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Abstract

The purpose of this paper is to present a general framework of data-analytic
strategies, referred to as the quadratic assignment paradigm (QAP), that can be
used to test a hypothesis that two or more proximity matrices on the same set
of objects reflecting a similar patterning of high and low entries. The detailed
computation procedure for executing the QAP technique is provided. Two empirical
examples showing how the QAP technique is applied are given. Comments on the
applications of the QAP technique are also summarized.

I. Introduction

One difficulty faced by all behavioral and social scientists in analysing data
concerns the choice of formal techniques that are intended to be of aid in developing
reasonable substantive interpretations. Most of the case the final selection of a
statistical tool is guided either by tradition in the researcher’s field or by one
particular procedure happens to be in vague. In either case, the chosen methodology
may not be the most appropriate way to answer the specific questions proposed
by the behavioral and social scientists. The most difficult in chosing a statistical
tool becomes even more acute when a research problem cannot be easily delineated

* Based on a paper presented at the Seminar of Graduate School of Education, National
Chengchi University, Taipei, Taiwan, R.O.C., held on December 11, 1991.
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within an omnipotent general linear model (cf. Cohen, 1968a, 1982), since there
are very few alternative paradigms that are broad enough to formulate sufficiently
powerful analyses. Consequently, because of the general inflexibility of statistical
schemes that do not rely on rather strong parametric assumptions, novice researchers
tend to limit the questions they ask to those that fit neatly within the analysis of
variance context and its derivations, or, alternatively, embrace some other familiar
strategy that may not be suitable for the particular application at hand.

Readers may be familiar with many, if not most, data-analysis strategies which
are based on sums of squared differences. As is well-known, sums of this type
appear in the definition of a variance, in least-squares regression, in chi-square
goodness-of-fit test, and so on. In fact, concepts derived from the sums of squared
differences are the basic forms of cross-products which used in comparing among
two to k numerical sequences (Cohen, 1968b; Fleiss, Cohen, & Everitt, 1969;
Friedman, 1937; Hubert, 1977, 1978, 1979a, 1979b; Kendall, 1970:; Page, 1963).
For a general framework of the sequence-comparison, this data-analytic strategy can
be expanded to comparisons among two to k matrices. Particularly, such matrices
containing correlational measures on the same set of variables are encountered
frequently in education, biometrics, geography, social and behavioral sciences. Those
matrices are usually referred to proximity or preference matrices (Golledge & Rayner,
1982; Schultz & Hubert, 1976), similarity or distance matrices (Borg & Lingoes,
1987), and sociometric matrices or sociograms (Hubert & Baker, 1978). Depending
upon the researcher’s statistical preferences, these comparisons may take the form
of searching for comparable common factors or dimensions (Young, 1987), a related
analysis (Kendall, 1970), a multivariate parametric test (Morrison, 1990), and so
on. Usually, the entries are compared only informally with some heuristic evaluation
made as to whether the same general pattern of high and low values appears in
both or many datasets.

The purpose of this paper is to present a detailed strategy, referred to as the
Quadratic assignment paradigm (QAP), that can be used to test a hypothesis that
two or more proximity matrices on the same set of variables or objects reflecting
a similar pattern of high and low entries (Hubert, 1987; Hubert & Arabie, 1989;
Hubert & Schultz, 1976; Mantel, 1967). Although the actual strategy has been
available for some time in the biometrics and geography literature, this technique
described below is more generally applicable than suggested by its original biometric
and geographic motivations and deserves a wider recognition in the behavioral and
social sciences or in the educational researches. The approach taken below appears
flexible enough to give a overview of many problems a researcher faces in chosing
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an appropriate methodology, and, more importantly, is broad enough to provide a
general framework of organizing principles for an extensive theoretical analysis of
structure within a proximity matrix. For the parsimonious reason, the scope of this
paper is limited only in the comparisor between two n x n symmetric or asymmetric
proximity matrices, where n is the number of objects in a given set. Those n x
r rectanguiar matrices are not our concerns.

II. Formulation of the Quadratic Assignment Paradigm

Background of theory

It is assumed that the analytic data is collected on n objects that are denoted
by 0,, 0, .., 0,. The term ‘‘object’” is meant to be extremely general and could
refer to individuals, stimuli, societies, tests, and so on. Furthermore, it is assumed
that data collected from each ordered object pair of these objects can be reduced
to a single numerical value, a statistic, or an index. Our task is to look for an
appropriate procedure to maximize such an index which contains numerical measures
of relationship or proximity between each pair of objects from the set of S:lo;,
0,,..., Onl. The concept of ‘‘proximity’’ is intended to be very broad and will be
used as a generic term for a host of possible measurements of relationship that
could be considered. For technical and operational convenience, proximity is assumed
to be positive symmetric measure for which the larger numerical values are assigned
to the more dissimilar (or distant) object pairs, or an non-negative real-valued function
for which elements are defined by the researcher; e.g., in the usual correlational
context, proximity could be defined by one minus the standard Pearson product-
moment correlation coefficient.

To formulate an index of numerical measures of relationship between
two matrices, two n x n square matrices are defined on the Cartesian product
S x S, where S is the set {0, 0j,..., Onl. One is the data matrix X whose ith
row and ih column refer to object o;, and the entry in row i and column j is
defined by the researcher as Xj. For convenience, it is assumed that X;=0 for
l<i<n, and usually, X;=0 for 1=<i, j=n. In general, X is defined to be a
non-negative real-valued function on the Cartesian product S x S, where S is
the set {0,, 0,,...,0,); furthermore, if the two arguments in Xj; are the same, the
function value is defined to be zero. The other is the structure matrix Y whose
rows and columns are labelled by the integers 1, 2,..., n, and if N: {1, 2,..., nj, the
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entries in Y are the values defined by a non-negative real-valued function on N
X N. In particular, Yj is the entry in row i and column j of Y and Y,;=0 for
I<i=<n.

These two basic matrices may be two symmetric (Hubert & Levin, 1976a)
or asymmetric (Hubert & Schultz, 1976) n x n matrices which provide numerical
ineasures between each pair of objects. The data matrix X is the user-collected
matrix. The structure matrix Y is the matrix that represents the type of hypothesis
the researcher wishes to evaluate against his/her data, or, alternatively, the type
of structure he/she may wish to identify in his/her data. In other words, the structure
matrix Y is defined in some a priori manner by the researcher from theorectical
considerations regarding the structure of the elements in S. As technical assumptions,
the diagonal elements in Y and X (i.e., Y;; and X;; for all o,) are assumed to
be zero. Typically, all off-diagonal entries in Y and X will be non-negative. Our
first task is to index the correspondence between Y and X; the second is to develop
a statistical technique for evaluating whether the two basic matrices have a similar
patterning of high and low entries.

As an introductory example of how the data and structure matrices can be
interpreted, assume that a researcher has a set of n statements reflecting various
psychological symptoms, and he/she believes that these statements can be ordered
along a hypothetical continuum from neurotic to psychotic. A subject is given each
pair of statements once and is asked to rate their similarity from, say, 1 to 5, with
5 being the least similar. Consequently, the data from this single subject can be
put into a data matrix X, where Xij—“-in:rating given to the pair (o;, 0;). The
structure matrix Y is defined to reflect the contention that the n items or objects
can be ordered along a continuum, and where distances between the items are
reflected perfectly in the ratings. To be more explicit, assume that the hypothesized
ordering is now represented by the sequence |0i,...,0,/. Then, if the proposed
seriaticn is reasonable, the entries in X should satisfy the relation

Xij < Xij’ and Xij = Xi'j,

whenever i<j; j<j’; i’<i. Similarly, a structure matrix Y is defined by a particular
idealization of this necessary property of the measure Xjj; for instance, in the
seriation case,it would be possible to define Y;=li-jl, since Y;j<Y;} and Y=Yy,
whenever i<j; j<j'; i’<i. The same approach taken for seriation is easily
generalized to other situations by hypothesizing a specific underlying organization
of the objects oy,...,0, that in turn implies some patterning of the entries in the

data matrix X. The same structure is then related to the matrix Y by
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identifying an idealized pattern of entries that satisfies perfectly the necessary
implication on the X matrix.

The most obvious measure of relationship between Y and X would be a simple
Pearson product-moment correlation between the corresponding n(n-1)/2 (if symmetric)
or n(n-1)(if asymmetric) off-diagonal entries in Y and X. This expression, however,
is rather cumbersome to deal with entirely and for our purpose it is sufficient (and
equivalent statistically) to consider only the cross-product term from the numerator.
Particularly, if we define the index by I' (see also Hubert & Levin, 1976a, 1976b;
Hubert & Schultz, 1976; Schultz & Hubert, 1976):

then I means the sum of the cross-products of the corresponding elements between
X and Y. Thereafter, I' can be used as an index of correspondence between X
and Y. I' may be interpreted as an ‘‘unnormalized correlation coefficient’ .

A rather simple approach can be developed through a randomization model
common in nonparametric statistics that is analogous to the justification for Fisher’s
exact test (Fisher, 1934) in contingency table analysis. Specifically, the matrix Y
is assumed to be fixed as it is; the rows and simultaneously the columns of X,
however, are reordered in all possible ways, generating n! possible matrices that
contain the same entries as X but possibly in different positions. Furthermore, the
I' statistic is computed for each of the n! reordered matrices developed from X
by using the original fixed Y matrix as a target. The index I' measures the degree
to which the patterning of the entries in Y corresponds to the patterning of the
entries in X. Hence, I' attains a maximum value when the elements in X and the
corresponding elements in Y are in a perfect monotone relationship. Specifically,
if it is true that X;;=X;; if and only if Yy=Y;j, then thc index I' is as large
as possible.

As an illustration of these ideas using the seriation example, if the particular
ordering of the objects {o;, . . . , Onf is hypothesized a priori, then the index I'
measures the degree to which this same ordering is reflected in the data; obviously,
the hypothesis is perfectly validated through the Y matrix if the corresponding
elements in X and Y are monotonically related, but in any event, the statistic I’
indexes the closeness of the relationship in the units of measurement implicitly defined
by the functions Xj; and Yj;.

From now on, it is obvious that our task is to find a permutation such that
[ is as large as possible. With this idea in mind, we are looking for a reordering
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of the X matrix that fits closely to the fixed Y matrix. In any event, the Y matrix
numerically characterizes a necessary property of the X matrix and, therefore,
searching for a permutation that maximizes I' is an attempt to force a necessary
condition to hold as close as possible, where the index of ‘‘closeness’ is given
by the formula I". The search for these optimal permutations is called the quadratic
assignment (QA) problem, and is an extremely active area of operations research
introduced by Koopmans & Beckmann (1957).

Since I' is interpreted as an unnormalized correlation coefficient, it may be
useful to have a normalized statistic Z of the form

7 - I'-EI) 2.2)
Var(I")1/2

under the standard nonparametric hypothesis of randomness (i.e., the rows and the
columns of the X matrix have the same chance of been permuting), where E(I")
is the expected value of I" and Var(I") is the expected variance of I". Because the
type of relationship between X and Y indexed by I', T can be calculated and tabled
to form an actual reference distribution from each of the n! permutations of the
rows (and simultaneously, the columns) of the X matrix with the fixed Y matrix.
Thus, if the original value of T' is sufficiently extreme with respect to the probability
distribution for I', the hypothesis of a random permutation is rejected and the value
of the T' statistic is assumed to denote a nontrivial degree of common patterning
of high and low entries between the two original matrices X and Y. Furthermore,
if a large-sample normal approximation- were assumed sufficiently accurate, Z could
be compared in the usual manner to a normal distribution with mean O and variance
| to find the appropriate p-value for the observed index I'. Therefore, Z has some
of the same characteristics of an ordinary measure of association. But a great caution
should be taken by any researcher who wishes to rely on the conjectured adequacy
of a normal approximation when n is small.

Derivation of the permutational mean and variance of I

For whatever closeness (or similarity) or distance (or proximity) scales we may
employ, let Xj; be some special measure between objects i and j (i.e., o; and ),
and Y;; another measure. Our test statistic is then

F=E E XU Y,J
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which can be compared with its null expectation. With one restriction i#j on the
index I', we can replace X; and Y; by an arbitrary constants. Zeros are the most
conveniently specified values for these constants. These zero constants (i.e., the
diagonal elements in matrices X and Y) mean that the closeness or distance between
object i and itself (i.e., o; and 0;) is none and zeros are the appropriate indicators.

The null distribution of T" can be obtained by a finite population approach.
We have n objects in matrix X and n objects in matrix Y. The hypothesis of no
closeness or correspondence between X and Y is equivalent to one that the objects
in matrix X are matched at random with the objects in matrix Y, there being a
total of n! equiprobable sets of matchings. In prin ciple we can list the n! possible
permutations of our data, compute the Z statistic for each permutation,-and obtain
the null distribution of I" against which the observed value of I' can be judged.

When n is too large for the null permutational approach to be practicable,
a Monte Carlo approach may be more feasible. In this approach one simulates the
randomization scheme enough times to get an empirical distribution of I' adequate
for significance testing purposes. For a larger n an approach can be taken which
is predicted on the assumption that I' is approximately normally distributed, so that
its deviation from its null expectation can be tested relative to its null standard
deviation. Therefore, the formulas for the permutational expectation and variance
of T' are developed and a computational procedure for the routine evaluation of
the departure of I' from its null expectation is presented as follows (Mantel, 1967).

So now, we consider two n x n matrices, one of Xj’s, the other of Yj’s,
and both with zero diagonals. The quantities Xj; and Yj are two different measures
relating the ith element of a sample (i.e., o; in the set S) to the jth element of
the same sample (i.e., o; in the same set S). For purposes of obtaining the
permutational distribution of I'=XXX;Y;;, we may arbitrarily keep the X matrix
fixed while permuting only the rows and the columns of the Y matrix, or vice
versa. But any permutation must follow the requirement that if any two rows are
permuted, the corresponding two columns are also permuted so that, for each i,
the ith row and the jh column will correspond to the same case. Under such
permutations diagonal elements will remain diagonal elements, but off-diagonal
elements will appear with equal probability in each of the n(n-1) off-diagonal
positions. Regarding the X matrix as fixed so that only the Yj's change from
permutation to permutation, we can write

E(I)=E(XX;Yy)
=EZXU’E(YU)
=EZXUEEYU/H(I\-1) (23)
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(Had the diagonal elements been constants other than zero, both I' and E(I') would
have increased by identical amounts, leaving the deviation of I' from its null
expectation unchanged.)

We can write for the variance of I', the shorthand

Var(F) = EZXUXHCOV(Yij, Ykl) (24)

where summation is over-all permutations of the subscripts, although the cases i=]j
or k=1 can be ignored.

We can write that, in general,

Cov (Y;, Yw) = E(Y;Yw — E(YHE(Yw (2.5)
where

E(Y;) = E(Yy) = LIZY;/n(n—1) (2.6)

Using Equations (2.5) and (2.6) we can rewrite Equation (2.4) as

Var(F) = EZXUXHCOV(Y Ykl)

ij>

LEXGXuE(Y;Ym) — [EEXXu(EXY;)¥ni(n—1)?]
= LEXGXuE(Y Y — [(EEXHHEEY)Yni(n—1)?]
leaving yet to be resolved the value of
E(Y;Yw).

So our task becomes simple. We just need to consider seven possible cases and
their corresponding computations as shown in Table 1 which may arise.

Case 1. Suppose i=k, j=1 so that Y;Y,=Y;?. Since, on permutation, any
of the n(n-1)(see Column 1 of Tablel) off-diagnoal elements can appear with equal

probability in a off-diagonal position, the average value of Y;? equals the total,
YXY;? (see Column 2 of Table 1) divided by n(n-1). The contribution of this case
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to the first term of Var (I') as shown by Equation (2.7) is then DX X;?® (sec
Column 3 of Table 1) times EXY;? (Column 2) divided by n(n-1)(Column 1).

Case 3. Suppose i=k and j#1. For any of the n(n-1) off-diagonal Yj; values,
there are (n-2) off-diagonal, Y;, elements in the same row, for a total of
n(n-1)(n-2) (see Column 1) possible products of the form Y;Y;. The total of the
products for a given Yj; is given by multiplying Yj; by its own row total, the ith,
and subtracting Y;2. Overall i and j this sums to the total of the squares of the
row sums less the sum of the squares of the individual Yj's, that is, Li(EY))?
— ZXY;? (Column 2). The corresponding X total is shown in Column 3 and again
the contribution to Equation (2.7) is Column 2 x Column 3/Column 1.

Similarly, for each of the other cases (Case 2, i=1, j=k; Case 4, i#k, j=1;
Case 5, i=1, j#k; Case 6, i#1, j=k; Case 7, Yj and Yy have no subscripts
in common), Table 1 shows the possible number of product pairs (Column 1), the
sum of all possible product pairs (Column 2 for Y, Column 3 for X), these
permitting determining the contribution of each case to the final variance.

In the bottom section of Table 1 the variance of I' is sketched out
mathematically and in terms of the totals necessary to be determined for each of
the seven cases. By footnote, Table 1 also defines symbolically by various letter
totals needed in the variance calculation. For a single matrix, most of these letters
are the same as would be necessary for the analysis of variance of a two-way
classification of data. Thus, A is the grand total of the matrix elements; B is the
total of the squares of the elements; D is the total of the squares of the row sums;
E is the total of the squares of the column sums; and G is the square of the grand
total. Only two new totals are required in excess of these ordinarily arising in the
analysis of variance. These are: C, the sum of the products of each element, Yij
with its transpose element Yj; F, the sum of the products of each row total with
its transpose column total. These quantities, A to G, must be obtained separately
for the X and Y matrices and from them, in turn, four additional quantities, H
to K, are simply calculated as shown in the symbols column of Table 1.

Special Computations for the symmetric and asymmetric matrices

Table 1 also shows the simplications which occur for specific kinds of matrices.
For the symmetric matrix, Y;;=Yj, It is true that B=C, and that D=E=F. For
the seven cases shown in Table 1, it is then true that 1 and 2 show identical totals
(B=C), and that Cases 3 to 6 show identical totals (H=I=J). For the skew symmetric
matrix, Y;=—Yj, we have that A=G=0, B=—C, D=E=—F. For this situation,
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in Table 1, Cases 1 and 2 are inverse to each other (B=—C), Cases 3 and 4 show
identical totals but are inverse to Case 5 and 6 (H=I=-J), and Case 7 disappears
(K=0).

Table 2 shows the simpler computations that would obtain if the Xjj, and Y,
matrices were both symmetric or both skew symmetric. Where only Xj; or only
Y;; shows symmetry, the general procedure may be desirable. The case where one
matrix is symmetric, the other skew symmetric, needs not be considered since then
I’ is identical zero. Such cases may not be too obvious where skew symmetric is
concealed by an additive constant.

III. Two Illustrative Examples

In this section, two empirical examples are introduced to show how the usages
of the quadratic assignment paradigm (QAP) are applied. The first example is to
compare and to confirm similarities between two symmetric matrices with one
similarity rating task and the other sorting task. The second is to compare and to
identify differences between two asymmetric proximity matrices with one expert’s
knowledge structure and the other novice’s knowledge structure.

Symmetric case

This example is taken from Gliner, Goldman,& Hubert (1983). Its purpose
is to confirm the similarity from a multidimensional scaling of two proximity matrices
with one similarity rating task and the other sorting task. In the similarity rating
task, forty subjects were asked to rate each animal pair (of nine animal names)
a number between 1 and 7, where 1 meant the animal pairs were very similar and
7 meant they were very different. Based on the matrix of similarity ratings of each
subject, the total group similarity rating matrix was formed by adding the ratings
for each subject. Therefore, a proximity matrix was formed with each entry ranged
between 40 and 280, where numbers close to 40 meant the group saw the animal
pair as very similar and larger numbers close to 280 meant the group viewed the
animals in the pair as very different. In the sorting task, these forty subjects put
animals into as many groups as they liked, based on similarity. Similarly, a proximity
matrix for the sorting task was formed with ones or zeros on each entry, where
one meant the animal pair was grouped together and zero otherwise. Hence the
entries for the group matrix in the sorting task represented how many subjects sorted
the animal pairs into the same group. The group matrices for the similarity rating
task and sorting task are given in Figure 1.
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Particular instances of| No. of such [Symbolic representation of | Total of Y;;Yy for

Case |YiYi All indicated | instances total for such instances* such instances
subscripts different n 2)
1 Yinlj = Yijz n(n - 1) B L Yij2
2 YilYﬁ n(n - 1) C pIDH Y;jY}",
3 Y'jYil n(n - 1)(n - 2) H=D-B ):i(Ej Yij)2 -XLX Y;jz
4 Y ijj n(n - l)(n - 2) 1=E-B Zi(Zj in)2 -X X Yijz
5 Ylek; n(n - 1)(1] - 2) J=F-C Zi(Zj Yij)(zj in) -XX Yinji
6 Ylejl n(n - 1)(“ - 2) J=F-C E,(ZJ YU)(Y‘J in) -X X Yinji
7 YiYu n(n- 1)(n-2) K=G+B+C- (ZEYU)2+ZZYU2+
-(n-3) D-E-2F X Yinji - Zi(Zj Yij)2 -
=G-B-C- Zi(EJYJ-i)Z - 2ZE Y (XY )
H-1-2)

Totals n(n - 1)2 G=A2 (ZXY;)?

* Definitions of symbols (shown for Y's only; apply comrespondingly for X's).

Ay=ZXYj= Grand total of the Yjj's.

By =X 2 Y = Sum of squares of the Yjj's.

Cy=ZZYYj=Sumof products of each Yjj with its transpose element.

Dy = Ei(Z; Y j)2 = Sum of squares of the row totals.

Ey = Zi(Z; Yli)2 = Sum of squares of the column totals.

Fy = (&, Yl Y = Sum of products of each row total with its transpose column total.

Gy = Ay? = (£ X Y2 = Square of the grand total.

E(XZ XiniJ) =X XUZ ZYj /n(n-1)= AxAy /n(n-1).

Var(Z Z Xj;Yj) = LIZE XX Cov(Yij, Yi)-
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(Table 1 continued) .

Corresponding Special cases of such totals (Shown for Y variable only)
Case | total of XXkl
Symmetric case Skew symimetric case Symmetric 1's and O's only
(3) Y',j = Y_]i Yij = - in = EjYij , = Zr;
] Z):Xijz By=EZYiJ‘2 B),=ZZYU2 r
2 )ID Xinji By - By r
3 Ei(Zinj)z - Z):Xijz Hy = Dy - By ”y X riz -T
=L Yip?2-L X Y52
4 Zi():iji)z - ZEXUZ Hy ”y z ri2 -T
5 Ei(ZXap (X Hy -Hy Ir?-r
- LEXiXi
6 Zi():_iXij)(Eiji) ”y “y )X Tiz -r
- XXX
7 (XXX )2 + IIXi? + Ky =Gy + 2B, - 4D, Ky=0 2+ 2r- 4312
ZZXiJ’XJ‘i - Zi(}:jX;j)? = (ZZYij)z +
(X )2 - 25i(TiX5) 2(LLY;?) -
‘ (ijji) 4[Ei(ZjYiJ’)2|
(ZXX;))2 Gy = (BEY;j2 Gy =0 Gy =

Cov(Yij, Yu) = E(YyYi) - E(YE(Y ).

For all cases E(Y{DE(Yy) =(ZEY;i/n(n - Dj2= Gy/n2(n- 1)2 =3 Column 2/ % Column 1.

For specific cases :

E(Y;jYw) = Total of such cases, Column 2 / No. of such cases, Column 1.

Cov(Yijj, Y1) = Column 2 / Column 1 - £ Column 2/ % Column 1.
Z X5 Xia- Cov(Yjj, Yi) = Column 3 - {Column 2 / Column 1 - X Column 2 / T Column 1].

Totaling over all cases :
Var(Z z Xinij) =X3XX Xij Xk| . COV(Yij, Yk|)
= Z Column 2 Column 3 / Column 1 - £ Column 2 ¥ Column 3 /Z Column 1.

=0/n(n - D] (ByBy + C,Cy + |1 Hy + L1y + 21,01 / (n - 2) +
IK«Ky /(0 -2)(n - 3)] - [GxGy / n(n - D]}
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Table 2. Calculating Procedures for the Symmetric and Skew Symmetric Cases

For both the symmetric and skew symmetric case, obtain the following 5 columns :
1. Row sum of X
2. Row sum of X;j?
3. Row sum of Yj;
4. Row sum of Y;i?
5. Row sum of X;;Y;;

Obtain the following derived statistics

Symmetric case Skew symmetric case

Ay =Z Column (1), Ay =X Column (3)

B, =X Column (2), By =2 Column (4) By =X Column (3), By =Z Column 4)
I' = ¥ Column (5) " = Z Column (5)
D, = X Column (1)2, Dy = Z Column (3)2 D, = X Column (1)?, Dy = Z Column (3)2

G, = [Z Column (1)}2 = A2,
Gy = [Z Column (3)]2 = A2

I, =Dy - By, H, = Dy - By Hy, =D, - By, H, =Dy - By
K, = G, - 2B, - 4H,,

K, = G, - 2B, - 41,

L =2B,B, I.=2B,B,

O =4H,H,/ (n-2) O =4H,l1,/ (n-2)

P =K,Ky/(n-2)n-3)
Q=G,Gy/n(n-1)
R=L+0+P-Q R=L+0
S=R/n(n-1)=Var(l) S=R/n(n-1)=Var(l)
T=JS T=[S"
U=AAy/n(n-1)=ED)
V=I-uU=TI-E{) Vv=r-U=1-LEI)
W=V/T=2Z W=V/T=7
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Lion 1) 258 49 240 198 261 198 168 209
Mouse 2) 261 135 257 53 262 218 224
Tiger 3) 239 201 258 203 168 215
Rabbit 4) 241 139 250 189 187
Horse (5) 259 163 211 157
Rat (6) 266 207 233
Elephant €)) (Symmetric) 246 228
Fox (8) 203
Sheep 9)

Lion (1 0 38 1 1 3 3 9 5
Mouse 2 0 20 4 34 3 2 2
Tiger 3) 0 0 4 3 8 4
Rabbit )] 5 16 4 7 11
Horse (&) 0 16 3 12
Rat ® 0 2 4
Elephant N (Symmetric) 3 2
Fox 8) 6
Sheep )]

Figure 1. Group (n = 40) matrices for similarity rating tasks (a) and for sorting tasks (b).

The comparison of these two matrices using the QAP esentially involves testing
for the significance of the correiation between the two matrices, in which the null
hypothesis is that there is no similarity between the patterns of entries in both
matrices. In the QAP scheme, the groups proximity matrix from the sorting task
is compared to the group proximity matrix from the similarity rating task to assess
wether the pattern represented in one matrix is also present in the other matrix.
The index, T', defined on Equation (2.1), representing the sum of products of the
corresponding elements between the two matrices is computed. If the probability
of the particular value occuring given the distribution of T' based on all equally
likely permutations of rows and corresponding columns of one of the matrices is
" sufficiently small, then the structure in the second matrix is considered mirrored
in the first.
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For the matrices used in this illustrative example, the permutation distribution
are large (i.e., 9! for the 9 x 9 matrices of animal comparisons). The expectation
and variance of I' using Equations (2.3) and (2.4) and simpler formulas in Table
2 can be computed and a Z statistic (i.e., Equation (2.2)) can be obtained to test
for the significance of the correspondence between the two matrices. It should be
noted that I" is merely an ‘‘unnormalized’” Pearson product-moment correlation
coefficient, and therefore, comparing the index value for I' to a sampling distribution
is equivalent to performing the same procedure on the correlation coefficient for
the entries in the two matrices. The only quantity in the Pearson correlation
coefficient that varies, depending upon the order of the rows and columns, is the
index T'.

Using the QAP technique, the following indexes for this example are provided:

r, = —.91
r = 33776
ET) = 97316.11
Var(I') = 162844812.20

7 = -4.98 (p=<0.1)

The Z statistic indicates that the test for the significance of the correspondence
between the two matrices achieves the significant level .01, which means that the
large values in the similarity rating task meant the animal pair was perceived as
dissimilar, and large values for the sorting task meant the pair was similar. Therefore,
the use of the QAP has provided a statistical test of the significance of this apparent
similarity in organization, which confirms the similarity between the two matrices
from an exploratory multidimensional scaling analysis.

Asymmetric case

This example is taken from Sato, Kurata, Shimada, & Harnisch (1990). Its
purpose is to identify students’ knowledge structures and to compare with a teacher’s
knowledge structure to debug students’ ill-structurally derived misconceptions. Twenty
six college students were asked to identify the network structure among forth
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chemical concepts after a briefly introductory instruction of College Chemistry. Their
structures were used to compare with an instructor’s structure about the same subject
of College Chemistry. The students’ responses represent thinkings of the novices
and the teacher’s responses represent an expert’s ideas. Our jobs are to compare
students’ knowledge structures with the teacher’s knowledge structures and to locate
the misconceptions where occurred in students’ ill-structural maps of concepts. For
illustrative purposes, two students’ and the teacher’s knowledge structures of forty
chemical concepts are selected for demonstration.

The correlation coefficients of these twenty six comparisons are ranged between
.237 and .930. The students whose correlation coefficients are lowest and highest
are chosen to be examples. The data structures of the lowest ability student
(abbreviated for L student), the highest ability student (abbreviated for H student)
and the teacher are shown in Figure 2. The knowledge structures of the L student,
the H student and the teacher are shown in Figure 3. The QAP teachnique is applied
to this dataset.

From the analysis of QAP, the following indexes for this example are given:

L student vs. Teacher H student vs. Teacher
ey = 237 rar = .930
r =12 ' = 48
ET) = 1.37 ET) = 1.70
Var(I') = 1.31 Var(I') = 1.62
Z = 36.37 (p<.001)

Z

9.30 (p<.001)

The I' index for the comparison between the L student and the teacher is 12, whose
Z statistic shows that the test for the significance of the correspondence between
these two matrices is significant at .001 level. The T' index for the comparison
between the H student and the teacher is 48, whose Z statistic indicates that the
p value is significant at .001 level. The correlation between the H student and the
teacher is larger than that of the L student and the teacher. This means that the
knowledge structure of forty chemical concepts of the H student is more close to
that of the teacher than the L student does. The H student has more similar entries
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Figure 3. Knowledge structures of forty chemical concepts for the 1. student, the H student, and the teacher.

— 404 —



A Comparison of Two Proximity Matrices

of a structure pattern with those of the teacher than the L student has (as shown
in Figure 3), although both students have significant correlations with teacher’s
structures. Consequently, the L student’s misconceptions can be easily spotted by
mapping his/her knowledge structure to the teacher’s. A particular structure between
two consecutive or adjacent concepts where the deviation occurred marks the
misconception. The sum of those deviations from the teacher’s structure can be
indexed as a measure of misconceptions. And those concepts where misconceptions
occurred need to be taught again. This sparkles the possibility of make-up instructions
for low ability students. Therefore, the QAP not only confirms the similarity between
two proximity matrices but also provides a methodological future for cognitive
psychology.

IV. Summary Comments

From the above presentation, the procedures of using QAP should be evident
with no doubt. The purpose of QAP is used to compare two proximity (symmetric
and asymmetric) matrices. Given the proximity measure Xj; and some conjecture
specified in terms of a structure function Yj; (i.e., both are some numerical
measures of proximity between objects o; and o; in the same set of S), the observed
correlation between Xjj and Yj; is compared with a reference distribution generated
under a hypothesis of randomness. If the obtained correlation is at extreme percentage
point, the correspondence between Xj and Y; is declared significant, with
the added implication that the conjecture leading to the construction of Yj;; may
help explain some of the variation presented in the empirical proximity measures.
As usual, the size of the correlation can be considered an index of the
degree of correspondence or confirmation. And the whole process is what the QAP
talks about.

As specified above, the QAP is suggested for applications rather than for
theories. A wide variety of applications of the QAP depends on how we define
the proximity measures in matrices X and Y. For example, the I' index can be
viewed as a particular measures of association between two matrices by specifying
the following possible definitions of proximity (X; is a measure on object j and
X, is a measure on object i; similar measures applied to Y; and Y;) (Hubert, 1985,
1987: Hubert & Arabie, 1989):

(a) Pearson’s product-moment correlation: X;=(X;—Xj; Yy=(Y;—Y0;
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(b) Spearman’s rank-order correlation: Xi=j—p; Yij=(q;—q),
where p; and p; refer to the ranks of X; and X; within the X; a
similar way applied to Y; and Y; in Y;

(¢) Kendall’s 7: Xj=sign(X;—X;); Y;=sign(Y;~Y;), where

+1 if u>0
sign(u) = 0 if u=0
-1 if u<o;

all three of above correlations can be put into a more general framework referred
to as Daniels’ generalized correlation coefficient (1944);

(d) Geary’s spatial autocorrelation (1954):X;=(X;—Xp? Y;=(Y;—Yp?
(e) Moran’s index (1950):X;;=(X;—X)(X;—=X); (Y;—)(Yi—Y);

(f) Royalty, Astrachan and Sokal’s index (1975):
Xijzlxj_Xj';YijZIYj_YiI;

(g) other extentions to the one-way analysis-of-variance (Mielke, 1979;
Mielke, Berry, & Johnson, 1976; Hubert, Golledge, & Costanzo,
1982), spatial autocorrelation (Hubert, Golledge, & Costanzo, 1981
Hubert Golledge, Costanzo, & Gale, 1985), and so on.

So, the quadratic assignment paradigm can be viewed as a general data-analytic
strategy (Hubert & Schultz, 1976).

Another major application of the QAP is to be used as a confirmatory approach
in a confirmatory research. For more illustrative examples readers are referred to
Gliner, Goldman, & Hubert (1983), Hubert & Levin (1976a, 1976b, 1977) and
Pellegrino & Hubert (1982).
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