objective value is so large that one objective value overwhelms the other objective
value, proper scaling is clearly needed. In our study, the range of total weighted tardiness is much
larger than that of makespan. As Schenkerman (1990) suggested, minimum and maximum values
in sets of Pareto-optimal solutions are used in scaling each objective value as shown in (5). The
same scaling method is employed in De, Ghosh, and Wells (1992) to compare sets of Pareto-optimal
solutions with area and length measures:

(g1i , g2i ) =
[

{ f1i − mini∈I ( f1i )}
{maxi∈I ( f1i ) − mini∈I ( f1i )}

]
,

[
( f2i − mini∈I ( f2i ))

(maxi∈I ( f2i ) − mini∈I ( f2i ))

]
, (5)

where ( f1i , f2i ) are the non-scaled objective values of non-dominated solution i , (g1i , g2i ) are the
scaled objective values of non-dominated solution i , and mini∈I ( f j i ) (maxi∈I ( f j i )) = minimum
(maximum) f•i among all f•i ’s in competitive sets of Pareto-optimal solutions

4. EXPERIMENTAL SCHEME

To test the ICP measure, a multiple criteria parallel machine scheduling problem studied by
Cochran, Horng, and Fowler (2003) is used. Extensive experimental results for the solution quality
of two competing a posteriori solution techniques are reported. A summary of the experimental
scheme is presented for the convenience of readers, even though details about the experiments can
be found in Cochran, Horng, and Fowler (2003).

4.1. Test problem description

A parallel machine scheduling problem with sequence dependent setups is considered. A setup
is required if the next job on the same machine has a different family. 100 jobs with 4 different
families are scheduled on five identical machines. Two objectives are optimized simultaneously.
The first objective is the makespan, defined as max {C1, C2, . . . , Cn}, where Cj is the completion
time of job j . The second objective is the total weighted tardiness (TWT), defined as TWT =∑n

j=1 w j Tj , where Tj = max {0, Cj − d j} and d j is the due date of job j . Thus, the problem can
be represented as P5|s jk, r j |Cmax,

∑
w j Tj , with 100 jobs. As shown in Table 1, four factors are

used to generate the 100 jobs. A total of 36 problem instance sets can be generated using the four
factors. Ten problem instances are generated randomly in each set, resulting in 360 test problem
instances. All problem instances are solved 10 times due to the inherent randomness of the genetic
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Table 1. Four factors and levels to generate 36 (22 × 32) problem instance sets

Factors Levels Description

Range of weights 1 (Narrow) U (1, 10)

2 (Wide) U (1, 20)

Range of due dates 1 (Narrow) Ready time + U (−1, 2) × total process time.

2 (Wide) Ready time + U (−2, 4) × total process time.

Ratio ( p̄/s̄) 1 (High) 50/10, p = 50 + U(−9, 9), s = U(6, 14).

2 (Moderate) 30/30, p = 30 + U(−9, 9), s = U(18, 42).

3 (Low) 10/50, p = 10 + U(−9, 9), s = U(30, 70).

WIP status 1 (High) All jobs are ready at time 0

2 (Moderate) 50% of jobs are ready at time 0
and the others are ready at time U(0, 720)

3 (Low) All jobs are ready at time U(0, 720)

Notes : U (a, b): Discrete random number generated from uniform distribution.
p̄: Average process time.
s̄: Average setup times.
Average setup times of job j : (1/4) × (�sik), where sik is the setup time from a job of family i to a job
of family k, i is the family of job j , and k = 1, 2, 3, 4.
Due dates are determined after ready times, processing times and setup times have been generated.

algorithms. Two genetic algorithms, MOGA (Murata, Ishibuchi, and Tanaka, 1996) and MPGA
(Cochran, Horng, and Fowler, 2003), described in the literature review section are tested for all
problem instances.

4.2. Parameter settings for each algorithm

In Cochran, Horng, and Fowler (2003), preliminary experiments were performed to find the best
parameter settings for both genetic algorithms, since the performance of each genetic algorithm
is dependent on the parameter settings used. We use the same parameter settings as in Cochran,
Horng, and Fowler (2003), listed as follows:

� Crossover probability: 0.6
� Mutation probability: 0.01
� Population size: 20
� Elitism: three elite solutions are selected from the tentative set of non-dominated solutions
� Stopping criteria: 5000 generations
For MPGA, the turning criterion is set at the 2000th generation. After the turning criterion

has been reached, the population is divided into three sub-populations, one for each of the two
objectives and one for the combined objective function.

4.3. Measures to compare MPGA with MOGA

To provide evidence on which measure gives reasonable and robust comparison results for
sets of near Pareto-optimal solutions, the measures in the literature and the different types of
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ICP measures need to be tested. However, the geometrical comparison methods outlined in the
literature review section (De, Ghosh, and Wells, 1992; Czyzak and Jaszkiewicz, 1998; Viana and
Sousa, 2000; Daniels, 1992) are not applicable because there exist no efficient algorithms to generate
the true set of Pareto-optimal solutions for the scheduling problem considered. Thus, the methods
we experiment with are restricted to the following four: (1) visual comparison, (2) the number
of Pareto-optimal solutions (# of POS), (3) number of combined Pareto-optimal solutions (# of
CPOS), and (4) ICP. In ICP measures, four types of ICP measures—uniform weight function with
scaling (ICP U S), triangular weight function with scaling (ICP T S), uniform weight function
without scaling (ICP U), and triangular weight function without scaling (ICP T) are considered.

There are three types of comparison methods using the ICP. The first one is to compare the ICP
values directly. This method is useful when several sets of Pareto-optimal solutions (several heuris-
tics) need to be compared simultaneously. A set of solutions with the minimum ICP value can then
be considered as the best set of solutions among the alternatives. Also, when parameter optimiza-
tion (tuning) is performed through an experimental design and response surface optimization, ICP
values can be used as a response value. The second method is the ICP difference between two sets
of Pareto-optimal solutions (two heuristics). When pairwise comparison is needed, ICP difference
can be used to determine which set of Pareto-optimal solutions has better solution quality, by the
sign of the difference between ICP values. The magnitude of ICP difference represents the quan-
titative difference between two solution sets. A third method of comparison is the ratio of ICP
values (e.g., ICP(A)−ICP(R)

ICP(R) or ICP(A)
ICP(R) , where R is a reference set and A is an approximate set). When

a reference set of solutions such as a set of true Pareto-optimal solutions is known, the ratio of
ICP can provide useful information about the solution quality of heuristics based on the solution
quality of the reference set. In this paper, two heuristics are compared and no reference sets are
available, hence, ICP difference is used.

5. DISCUSSION OF EXPERIMENTAL RESULTS

Table 2 contains the experimental results of four types of ICP measures and two types of cardi-
nality measures for 36 problem instance sets. The ‘Problem instance set’ column represents the
combination of levels of four factors. For example, ‘1111’ means that level ‘1’ is used to generate
100 jobs for all four factors in Table 1. Values in the four ‘ICP *’ columns represent the number
of wins of MPGA (over MOGA) out of 100 comparisons (10 randomly generated problem in-
stances * 10 replicates) in using the corresponding ICP measure. In the ‘# Pareto-optimal’ column,
the average number of Pareto-optimal solutions generated by MPGA and MOGA are shown re-
spectively. In the ‘# Combined Pareto’ column, the average combined number of Pareto-optimal
solutions generated by MPGA and MOGA are shown. In the ‘Total’ row, values in the four ‘ICP’
columns indicate the number of wins of MPGA out of 3,600 comparisons and values in the last
four columns indicate the sum of the average number of Pareto-optimal and combined solutions
for MPGA and MOGA, respectively. Finally, in the ‘Ratio’ row, values are the ratio of the number
of wins of MPGA out of the total number of comparisons.

The first thing to notice in Table 2 is that all ratio values are greater than or equal to 0.5. This
means that MPGA outperforms MOGA in overall performance. This result is consistent with
the results in Cochran, Horng, and Fowler (2003). However, comparison results (total number of
wins) are much different depending on the measure used. When the number of Pareto-optimal
solutions is used, MPGA wins in all 36 problem instance sets. When ICP U, ICP T, and combined
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Table 2. Number of wins (0.5 for a tie) of MPGA out of 100 comparisons in each 36 problem instance set

# Pareto-optimal # Combined Pareto
Problem

instance set ICP U ICP U S ICP T ICP T S MPGA MOGA MPGA MOGA

1111 62 50 62 47 11.9 9.4 6.6 5.2

1112 67 61 67 57 12.0 9.5 8.2 4.2

1113 81 77 81 75 10.7 8.4 7.9 2.5

1121 55 47 55 43 11.7 8.8 6.0 5.4

1122 65 56.5 65 56.5 5.7 4.6 3.5 1.9

1123 66 62 66 60 7.0 5.4 4.4 2.3

1131 52 46 52 42 12.6 8.6 5.8 5.6

1132 44 42 44 41 1.8 1.2 0.6 0.7

1133 58 44 58 43 2.9 1.9 1.2 1.1

1211 59 53 60 53 12.0 9.7 7.3 4.7

1212 70 62 70 62 14.1 9.5 9.5 4.0

1213 84 69 84 66 10.8 8.9 7.9 3.0

1221 57 45 57 39 11.4 9.2 6.0 5.4

1222 73 60 73 57 6.7 4.8 3.9 2.0

1223 71 55 71 53 7.9 5.3 5.0 2.5

1231 52 49 52 45 12.5 9.5 5.7 6.1

1232 54 49 54 47 2.1 1.3 0.8 0.7

1233 48 38 50 35 4.3 1.9 1.5 1.3

2111 58 53 58 52 12.2 8.9 6.6 4.8

2112 76 71 76 71 13.3 9.4 9.7 3.7

2113 72 62 72 60 11.5 8.8 7.1 3.7

2121 64 54 64 52 11.9 8.7 6.7 4.5

2122 74 62.5 74 61.5 5.7 4.8 3.7 1.4

2123 63 55 63 52 8.1 5.4 4.5 2.7

2131 55 41 55 39 12.6 9.3 6.0 6.0

2132 51 47 51 47 1.6 1.3 0.7 0.7

2133 62 44 63 43 3.3 2.0 1.3 1.1

2211 53 51 54 46 12.4 9.3 6.9 4.9

2212 82 73 82 69 13.8 9.4 10.7 3.2

2213 80 74 80 73 11.9 9.2 8.9 3.0

2221 59 49 59 43 11.7 8.6 6.5 4.7

2222 73 65 73 64 7.5 5.2 5.0 1.8

2223 60 49 60 48 8.5 5.6 4.7 2.9

2231 45 45 45 45 12.9 9.6 6.1 6.0

2232 45 41 46 39 1.9 1.3 0.7 0.8

2233 59.5 39.5 59.5 39.5 4.2 2.0 1.8 1.0

Total 2249.5 1941.5 2255.5 1865.5 323.1 236.7 189.4 115.5

Ratio 0.62 0.54 0.63 0.52 1.00 0.89
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Pareto-optimal solutions are used, MPGA wins 32 times out of 36 problem instance sets. When
ICP U S is used, however, MPGA only wins 19 times out of 36 comparisons. MPGA and MOGA
are tied (each wins 18 times) when ICP T S is used.

To verify the effectiveness of the six measures used in evaluating the quality of sets of near Pareto-
optimal solutions with various shapes, a detailed investigation for randomly selected problem
instances is performed. Problem instance set 2212 is randomly selected among the 36 sets. Two
problem instances, the best one for MPGA and MOGA, are selected in that problem instance set
to analyze the performance of the measures considered.

At first, visual comparison is performed as a baseline due to the lack of a standard measure(s).
Then, the performances of all other numerical measures are compared to the visual comparison
results. To avoid the subjectivity involved in visual comparison, the set Pareto dominance relation
(see Definition 1 in the next section) is used. If solutions in Set-1 dominate all of the solutions in Set-
2 visually (clear cases), then Set-1 is judged to be a winner, and vice versa. If Set-1 and Set-2 cross
each other (not-clear cases), then visual comparison will not decide the winner. Visual comparisons
of sets of near Pareto-optimal solutions generated by MPGA and MOGA for problem instance
set 2212 are shown in Figures 3 and 4. Visual comparison results by graph, four ICP measures,
and two cardinality measures for Figures 3 and 4 are provided in Tables 3 and 4, respectively.

In Tables 3 and 4, the visual comparison columns document the visual comparison results. In
‘clear cases’, the name of the algorithm that is decided as a winner is represented and a ‘−’ represents
the ‘not-clear’ cases. Numbers in the four ‘ICP *’ columns represent the ICP difference between
two sets of Pareto-optimal solutions by MOGA and MPGA. A positive value means that MPGA
is evaluated as a winner, and vice versa for a negative value. In the cardinality number measure

Figure 3. Visual comparison of MPGA with MOGA—best case for MPGA in problem instance set 2212 (‘o’ represents
solutions of MPGA and ‘−’ represents solutions of MOGA. X-axis is makespan from 1,000 to 1,300 time units and each
grid line is 100 time units. Y-axis is total weighted tardiness from 200,000 to 350,000 time units and each grid line is 30,000

time units)
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Figure 4. Visual comparison of MPGA with MOGA—best case for MOGA in problem instance set 2212. (‘o’ represents
solutions of MPGA and ‘−’ represents solutions of MOGA. X-axis is makespan. Y-axis is total weighted tardiness)

columns, the number of Pareto-optimal solutions and the combined number of Pareto-optimal
solutions are represented.

By visual comparison of the 10 graphs in Figure 3, we can see that MPGA generates better
Pareto-optimal solutions, except in Replication 9. MPGA and MOGA generate similar solutions
for the makespan objective, but MPGA outperforms MOGA for the total weighted tardiness
objective. In Figure 4, MPGA wins four times in visual comparison. In both figures, the objective
value range difference between makespan and total weighted tardiness is significant. For example,
the makespan objective values range from 1,000 to 1,300, and the total weighted tardiness objective
values range from 200,000 to 350,000 in Figure 3. Hence, the makespan objective is overwhelmed
by total weighted tardiness in non-scaled ICP measures (ICP U and ICP T). In this case, the scaled
ICP can provide more reasonable comparison results.

An analysis of Tables 3 and 4 shows that the number of Pareto-optimal solutions cannot be
used alone since it does not reflect the overall solution quality of the set. Consider, for example,
Replicate-6 in Table 4. MPGA would be preferred over MOGA if the number of Pareto-optimal
solutions is used (21 vs. 13). However, from a visual comparison (see Replicate-6 in Figure 4)
MOGA appears to be better than MPGA in this case, even though both Pareto-fronts cross each
other.

The number of combined Pareto-optimal solutions provided the same results that visual compar-
ison did in all the clear cases, which shows that this measure works pretty well when the difference
in the solution qualities of competitive algorithms is fairly large. However, this measure does not
consider the location of Pareto-optimal solutions in the not-clear cases. For example, in Replicate-2
in Figure 4, MPGA has better solutions in both tail areas and MOGA has better solutions in the
elbow areas. MPGA would be preferred over MOGA if this measure was used (14 vs. 8), which
shows that although this measure is more effective than the number of Pareto-optimal solutions,
it still has shortcomings.
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Table 3. ICP difference between MPGA and MOGA in best case for MPGA in problem instance set 2212

Difference between
MOGA and MPGA # Pareto-optimal # Combined Pareto

Replicate Visual comparison ICP U ICP U S ICP T ICP T S MPGA MOGA MPGA MOGA

1 MPGA 12,293 0.065 24,660 0.059 22 9 22 1

2 MPGA 9,091 0.086 18,211 0.093 14 10 14 0

3 MPGA 14,317 0.067 28,626 0.058 14 9 12 2

4 MPGA 16,479 0.120 32,949 0.122 12 9 8 1

5 MPGA 8,278 0.031 16,534 0.017 18 10 18 1

6 MPGA 17,477 0.136 34,974 0.143 12 8 12 0

7 MPGA 9,878 0.063 19,812 0.064 22 10 22 2

8 MPGA 10,337 0.026 20,691 0.015 19 7 18 2

9 – 5,756 −0.001 11,579 −0.013 17 6 9 5

10 MPGA 3,709 0.039 7,434 0.037 15 13 14 1

Note : Value = ICP(MOGA)—ICP(MPGA).
‘−‘ in visual comparison column means that it is difficult to judge whether MPGA is winner or not by visual
comparison. This occurs when competing sets of Pareto-optimal solutions cross each other.

Table 4. ICP difference between MPGA and MOGA in best case for MOGA in problem instance set 2212

Difference between
MOGA and MPGA # Pareto-optimal # Combined Pareto

Replicate Visual comparison ICP U ICP U S ICP T ICP T S MPGA MOGA MPGA MOGA

1 MPGA 11,385 0.031 22,895 0.015 20 7 19 2

2 – 4,231 0.005 8,573 −0.004 16 10 14 8

3 MPGA 1,188 0.009 2,411 0.007 13 7 12 1

4 – −20,110 −0.145 −40,242 −0.143 10 12 4 11

5 – 2,827 −0.009 5,674 −0.016 14 10 6 9

6 – −6,946 −0.068 −13,822 −0.070 21 13 7 10

7 MPGA 14,416 0.097 28,902 0.091 13 10 13 0

8 – −5,339 −0.042 −10,632 −0.040 16 8 8 8

9 MPGA 5,784 0.071 11,588 0.074 10 9 10 0

10 – −4,838 −0.026 −9,784 −0.021 9 8 2 6

Note : Value = ICP(MOGA)—ICP(MPGA).

In all the clear cases, the four ICP difference measures provided the same results that a visual
comparison did (all four measures have the same sign). If all four measures have the same sign, one
set of solutions has better solutions in the elbow area and in both tail areas, or one set of solutions
has better solutions in the elbow area and significantly better solution in one tail area. And the
ICP difference is larger, relatively, than that of the not-clear cases (where all four ICP differences
do not have the same signs). Consider, for example, Replicate-3 in Table 4. The ICP U difference is



90 J. W. FOWLER ET AL.

1,188, the least difference among 10 replicates, but all 4 signs of ICP difference are positive. Hence
it can be interpreted that MPGA generates a better set of Pareto-optimal solutions for both the
tail and elbow areas, even though the difference is very small.

However, in not so clear cases, the four ICP measures provide different comparison results
(provide different signs) for the same two sets of Pareto-optimal solutions. Consider, for example,
Replicate-9 in Figure 3. Even though the two sets of solutions are very close and cross each
other, MGPA has better solutions for the total weighted tardiness objective and MOGA has
better solutions in the elbow area. Both sets of solutions have similar solutions for the makespan
objective. As can be seen in Table 3, the comparison result by ICP U (ICP T) is that MPGA
generates better solutions than MOGA. On the other hand, the comparison result by ICP U S
(ICP T S) is reversed. This is due to the objective value range difference between the two objectives
as indicated earlier. Hence, positive ICP U and negative ICP U S can be interpreted as MPGA has
better solutions for the TWT objective and MOGA has better solutions for the makespan objective
or in the elbow area. And negative ICP T S implies that MPGA has worse solutions in the elbow
area. Thus, it appears that MOGA has better solutions in the elbow area (at least). For Replicate-
10 in Table 4, all four ICP differences are negative, even though this is one of the not-clear cases
due to the crossing of sets of Pareto-optimal solutions. This implies that MOGA generates better
Pareto-optimal solutions for the TWT objective and for the elbow area. For Replicate-2 in Table 4,
ICP U, ICP U S, and ICP T are positive, but ICP T S is negative. It can thus be interpreted that
MPGA has better solutions in almost all the weight ranges, but has worse solutions in the elbow
area. And we can see that ICP T is not sensitive enough to give some useful information in our
experiments. The signs of all 20 ICP T differences are the same as the signs of the ICP U differences
as shown in Tables 3 and 4. This is due to the large difference in objective value range between the
two objectives.

The magnitude of ICP difference also provides useful information to interpret the difference
of solution qualities of competing sets of solutions. For example, the maximum ICP U difference
between MPGA and MOGA is 17,477 in Table 3, which implies the maximum difference of the
solution quality of MPGA and MOGA occurs in Replicate-6 (also the maximum difference of
ICP U S is 0.136 in Replicate-6). The minimum ICP U difference is 3,709 in Replicate-10 among
clear cases. And the minimum ICP U S difference is - 0.001 in Replicate-9. This implies that the
difference of the solution quality of MPGA and MOGA is very small in both cases.

To summarize, the ICP measure gave comparison results that were the closest to the method of
visual comparison, which is taken as the baseline comparison method in this study. For replications
with a clear winner, ICP yielded the same preferences as visual comparison and for the not-clear
replications the ICP values for the two sets were close. These interpretations are consistent with
visual comparison.

Based on the analyses above, we can interpret the entire experimental results in Table 2 again.
MPGA outperformed (i.e., had better values for all four ICP measures) MOGA 18 times out of
the 36 problem instance sets. On the other hand, MOGA outperformed MPGA 4 times out of the
36 problem instance sets (1132, 1233, 2231, and 2232). In the remaining 14 problem instance sets
(e.g., 1121), neither algorithm generates a dominant set of solutions.

The four MOGA wins occur when the process time/setup time ratio is ‘3’ (low). This implies that
the MPGA and MOGA performance depend on the factor levels. To perform the factor analysis,
Table 5 is derived from Table 2. As shown in Table 5, MPGA wins across all weight range and due
date range factor levels. However, when the level of the process-setup ratio is ‘3’ and WIP ratio
factor is ‘1’, it cannot be said that MPGA outperforms MOGA.
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Table 5. Number of wins of MPGA by levels of four factors

Factor Level ICP U Win ICP U S Win ICP T Win ICP T S Win

Weight range 1 1118 1 965.5 1 1121 1 921.5 1

2 1131.5 1 976 1 1134.5 1 944 1

Due date range 1 1125 1 975 1 1126 1 942 1

2 1124.5 1 966.5 1 1129.5 1 923.5 1

Process- setup ratio 1 844 1 756 1 846 1 731 1

2 780 1 660 1 780 1 629 1

3 625.5 1 525.5 0 629.5 1 505.5 0

WIP ratio 1 671 1 583 0 673 1 546 0

2 774 1 690 1 775 1 672 1

3 804.5 1 668.5 1 807.5 1 647.5 1

Note : In ‘win’ columns, ‘1’ means MPGA wins over 900 times out of 1800 comparisons in the weight range
factor and the due date range factor rows and MPGA wins over 600 times out of 1200 comparisons in the
process-setup time ratio factor and the WIP status factor rows.

For further analysis of the relation between the performance of MPGA and process-setup and
WIP ratio factors, Table 6 is derived from Table 2. As shown in Table 6, when the level of process-
setup ratio is ‘3’(low), or when the level of WIP ratio is ‘1’, it is difficult to say which one generates a
better Pareto front. MOGA outperformed MPGA when the level of process-setup ratio is ‘3’(low)
and the level of WIP ratio is ‘2’(moderate). In all other cases, MPGA outperforms MOGA.

Because of the randomness of the genetic algorithms, it is not easy to understand the exact
reasons why the performance of the algorithms varies for different problem instances. However,
one of the reasons is due to the algorithmic characteristics of MPGA. In MPGA, the population is
divided after the specified turning criteria. Then each subpopulation evolves for the improvement
of the objective assigned to it. This is one of the reasons that MPGA outperformed MOGA in

Table 6. Number of wins of MPGA by levels for sensitive factors

Process setup WIP
time ratio ratio ICP U Win ICP U S Win ICP T Win ICP T S Win

1 1 232 1 207 1 234 1 198 0

1 2 295 1 267 1 295 1 259 1

1 3 317 1 282 1 317 1 274 1

2 1 235 1 195 0 235 1 177 0

2 2 285 1 244 1 285 1 239 1

2 3 260 1 221 1 260 1 213 1

3 1 204 1 181 0 204 1 171 0

3 2 194 0 179 0 195 0 174 0

3 3 227.5 1 165.5 0 230.5 1 160.5 0

Note : In ‘win’ columns, ‘1’ means MPGA wins over 200 times out of 400 comparisons.
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most cases. However, once an objective reaches the optimal or near optimal solution before the
termination of the algorithm, then the subpopulation assigned to that objective has little chance
to improve the solutions.

As shown in Table 1, when the level of process time and setup time ratio is 3(low), the process
times of 100 jobs are randomly generated from U(1, 19) and the setup times are from U(30, 70). In
this case, the makespan objective is much more dependent on the setup times than process times.
As stated before, there are four families and five identical machines. Thus a near optimal schedule
for the makespan objective can be obtained easily by assigning the jobs with the same family
to the same machine. Once a job sequence that satisfies this approximately is determined by the
genetic algorithm (crossover or mutation operation), then not much room remains for improving
the solutions. It is more likely that the makespan objective reaches a (near) optimal solution within
a relatively few generations in level 3 than level 1 or level 2 of the process time and setup time ratio.
In the similar way, when the level of WIP status is 1(high), the release time (r j ) of all jobs are zero.
In this case, the makespan objective without release times is easier to solve than the one with non
zero release times.

6. ICP PROPERTIES

Several useful ICP properties can be derived by the following definitions and the experimental
results.

Definition 1 (Set Pareto dominance relation). Assume sets of Pareto-optimal solutions (Pareto-
fronts) A and B are not empty and A ∪ B = C. The set of Pareto-optimal (non-dominated)
solutions from set C is D. If D ≡ A (or D ≡ B), then A(B) dominates B(A) in a set Pareto
dominance relation. Thus, if the number of combined Pareto-optimal solutions from one solution
set is 0, then the solution set is dominated by the other solution set according to the set Pareto
dominance relation. In this case, all four ICP difference values have the same sign as can be seen in
Property 1. If D �= A (or D �= B) and D ⊃ A (or D ⊃ B), then the two sets have a ‘Non Set Pareto
dominance relation’. When two sets belong to this relation, these sets can be classified according
to the following Definition 2.

Definition 2 (Cross relation). Assume there are two sets of Pareto optimal solutions A and B
which are not empty and include a finite number of solutions. Let the efficient frontier of a set be
a set of lines drawn between two adjacent points in that set and a line from each tail point directed
to each objective. If the efficient frontiers of the two sets cross each other, then the two sets have a
‘cross relation’. If the efficient frontiers of the two sets do not cross each other, then the two sets
have a ‘non cross relation’.

According to Definitions 1 and 2 above, the sets of Pareto optimal solutions can be categorized
into three cases; (1) set Pareto dominance relation, (2) non set Pareto dominance relation with
non cross relation, and (3) non set Pareto dominance with cross relation. These three cases are
illustrated in Figure 5. When two sets have the set Pareto dominance relation, then the two sets
also have a non-cross relation as can be seen in Figure 5(a). When two sets have the non set Pareto
dominance relation, the two sets can have a cross or non-cross relation as can be seen in Figure 5(b)
and (c) respectively.
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Figure 5. ‘Set Pareto Dominance’ and ‘Cross’ Relation of two efficient frontiers

The following properties show that these cases can be estimated and hence, evaluated as such
by numerical ICP measures.

Property 1. In minimization problems, if a set of Pareto-optimal solutions B is dominated by a set
of Pareto-optimal solutions A in a set Pareto dominance relation, then ICP(A) is always less than or
equal to ICP(B) regardless of scaling of the objective value or the types of weight density functions
used.

Proof. Recall that ICP is proportional to the sum of f ∗(w) for every weight w (0,1). If set A
dominates set B in a set Pareto dominance relation, then f ∗(w) of set A is always less than or equal
to f ∗(w) of set B for every weight. Hence the sum of f ∗(w) of set A is always less than or equal to
the sum of f ∗(w) of set B for all weights. Let the step length of w go to 0 (�w → 0), i.e. the number
of values of w goes to infinity. Then the sum of f ∗(w) for all weights within (0, 1) converges to the
integration of f ∗(w) over (0, 1). Therefore Property 1 holds. We note that the reverse clearly does
not always hold. �

Corollary 1. In minimization problems, if two sets A and B have a non set Pareto dominance
with non cross relation, then ICP(A) is always less than or equal to ICP(B ) regardless of scaling the
objective values or the types of weight density function used.

Proof. From the proof of Property 1, it can be easily proved. �

Corollary 1 may be a weak point of the ICP measures, since well-compromised non-extreme
solutions may actually be preferable to good solutions for only one objective. However, this seems
not to have occurred in practical cases as can be seen in Figures 3 and 4. From Property 1 and
Corollary 1 above, if two sets have either a set Pareto dominance relation or non set Pareto
dominance with non cross relation, then all four ICP differences have the same sign. In our
experiments, this can be detected in Replication 1 through 8 and 10 in Figure 3 (Table 3), and
Replications 1, 3, 7, and 9 in Figure 4 (Table 4).

By visual comparison, the cross relation and location (elbow or tail) of two sets can be easily
detected. Using several ICP measures, the cross relation and location can be detected numerically
as can be seen in the Propertys 2 and 3. This will be helpful to interpret the solution quality of sets
of Pareto optimal solutions in a computerized framework.
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Property 2. If the ICP U and ICP U S differences have different signs, then the two Pareto fronts
cross each other. But the reverse does not always hold.

Proof. If set A is better in ICP U but set B is better in ICP U S then, from the proof of
Property 1, there is at least one point (in the scaled objective space) in set B at which f *(w) is the
lowest for a certain weight w. In the same way, there is at least one point (in the objective space)
in set A at which f *(w) is the lowest for a certain weight w. Thus, if ICP U and ICP U S have
different signs, then two sets have a cross relation. �

In our experiments, Property 2 can be detected in Replicate-9 in Table 3, Replicate-5 in Table 4
(see corresponding graphs from Figures 3 and 4).

Property 3. If the signs of ICP U (ICP U S) and ICP T (ICP U T) differences are different, then
the competing Pareto fronts cross each other. More precisely the crossing occurs in the elbow area
rather than the tail area. But the reverse does not always hold.

Proof. Property 3 can be easily proved from the definition of ICP U (ICP U S) and ICP T
(ICP U T). In our experiments, Property 3 can be seen in Replicate-2 in Table 4 and Figure 4. �

7. CONCLUSIONS AND FUTURE RESEARCH

An a posteriori solution approach is one of the practical ways to attack multiple criteria combina-
torial optimization problems. Approximate solution techniques will generally be more appropriate
to solve these problems rather than exact methods due to the complexity inherent in these prob-
lems. In developing and applying such heuristics to solve practical problems, robust and efficient
measures play an important role in (1) evaluating the quality of sets of Pareto-optimal solutions
and comparing competing algorithms robustly, (2) optimizing parameters through experimental
design and response surface optimization when heuristics which have a stochastic nature are em-
ployed, and (3) determining the stopping criteria of heuristic algorithms based on the approximate
convergence of the solution quality. For these purposes, the Integrated Convex Preference (ICP)
family of functions was suggested and the performance of four ICP measures and two cardinality
measures were tested to verify the appropriateness of the measures in evaluating the quality of sets
of Pareto-optimal solutions.

Through the experiments for a multiple criteria parallel machine scheduling problem, we were
able to show that the two cardinality measures can misjudge the quality of near Pareto-optimal
solutions. Also, we saw that there can be large objective value range differences between objective
values (e.g. makespan and total weighted tardiness) in a set of Pareto-optimal solutions. This range
difference can lead to misleading results when non-scaled ICP (ICP U, ICP T) measures are used.
Scaled ICP measures (ICP U S or ICP T S) give more robust comparison results in such cases
and specifically ICP T S can be used to check the solution quality in the elbow area.

Experimental results show that MPGA outperformed MOGA in overall performance for the 36
problem instance sets. However, we found that the solution quality of the algorithms is dependent
on the problem instance through the comparison results of the scaled ICP measures. MOGA works
better than MPGA when one objective can be optimized much easier than the other objective. This
is because MPGA may waste a sub-population that was assigned to improve an already optimized
objective function.
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ICP measures use only efficient extreme points among a set of Pareto-optimal solutions due
to the assumption that the decision maker’s value function is a convex combination of objective
functions. Hence, ICP has a limitation in comparing sets of Pareto-optimal solutions, which include
all the same efficient extreme solutions and different non-supported solutions. In this case, different
types of value functions can be considered to overcome this limitation. For example, if a weighted
Tchebycheff metric is assumed as the decision maker’s value function, then all of the Pareto-
optimal solutions in a set will be considered in evaluating the solution quality of sets of near
Pareto-optimal solutions (Carlyle et al., 2003; Miettinen, 1999). However, this case seems to occur
rarely in comparing approximate algorithms. We observed no such case in our experiments. Also,
considering the fact that a set of efficient extreme solutions provides the boundary information
of a set of Pareto-optimal solutions, it can be concluded that ICP delivers a good representative
scalar value of a set of non-dominated solutions from a geometric point of view. The experimental
results in this paper support this conclusion.

Further research is needed on three topics. The first is to extend the ICP measure for three or
more criteria cases and for non-convex value functions such as the weighted Tchebycheff metric.
To extend the ICP for three or more objectives under the assumption of a convex value function,
we need to develop an efficient convex-hull algorithm for three or higher dimensions by utilizing
the fact that input points are a set of non-dominated solutions and an efficient method to integrate
over the disjoint polytope regions of the parameter space. The weighted Tchebycheff metric as
discussed above, provides consideration of non-dominated points that are not extreme solutions.
Hence, we will develop a version of ICP that uses the weighted Tchebycheff metric as the decision
maker’s value function.

The second area for future research is to develop more robust a posteriori solution techniques
or metaheuristics using the ICP measure. The ICP for a set of near Pareto-optimal solutions will
be a response value of a parameter optimization procedure. ICP will also be used to determine
when to stop an algorithm by considering the convergence of solution quality.

The third future research topic is to embed ICP and its extensions into a computational frame-
work that considers multiple algorithms for attacking complex multiple criteria combinatorial
optimization problems. When applied over the entire range of solutions as in this paper, ICP can
identify which procedure or algorithm is the best overall. Alternatively, ICP can be applied over
certain sub-regions of the Pareto-optimal solution set (e.g., for solutions where the makespan is
less than 200 time units or for solutions which may be optimal within some weight interval (0.4,
0.6), and etc.). And it can identify which of two or more algorithms (or parameter settings for
a single algorithm) is best for problems in that region of objective space. Also, the calculations
for ICP provide an optimal weight interval (or region) for each Pareto-optimal solution in the
parameter space, which will suggest the robustness of the solutions. This can help to discover the
decision maker’s weight density function in an interactive manner.

SUMMARY

We present the use of a new measure called Integrated Convex Preference (ICP) to deter-
mine the solution quality of approximate solution algorithms for multiple objective com-
binatorial optimization problems. The performance of ICP is compared to that of other
measures appearing in the literature by comparing the solution sets generated by two approx-
imate solution techniques (genetic algorithms) for a bi-criteria parallel machine scheduling
problem.
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