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Abstracts

The purpose of this paper is to expand Masters’ (1982) (one-parameter) partial
credit model to be a two-parameter partial credit model. A FORTRAN 77 computer
program, TPPCM, developed by present author, which uses maximum likelihood
estimation solutions. is used to calibrate model parameters, test goodness-of-fit. and
provide information functions of a dataset. From the analysis and discussion of
findings of this research, four conclusions cam be drawn as follows: (a) The existence
of the two-parameter partial credit model is confirmed. This model becomes an
alternative model to score persons’ partial knowledge or calibrate any questionnaire
or test with ordered-response formats. (b) Step discriminations provide a good help
in partitioning persons’ performance levels. (c¢) Step information functions are
uniquely and differently determined from step discriminations of each item. Hence
it implies potentials for item and test design, selection, and construction. (d) The
two-parameter partial credit model shares the same features of the one-parameter
partial credit model, except that of specific objectivity and parameter separability.
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I. Introduction

The number-right scoring method has traditionally been used to score an
examinee’s performance of teacher-made exams or standard achievement tests.
Whatever types of answer keys (for example, dichotomous or multiple-choice item)
are used, the number-right scoring method used to evaluate students’ or examinees’
achievement seems to be a natural thing. No one will doubt its appropriateness.
Unforunately, this scoring method misses much information about examinees’ real-
ability estimates. One of its greatest defects is that it ignores the existence and
importance of partial knowledge. That is, this scoring method cannot distinguish
cxaminees who have no knowledge about an item from those who have partial
knowledge.

According to learning theory, the learning process progresses little by little.
The acquisition of knowledge is a cumulative and continuous, not an all-or-none,
status (Gagné, 1962; Gagné & Paradise, 1961; Ludlow & Hillocks, 1985). Therefore,
partial knowledge exists. It represents the partial results of teachers’ instruction and
students’ learning. Measures of partial knowledge can provide a lot of information
and improve the precision of estimates of examinees’ real abilities.

Partial knowledge, although not presenting full information about an examinee’s
complete ability, represents the partial result of instruction and learning. Its presence
requires a more precise estimating method to be used. Consequently, several
aliernative scoring methods have been proposed to compensate for drawbacks of
the number-right scoring method.

The common use of remedies for the drawback in the number-right scoring
method is the formula score (Coombs et al., 1956; Glass & Wiley, 1964; Lord,
1963, 1964, 1975) or the correction for guessing (Cureton, 1966; Davis, 1959,
1967; Diamond & Evans, 1973; Jackson, 1955; Little, 1962; Lyerly, 1951; Sax
& Collet, 1968; Stanley & Wang, 1968; Wang & Stanley, 1970). This formula
score is based on an assumption that all wrong answers are guessed wrong
and that all correct answers are obtained either by “‘full’” knowledge or by
“lucky’’ guessing. The presence of omitted responses and partial knowledge is
not taken into account. Obviously, this formula score cannot give us any information
about examinees’ ability measures which are intermediate in scoring correct and
scoring wrong items.

Some alternatives to the formula score method are the use of differential
weighting schemes (Davis & Fifer, 1959; Hambleton, Roberts, & Traub, 1970;
Hendrickson, 1971; Patanik & Traub, 1973; Reilly & Jackson, 1973; Sabers &
P
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White, 1969), and confidence testing (de Finetti, 1965; Hambleton et al., 1970;
Rippey, 1968) for assessing examinees’ partial knowledge. The findings of these
alternatives are usually interpreted in terms of test validity and reliability. However,
they do not provide ability estimates either with known statistical properties or with
standard errors of estimate associated with the estimated ability. Hence, this problem,
as well as the preceding problem, invokes the consideration of using theoretically
rigorous scoring models which are based on modern test theory. Latent trait theory
(LTT) or item response theory (IRT) developed in modern test theory is the tool
that we need to use (Allen & Yen, 1979; Baker, 1985; Crocker & Algina, 1986;
Hambleton, 1983; Hambleton & Swaminathan, 1985; Hulin, Drasgow, & Parsons,
1983; Linn, 1989; Lord, 1980).

Thereafter, several authors (Bock, 1972; Huynh & Casteel, 1987; Jacobs &
Vandeventer, 1970; Levine & Drasgow, 1983; Thissen, 1976) considered the use
of information in wrong responses to improve the accuracy of ability estimation.
Birnbaum's (1968) dichotomous model, providing estimates of ability based on right-
wrong scoring of the test items, is a special case of Bock’s (1972) general multiple
category model that utilizes information in the pattern of wrong responses, as well
as correcl responses, in estimating ability. Such a model using categories or steps
to build the latent trait models can be applied and extended to other ordered-response
cases, by assigning to each step or category a different weight or parameter, in
order to assess the examinees’ partial knowledge. Samejima’s (1969) graded scores
model imtiated this kind of relevant research, which was followed by Samejima
(1973), Andersen (1973b, 1973c), Andrich (1978b, 1978d, 1982), Miiller (1987),
and synthesized directly to Samejima (1969) and expanded directly to Andrich (1978b)
by a new term ‘‘partial credit model’’ (Masters, 1982; Wright & Masters, 1982).
Other models used for rating scale data and counted events are the constrained
versions of the partial credit model (Masters & Wright, 1984; Wright & Masters,
1982). The derivation of Masters’ partial credit model is briefly reviewed in Yu
(1991c¢).

The partial credit model is formulated as an alternative to Andrich’s Rating
Scale Mcdel (Andrich, 1978a, 1978b, 1978c, 1978d, 1979) for situations in which
ordered response choices are free to vary in number and difficulty from item to
item. The primary goal of the partial credit model is to more precisely estimate
an examinee’s ability by assessing his/her partial knowledge on the wrong-responses
pattern in a given test. Thus, the application of the partial credit model is restricted
to tests or questionnaires that are constructed with an ordered-response format. Two
examples — one for building a ’fear-of-crime’ variable, the other for assessing the
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performance of pre-kindergarten children — using the partial credit model are shown
in Masters (1982), Masters and Wright (1982), and Wright and Masters (1982).
Other examples for banking test items which use the partial credit scoring method
to equate the test forms with ordered-response choices are illustrated in Masters
(1984) and Masters and Evans (1986). Besides, Smith (1987) shows that results of
assessing partial knowledge in vocabulary support O’Connor’s theory of vocabulary
acquisition. Dodd and Koch (1987) indicates that the usefulness of item and test
information in the partial credit model is not restricted to item or test selection,
but is also useful in actual construction of test items.

Although there is no evidence showing weaknesses in using the partial credit
model, there are some papers indicating that the Rasch model is not overall superior
to other models. For example, Divgi (1986) strongly objected to several properties
of the Rasch model, criticized its inappropriateness under several conditions, and
concluded that the Rasch model was not suitable for multiple-choice items.

In a comparison of model fits, Albanese and Forsyth (1984) showed that the
Rasch model failed to fit more items than did the two-parameter logistic model.
Hambleton and Traub (1973) found that the two-parameter model predicted score
distributions better than the Rasch model did. Goldman and Raju (1986), Waller
(1981), and Yen (1981) reported that the two-parameter model fitted attitude surveys
better than the Rasch model. Future applications may come to favor the use of
the two-parameter model. Andersen (1973a) also found that the Rasch model did
not fit the verbal part of SAT, and attributed the lack of fit to unequal item
discriminations.

Since the partial credit model as currently formulated is based on the Rasch
model, does it suffer from such weaknesses as criticized above? The answer to this
question is still unknown to us. But one thing completely inconvincible in using
the partial credit model is that partial credit model treats person ability estimtes
the same if persons’ raw scores were the same. This methodology and its underlying
estimating algorithm for model parameters are actually inadequate in real situations.
It is almost impossible for two persons to have identical response patterns as the
number of items increases in real testing situations, particularly in using partial-
credit-scoring directed test formats, even if they have the same raw scores. Therefore,
the treatment of same raw scores as having same estimates is not appropriate.

It is reasonable to be skeptical about such an assumption of equal discrimination
in the partial credit model that might be responsible for these weaknesses as criticized
above. If we take a “‘step discrimination’ parameter into account in the partial credit
model, it might improve the precision of person ability estimations and the model
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fit, and make it suitable for multiple-choice items. In addition, providing step, item,
and test nformation, it is useful in mastery testing to discriminate between mastery
and nonmastery groups. It is also useful for item selection and test construction.
Even for item banking and computerized adaptive testing, it implies a lot of
advantages and potentials. Among these advantages, only the estimation, fitness, and
information function of model parameters are selected to be studied in this exploratory
research.

II. Formulation of the Two-Parameter Partial Credit Model

The main purpose of this section is to generalize the one-parameter partial credit
model, that is, Masters’ (1982) partial credit model, to a two-parameter partial credit
model.

The proposed two-parameter partial credit model shares the same philosophy
with the one-parameter partrial credit model (Masters, 1982). Taking the step-
discrimination parameter, aij, into account, the one-parameter partial credit model
can be expanded to

X
exp X [aij(Bn —bij)]
=0 ‘
_ v . 1
7 nix mi k 2.1
¥ exp X [aij(Bn - bij)]
k=0 j=0

which means that the probability of person n scoring x on the mi-step item i is
a function of the person’s ability, Bs, on the test, the discriminations, aij, and the
difficulties, bij, of the mi “‘steps’” on item 1.

Estimation of model parameters

For notational convenience, it is assumed that aiOOEbiOEO, so that

0 —
x [a,B,—b)1=0.
j=0
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Because the two-parameter partial credit model cannot separate the step
discriminations from the estimations of ability and diffculty parameters, the conditional
maximum likelihood (CML) procedure is no longer appropriate for the estimation
of the two-parameter partial credit model parameters. That is, sufficient statistics
do not exist for the two-parameter partial credit model. Hence, the unconditional
maximum likelihood (UML) procedure is used instead. The unconditional maximum
likelihood procedure is based on Wright and Panchapakesan's (1969) estimation
algorithm for Rasch’s (1980) dichotomous model.

The likelihood function of the entire data matrix (X) is the continued product
of the probability, « , over all persons n and items i, that is,

N L
A= 11 H Wnix
n=1 i=1
N L «x,
exp L I L [aB,—b]
n=1 i=1 j=0
= (2.2)
N L m k
II. II { T eP T [a(B—b)] }
n=1 i=1 k=0 i=0 veeno
Taking logarithms,
A=logA
N L x, N L x,
= X ¥ Y aB- ¥ ¥ ¥ a;b;
n=1 i=1 j=0 n=1 i=1 j=0
N L m, k
E ¥ {log £ exp & [4;(B,—b)] } (2.3)
n=1 i=1 k=0 j=0 ’
For simplicity, let
m, k
F=log X exp L [aij(lin—b,.i)] (2.4)
k=0 j=0 "
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Taking the first partial derivatives of F with respect to B , a2, and b., respectively,
n ij ij
we obtain

m, k
9 { £ exp T [a,8,-b)]}
9F a, k=0  j=0

r exp X [aij(Bn—bij)]
=0

m, k k
r (¢ a;) exp z [aij(ﬁn —bij)]
=0 j=0 j=0

m, k
L exp Z [aij(ﬁn—bij)]
k=0 j=0

k
r anw (2.5)

m, k
—{ £ exp L [a,B —b)] }
9F da. k=0  j=0

Ja. my k
! L exp X [aij(Bn—bij)] }
k=0  j=0

m. k k
r { = (Bn—bij) exp .): [aij(Bn—bij)] }
=j j=0 j=0

m; k
L exp X [aii(ﬁn—bu)]
k=0 ji=0

m Kk m k
= X X (Bn_bij)“'mk: E. .E (Bn—b..)7ri
k=j j=0 k=j j=

(2.6)
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m, k
S { £ exp T [aB,-b)]}
3_1: _ 6bij k=0 j=0
b, m, k
! Y exp X [a(B —by]
k=0 =0
m k k
Y (—Xa)exp L [aij(Bn—biJ.)]
k=j j=0 j=0
- m, k
Y exp & [aij(Bn—bU.)]
k=0 j=
m, k m k
=—-X ¥ am,=-L r ., 2.7
k=j j=0 k=j j=

where the discrimination, a, and the difficulty, bij, of step j appear only in those

m ok
terms for which k=j, so that the derivatives of ¥ X (®) with respect to a,
k=j j=0 ‘
m k _
and bij truncate to be X X (e). This means that the probability of person n
k=j j=1

completing at least j steps in item i. The derivations of step parameters share the
same schemes of Masters’ (1982, pp. 164-165) partial credit model.

Then the first partial derivatives of N with respect to B, a, and bij,
respectively, are

a>\ L Xni L mi k

— = Y X a,— = x = AT n=1, ..., N (2.8)
B i=1j=1 " i=1k=1 j=

N N N m k

- = L X, n_Sijbij— r r X (Bn_bij)ﬂ-nik =1, Ly j=1, 1T,
da n=1 n=1 k=j j=1
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PN N m. k

1

— = —Sija.lj+ L T I am, i=1, ..., j=1, ..., m, (2.10)
db.. n=1 k=j j=1

y

where » . is the count of steps completed by person n on item i (that is, the raw
score of person n), and Sij is the number of persons completing step j on item
i (that is, the raw score of step j on item i).

The second partial derivatives of A with respect to Bn, a, and bij,
respectively, are

32\ L m, k m, k
=—X [ ¥ ( X aij)2 7rnik—( x = aijﬂ—nik)2 ] (2.11)
662n i=1 k=1 j=1 k=1 j=1
N m k m k
82)\ i , i )
=— Y { X [ ¥ (Bn—bij) ]"wnik—[ x z (Bn_bu)”nik] }
6212ii n=1 k=j j=1 k=j j=1
2.12)
EON N m, k m, k
=- X [ ¥ (X aij) 271'nik—( x z aij7rnik)2 ] (2.13)
ab’ n=1 k=j j=1 k=j j=1

Then person-and step-parameters can be approximately estimated by using the
Newton-Raphson iterative procedure, that is,

L x, L m k
z z IJ_ L r L aUPlnik
Brri=gt — i=1 =1 i=1 k=1 j=1 n=1, ..., N
n n L rn1 k mi k
— '21[k21(j213”) 2P‘mk—(kg1 LaPytl 2.14)
l_—— = = = =
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N N m. k
z xmBn—SUbii— z X X (Bn—bij)P‘nik
n=1 ~ n=1 k=j j=1
ﬁ_.l+l=ﬁt —
Y K N m, k m  k
- X {Z[ £ (B-b)°P .k—[ ¥ I (B -b)P _k]z}
. . n ] nt .. n 1] nt
n=1 k=j j= k=j j=1
i=1, ..., L; j=1, ..., m, (2.15)
N m k
- Sijaii+ = xr X aijP‘nik
Bt =B _n=l k:j j=1
i i N m, k m, k
- X[ X (X aij)zP‘“ik - (X X aiJ.P‘nik)2 ]
n=1 k=j j=1 k=j j=1
i=t, ..., L; j=1, ..., m 2.16)

where P'_ is the es:timated probability of person n responding irll step k to item
1 after t iterations, Bn‘ is the estimate of Bn after t iterations, éij i1s the estimate
of a, after t iterations, and Bij‘ is the estimate of bij after t iterations.

To get rid of indeterminancy in the scale origin, the mean step difficulty, b..,
is usually set equal to zero. And the asymptotic estimates of standard errors are
given by square roots of the reciprocal of the negative second partial derivatives

from the last iteration, that is

L m, k m_ k

SEB)={ L [Z£ ( & a)’P,—( L T aP )} 2.17)
i=1 k=1 j=1 k=1 j=1
N m, k m. k

SE@)={ L [LZ ( X B-b) )PP, ~( T £ (B -b)P ) }"
n=1 k=j j=1 k=j j=1

(2.18)

N m, k m k

SE®)={ T [Z ( L a)P,—( L T aP )]} (2.19)
n=1 k=j j=1 ~ k=j j=1
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Due to the use of UML procedure containing a slight bias (Andersen, 1973c¢), a
correction factor, (L-1)/L, is suggested to removing such a bias in the dichotomous
case (Wright, 1988; Wright & Douglas, 1977a, 1977b). In the present case, it is
suggested that the same correction may be appropriate for removing bias in
parameters when m, >1 (Masters, 1982).

Test of goodness-of-fit

Once Bn, a, b.lj are estimated, they are used to compute the expected scores
for every person on each item. Expected scores are compare to the observed scores;
their differences are residuals. The fit analysis of item i and person n is based
on such residual values (Ludlow, 1985, 1986; Ludlow & Hillocks, 1985).

The expected score for person n on item i is obtained from the following
equation

m
E. .= Y kP, (2.20)

where P is the estimated probability of person n passing the k™ step on item i,
and k is the step number, k=0,1,2, ..., m, (mi=3 for all i in this example). Then
a residual is defined by

R, =x, ~E, (2.21)

Such residuals can provide a check on the degree of fit of item and person estimates.
The expected variance for (2.20) can be computed as follows:

m
V = ¥ (k—E )P, (2.22)
k=0

Then residuals can be expressed in standard form as:

Xni - Eni
Z. = 5 (2.23)
(Vm)l/_
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There residuals have expected value zero and variance one. Thus, the Wald test
(1943) can be used as an index of fit analysis for item i, person n, and the whole
model.

For item i, the index is expressed as:

(Z ) (2.24)

n

£
I
I~z

which follows an approximate chi-square distribution with (N—1) degrees of freedom.
For person n, the index is expressed as:

L
W=zx (Z) (2.25)
i=1

which follows an approximate chi-square distribution with (L—1) degrees of freedom.

If person n answers in a manner consistent with his/her estimated ability and
step parameters within each item (for example, no guessing even if he/she is unable
to answer it), then the residuals will be small. Unexpected incorrect responses result
in large negative residuals, and unexpected correct responses result in large positive
residuals. Therefore, a large fit statistic, W., results when either unexpected
failures or unexpected successes, or both, have occurred. Under such an index, a
bad item is spotted. In like manner, a large fit statistic, W . results when person
n does not consistently answer test items (due, for example, guessing, cheating,
sleeping, fumbling, plodding, or cultural bias (Wright, 1977) ). Consequently, the
unusual responses can be detected for person n.

For testing the goodness-of-fit of the whole model, the Wald test of (2.24)
across item i or (2.25) across person n can be used as an index of model fit, that is,

L
. r (Z)y (2.26)

which follows an approximate chi-square distribution with (N—1) x (L—1) degrees
of freedom. A large fit statistic, W _, indicates that the model does not adequately
fit the data. Under such a circumstance, other models are suggested.
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Information functions

According to Birnbaum (1968), the step information function can be written
as

Piink

(2.27)

L®) =

where P is the probability of passing the k™ step on item i by an examinee with
ability level B, P’ is the slope of the step characteristic curve at ability level B,
and Q, ==1—P,. Equation (2.27) can be also precisely rewritten as

aZ

1
L (B)= (2.28)
exp[a,(B—b,)] { 1+exp[—a(B—b)] 32

Due to the additive feature of information functions, the item information function
is given by summing the step information functions; that is,

8

I® = £ L® (2.29)
k=1

And the test information function is given by summing the item information functions;
that is,

L m,
IB)= X z Iik(B) (2.30)
i=1 k=1

The standard error associated with a maximum likelihood estimate of ability
§ is given by the square root of the reciprocal of the value of the information
function at B. It is for this reason that information functions are important. Not
only can they be used to assess the precision of ability estimates, but they can also
be used in the design of tests. The step or item information function provides a
measure of the usefulness of that step or item when used for a particular ability
level. Therefore, the steeper the slope of the step or item characteristic curve, the
higher will be the step or item information function at that particular ability level,
and the estimate of that particular ability level will be more precisely determined.
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ITI. Dataset and Computer Program
Dataset

The dataset examined in this study consists of item data for freshman students
on an algebra test. Forty-eight algebraic items were administrated to 572 Algebra
1 students in a metropolitan school district in the midwest to assess achievement
in learning algebra. Three items are assumed to measure a single cognitive
component. Hence, by summing three successive items to form a component or
subtest, we created 16 component or subtest scores. These 16 component scores
are used in this dataset for illustration. Therefore, the dataset becomes a 572 X
16 raw data matrix, where each of the 16 component scorec ranged from 0 to 3.
Hereafter, we will treat these 16 component scores as 16 item scores.

The item analysis shows that the mean and standard deviation of 572 persons’
scores on these 16 items are 27.83 and 8.31. The inter-item correlations range from
132 to .424 and the average is .275. The coefficient alpha is .857 indicating that
these 16 items are highly consistent. Besides, the result from factor analysis shows
that one dominant factor accounts for 32.3% of variance. Other factors contributed
about equally to the variance. This feature fits Lord’s (1980, p.21) two suggestions
about a rough test of unidimensionality for a given test. Two such conditions are
(a) the first eigenvalue is large compared to the second and (b) the second eigenvalue
is not so much larger than any of the others. Hence, the current dataset is
approximately unidimensional. The assumption of unidimensionality of item response
theory holds for partial credit scoring in this case.

Computer program

A FORTRAN 77 computer program, called TPPCM (Yu, 1991b), is developed
by the present author to estimate, test goodness-of-fit, and provide information
functions for the two-parameter partial credit model parameters. This program adopts
a revised two-stage ‘‘back and forth’’ iterative procedure from Birnbaum (1968)
and Wingersky (1983) for the unconditional maximum likelihood estimation, or called
joint maximum likelihood estimation (JMLE), of these parameters. The intent is to
obtain a global maximum for the overall likelihood function. So the stopping rule
of iterations is set as the absolute value of increment in the log-likelihood function
for two successive iterative stages or cycles being less than 0.01.
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Because discrimination estimates for one or more steps may become very large
in an ill-structured dataset, and ability and difficulty estimates are arbitrarily decided
with no scale origins. Some constraints are used to handle such identification
problems. To decide the scale of ability estimates, B s are scale to be on the same
scale as difficulty estimates with a mean zero and a variance one. The average
of difficulty estimates, b.., is set to be zero, and the maximum value of
discrimination estimates is set to be 10.

This program is used to run such a dataset and has eleven major subroutines
and a top-down main program. It adopts some programming skills from numerical
analysis (Atkinson, Harley, & Hudson, ' 1989) and is designed for ease of
understanding (Koffman & Friedman, 1990).

This program as currently developed is to handle datasets with three-step items.
So the input and output formats are treated as fixed. For future use of dataset with
more, or less, than three-step items, the fixed format should be free and redesigned.

This program is also designed for easy use. Users only provide the numbers
of persons, items, and steps in the main program, as well as the chi-square values
for L degrees of freedom (L being the number of items) at p=.99 and p=.95 levels.
Prepare the input data (that is, preson by item matrix) with first five columns reserved
for identification numbers. Then put them together into this program. This program
will automatically print the following results: (a) initial step parameters, (b) maximum
likelihood functions for each stage and cycle, (c) estimates of step parameters (that
is, discriminations and difficulties and their standard errors), (d) fit statistics for
step parameters, (e) persons’ response patterns, raw scores, ability estimates, standard
errors of estimates, true scores, and fit statistics, (f) fit statistic for the whole model,
and (g) plots of category characteristic curves, step characteristic curves, and three
kinds of information curves.

Fer the detailed algorithm, readers are referred to Yu (1991a, 1991b).

IV. Results

The two-parameter partial credit model has been used to analyze the dataset.
Estimates of step parameters, their calibration errors, and statistics summarizing the
fit of item i and the whole model are given in Table 1. Category characteristic
curves (CCCs) are shown in Figure 1 and step characteristic curves (SCCs) are
shown in Figure 2 as tools for interpreting the estimation of step parameters.

Table 1 shows that there are many difficulty and discrimination patterns in
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this test. The fit statistics show that Items 10, 15, and 16 are probably bad items.
They may not be consistently constructed to partially scoring persons’ knowledge
levels. The overall fit statistic for the test is not significant. This indicates that the
two-parameter partial credit model fits the 16-item test.

Since some step difficulties or discriminations are small and some are large
in a given item, it is hard to say which item is more difficult or discriminating
than others. We will choose three quite different items to illustrate and discuss their
properties.

Estimation of step difficulty parameters

From Table 1 and Figure 1, three sets of parameter estimates for each item
determine a unique set of category characteristic curves for the four performance
levels in that item. The estimates b, biz, and b, are located at the intersections
of curves 0 and 1, 1 and 2, and 2 and 3. These three illustrative items have quite
different difficulty patterns. They represent different types of test items. Their features
are analyzed and discussed as follows.

For person n with ability estimate less than 0.017 logits the most probable
score on Item 4 is 0. Persons with ability estimates greater than 0.017 logits but
less than 0.178 logits will probably score 1 on Item 4. Persons with ability estimates
greater than 0.178 logits but less than 3.749 logits will score 2 on Item 4. To
score 3 on Item 4, a person needs an ability estimate greater than 3.749 logits.
Because both difficulites of the first and the second steps on Item 4 are very close,
this feature makes Item 4 like a two-step item. Besides, the difficulty of the third
step is much higher than the first two. Consequently, most persons whose abilities
are greater than 0.02 logits may probably score 2 rather than 1 on Item 4. Although
Item 4 loses one step function, it may be retained in order to give partial credit
to persons with partial knowledge. Table 1 also shows that the lack-of-fit stastistic
for Item 4 is not significant at «=0.05. Hence it is still a useful item.

Item 10 has a little different difficulty pattern from Item 4. The difficulites
of the first two steps are almost the same. Besides, the difficulty of the third step
is not far from the first two. Therefore, Item 10 is a near-binary item indeed. Persons
with ability estimates less than —0.047 logits will never achieve event the first step
of Item 10. Those whose ability estimates greater than 0.039 logits but less than
0.513 logits may have little chance to score 2 rather than 1 on Item 10. Only persons
whose ability estimates greater than 0.513 logits may score 3 on Item 10. Item
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Table 1

Difficulty and Discrimination Estimates from the

the Ordered-Response Data

Two-Parameter Partial Credit Model

Item by b bis aj1 ap a3 X 2
1 -0.841 -0.239 0.618 1.016 1.020 1.059 531.857
(.020) (019) (.019) (.012) (.012) (.013)
2 -0.744 0.739 1.040 1.070 0.998 1.148 347.527
(.027) (.023) (.023) (.016) (.016) (.017)
3 -0.065 0.197 1.632 1.149 1.135 1.288 482.327
(.024) (.022) (.023) (.018) (.018) (.020)
4 0.017 0.178 3.749 0911 0918 1.176 364.092
(.035) (.029) (.031) (021 (.020) (.024)
5 -1.754 -0.172 0.254 0.965 0959 1.002 483.054
(.020) (019 (.019) (.009) (.009) (.010)
6 -1.289 -0.317 -0.125 0978 0979 1.015 536.448
(.018) (.018) (.018) (.009) (.009) (.010)
7 -0.651 0.068 0.928 1.048 1.032 1.105 554.507
(022) (020) (.021) (014) (014) (.015)
8 -0.332 -0.302 0.402 1.086 1.101 1.126 456.487
(.018) (018) (.018) (.013) (.013) (.013)
9 -0.608 0340 0998 1.080 1.041 1.145 476.223
(.023) (.021) (.021) (.015) (.015) (.016)
10 -0.047 0.039 0513 1.152 1.149 1.187 765.096**
(.019) (.018) (.019) (.015) (.015) (.016)
i1 -0.631 -0.015 0.514 1.064 1.054 1.103 542.014
(.020) (.019) (.019) (013) (.013) (.014)
12 -0.836 0.014 0.351 1.050 1.036 1.086 444.002
0200 (019) (.019) (012) (.012) (.013)
13 -1.201 -0.786 -0.399 0.966 0983 1.009 502.251
(017 (017) (.017) (009) (.009) (.009)
14 -0.574 -0.696 -0.430 0.999 1.018 1.047 391.619
(017) (.016) (.017) (010) (.010) (.010)
15 0.730 0.026 -0.277 1.195 1214 1.242 1114.380%*
(017) (016) (017) (016) (.016) (.016)
16 -0.472 0.067 0.487 1.086 1.071 1.121 665.798%*
(.020) (.019) (.019) (014) (014) (.014)

Total : 8649.156

Note. Standard errors are shown in parentheses.
**p < .01. *p < .05
1ab=.520 (p < .001).
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Figure 1. Category characteristic curves for three illustrative items.
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Figure 2. Step characteristic curves for three illustrative items.
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10 loses its original function made up to give partial credit to persons with partial
knowledge. This implies that the most likely score on Item 10 is either 0 or 3.
This binary feature makes Item 10 a bad item from a partial credit model
perspective.

Table 1 shows that Item 10 is not a good item because of a significant lack-
of-fit statistic at «=0.01. The significant lack-of-fit statistic reveals that large positive
residuals occur and large unexpected successes exist on Item 10. This may be due
mainly to its different step difficulties. Since the difficulties of the first two steps
are the same and the third step is not every difficult either, Item 10 is, in fact,
a near-binary item. Besides, each step is almost equivalently discriminating. Item
10 loses its function of differentially discriminating different ability levels.
Consequently, Item 10 becomes indistinguishable and useless in identifying partial
knowledge (see analysis below too). This item may not be well constructed to
partially score different knowledge levels. It needs to be remodified or redesigned.

Item 15 is a quite different item from the above two. The difficulties of three
steps are in reverse order. That is, step 1 is more difficult than step 2, and step
2 is more difficult than step 3. From the point of view of difficulty in problem
solving, persons who pass the first step (that is, the most difficult step) will certainly
pass the second and the third steps (that is, the easier steps) too. There is no reason
for person n, whose ability is higher than 0.730 logirs, to fail the easier step subtaks
(that is, the second and the third step subtasks). So the most probable score on
Item 15 should be 3 or 0. Since the number of persons who achieve this item is
not dichotomously distributed, Item 15 may not be consisently designed to measure
the same (cr the same directional) latent trait as other items do. This item needs
to be totally revised or redsigned.

Table 1 shows that the lack-of-fit statistic of Item 15 is significant at a=0.01.
Large positive residuals also show that a large number of ungxpected successes occurs
on Item 15. This means that Item 15 is really a bad item. This item might not
have been developed intentionally to score for partial knowledge. Since persons who
pass the first step will always pass the latter two steps, and the step discriminations
are not so different from each other, the major determinatnt of persons’ performance
on Item 15 completely depends on the step difficulties only. Because of the reversed
order in difficulties, Item 15 may lose two step functions served as partially grading.
This may or may not cause serious misfit problems. If step discriminations were
significantly different from each other, the item function might still fit its constructed
purposes, and Item 15 become a good item or, at least, not bad an item. If step
discriminations were nearly the same as each other as in the current case, an item
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that lost its function might lose its fitness to the test purposes. But this reality still
needs to be proved by checking the item content, test instruction, and step
discriminating features (see analysis below t0o).

Estimation of step discrimination parameters

As shown in Table 1 and Figure 2, three sets of parameter estimates for each
item define a specific set of step characteristic curves for the four performance levels
in that item. The discrimination estimates a . a,. and a, and difficulty estimates
b,, b,, and b, jointly mark be the spots whose corresponding probabilities are
exactly equal to .5, and whose difficulty locations are the same as in CCCs (that
is, Figure 1), through the intersection of pairs of successive curves. These three
curves scparate the performance levels on the whole item into four specific areas.
Each area bounded or separated by any two successive curves represents each
probability of person n’s various scores X (ranging from O to 3) on item i

The step characteristic curves should be interpreted in the same way we did
the category characteristic curves, but slightly differently from our usual concept
of item characteristic curves (ICCs) for a binary item. That is, for any given ability
estimate, the sum of ordinate which vertically cross the four areas should be equal
to one. Figure 2 indicates that the most probable scores for middle ability estimates
on Item 4 are either 0 or 2, because the probability of areas bounded by step 1
and step 2 is very small. It also shows that the probable score for higher ability
estimates is either 2 or 3, depending on how large ability estimate a person
has, and lower ability estimates O, because their areas are larger than the middle
one.

In ltem 10, persons with middle ability levels will have some chance to score
2 rather than 1. Because the area bounded by curves 2 and 3 is larger than that
bounded by curves 1 and 2. The probable scores for a higher ability person are
3s and « lower ability person Os. This case is similar to Item 4.

Similar interpretations can be applied to Item 15 too, but two things are
different Firstly, the interpreation should be in the opposite direction. Secondly,
middle ability persons will have more chance to score 2 than to score 1 on Item
15. Higher ability persons will have a lot of chance to score 3 (that is, right-hand
side area), and lower ability persons will have a lot of chance to score O (that
is, the left-hand side area), because the area bounded by curves 1 and 2 is larger
than that bounded by curves 2 and 3. Other areas are similar to those of Item 10.
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From Figure 2 we know that step discriminations will make the difference
between each subtask performance of persons at any ability level possible. Step
characteristic curves with different discriminations will Jointly determine the probability
of partial scores of persons at any possible ability level, when the model holds.
This is the potential of the two-parameter partial credit model on interpretation of
partial scores.

For any item with closer step difficulties, step discriminations may confusedly
discriminating different ability persons. This makes the areas partitioned by step
characteristic curves become mixed and entangled with each other. It also makes
the interpretation of performance out of the intertwined areas ambiguous and
unreliable. Consequently, such an item loses its partially scoring function. Therefore,
a purposely clear and well-functioned item should not have intertwining  step
characteristic curves. Other well-constructed and normally functioning items will have
salient step characteristic curves and make the partitions of performance space more
obvious.

Features of step parameters

From Table 1, Figure 1, and Figure 2 we know that these three illustrative
items reveal much of the real situation in educational testing. The item steps may
not be ordered in difficulty. The k® step In an item may or may not be more
difficult than the (k-1)", depending on the subtasks in the item, and quite
regardless of the order in which the steps must always be taken. This phenomenon
shares the same features of the one-parameter partial credit model.

Besides, step discriminations really exist. They may not be same for each step
of each item. Their existence can explain what ability levels really can be measured
by a given item (see interpretation below too) and show how subtasks discriminate
different ability levels. Consequently, the estimation of person abilities can be
improved by the use of the two-parameter partial credit model.

Both Figures 1 and 2 help us interpret how the items behave and how persons’
performance levels are identified. For any given ability level, the sum of probabilities
for scoring x (x ranges from 0 to 3 in this test) is always equal to one. This basic
assumption coupled with step characteristic curves, as well as step discriminations,
make the partitions of performance space clearer. From the performance space on
each item, educators (or psychologists) will more easily evaluate students’ (or
subjects’) partial knowledge levels (or partial latent traits) and identify at which step
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their problem solving may go wrong. This feature will make the design of cognitive-
component test and the evaluation of learning results more efficient and powerful.

Estimation of ability parameters

Some estimates of ability parameters, their calibration errors, response patterns,
raw scores, true scores, and indexes of fit of person n are selected to be discussed
and are shown in Table 2. Partitions of different ability levels by different step
difficulties and peaked step information are drawn in Figure 3. Item and test
information functions which more precisely measure some ability levels are illustrated
in Figure 4. Both figures are used to help interpret the estimation of ability
parameters.

There is a negative relation between ability estimates and their standard error
estimates: that is, the higher the ability estimates, the smaller the standard error
estimates will be. This means that the estimates of higher abilities are quite precise,
but the estimates of lower abilities may be imprecise. Hence, the fit statistics of
lower ability estimates may be significant and show their responses to be unusual.
Because true scores are monotonically realted to ability estimates, the higher the
ability estimates, the larger the true scores will be.

The estimates of ability parameters of some selected persons ordered in raw
scores ranging from 4 to 47 (the minimum score is 0 and the maximum is 48)
are shown in Table 2. Form Table 2 we know that persons with the same raw
scores will not necessarily have the same ability estimates, although the differences
among them are slight. This is due to their slightly different response patterns and
different step discriminations. This phenomenon indicates that the one-parameter partial
credit model might not be appropriate in estimating person ability by assuming that
persons with same raw scores will have same ability estimates. In addition, standard
errors are decreasing in their magnitudes with increasing ability estimates. This means
that the higher ability estimate is more precise and reliable when measured by the
computer program, TPPCM (Yu, 1991b). Because true scores are monotonically
related to ability estimates, so their magnitudes are increasing with ability estimates.

Table 2 aslo shows that lower ability and some higher ability persons may
not consistently answer the test items. Since large, significant fit statistics occurred
in lower ability persons, large positive residuals reveal that their responses are
inconsistent. Large, significant fit statistics occur in some higher ability persons,
indicating that their negative residuals are large. This means that their responses
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Table 2

Some Selected Ability Estimates Jrom the Two-Parameter Partial Credit Model

Id Raw True

# Response patterns  scores B, Se scores X 2

64 0000110000001001 4 -3.260 426 1.19 27.746%*
20 0012101100011000 8 -2.324 301 3.04 44.116**
306  2100000012110100 9 -2.103 281 3.79 48.202%*
33 0020002001002121 11 -1.741 247 543 77.289%*
107 1210010112101001 12 -1.590 232 6.29 27.229%%*
160  2100102210002200 13 -1.444 219 7.25 17.350
193 0111211012101200 14 -1.293 206 8.40 14.652
283 2010011001222002 14 -1.285 206 8.46 16.946
280 0101222111101300 16 -1.009 .185 10.96 8.806
398 1302112100103021 18 -0.736 .166 13.99 17.379
383 0102120012112221 18 -0.733 166 14.02 11.437
291 1201120112023301 20 -0.486 151 17.24 6.945
149 1221120012222202 22 -0.244 .138 20.74 6.125
327 1211231200023202 22 -0.248 138 20.67 5.227
349 2112122110232202 24 0.015 128 24.23 4,935
50 2101121212221332 26 0.223 119 27.88 5.613
394 0111231112213232 26 0.222 .119 27.86 5.634
409  2122122222311221 28 0.447 d12 31.12 8.315
128  1321322320223301 30 0.673 .106 34.04 11.662
441  2212132322222220 30 0.675 .106 34.07 9.049
449  1111233223323302 32 0.913 101 36.69 12.467
166 3222322322113330) 34 1.164 097 38.97 19.774
500 2111333312323321 34 1.165 097 38.98 11.944
464  2232331223113332 36 1.434 .094 40.94 21.325
536  3322333111333313 38 1.728 .091 42.59 50.058**
487  2322232223233333 40 2.073 .089 44.02 19.571
95 3332322223332333 42 2.488 .087 4522 42.836%*
563  2232333323333333 44 3.037 .085 46.24 26.535%
496  3321333323333333 44 3.037 .085 46.24 18.409 -
475  3332333333333333 47 3.772 .085 47.62 3.227

*p < 0l. *p < .05
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Figure 3. Partitions of performance levels with different step difficulties
and peaked step information which correspond to the same locations of
step difficulties.
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Figure 4. Ranges of ability estimates which correspond to peaked item
and test information.
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are unusual. Their unexpectedly successful and unsuccessful responses may be due
to other reasons, for example, guessing, cheating, sleeping, fumbling, plodding, or
cultural bias (Wright, 1977). This table also shows that most persons with middle
to high ability estimates answer the test items consistently. Because their residuals
are smal’, the corresponding fit statistics are not significant. This means that most
middle to higher ability persons consistently respond to the current test items.

From Figure 3 we know that some particular ability estimates which correspond
to the peaked step information function have the same corresponding locations of
step difficulties. Therefore, performance levels are partitioned into four areas as
shown in Figure 3. Most of lower ability persons are not expected to achieve any
score on most items. But they get several ls and 2s on their response patterns.
Such unexpected successes result in large positive residuals. Consequently, fit statistics
indicate that their responses may not be consistent. On the other hand, some higher
ability persons are expected to achieve every item. But they get some 2s and 1s
on some easier items. Such unexpected failures result in large negative residuals.
Hence, fit statistics show that their responses are not consistent either. Other persons
are expected to achieve items which correspond to their ability estimates. So that
residuals are very small and no fit statistics signal their unusual responses. Their
responses are more consistent than those of lower ability and some higher ability
persons.

Figure 3 also shows that different steps discriminate different ability levels.
Such a fact is shown on the same locations of step diffculties. Each step measures
the same ability estimates as the step difficulties to which it corresponds. Therefore,
Figure 3 is a map that shows how different ability areas (or performance levels)
are partitioned by different step discriminations. Thus, residual analyses and fit
statistics can be rechecked by visualizing persons’ response patterns and their
corresponding locations of ability estimates. If some responses occur in unexpected
areas, such responses may be questionable. Their residuals may be large, and hence
their fit statistics may be significant. For example, person #33 is supposed to achieve
only the first step on Item 5 and score 1, as can be seen by checking the location
of his/her ability estimate on this map. But he/she gets 2s on four items and ls
on three items whose difficulties are beyond his/her ability to handle. Hence, his/her
unexpectedly successful responses on these items must be questionable. Person #536
is supposed to achieve every step, except the third step of Item 4, according to
the location of his/her ability estimate on this map. But he/she gest 1s on four
items and 2 on two items whose difficulties should be under his/her control. Hence,
his/her unexpectedly failed responses on these items have to be doubtful. From both
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examples we know that Figure 3 provides a good help of interpreting ability
estimations.

Information functions

The particular ability levels that correspond to peaked item and test information
functions are shown in Figure 4. From Figure 4 we know that the test information
function precisely measures ability levels ranging from —.20 to .20 logits. Although
different items may precisely measure different ability levels, they all center on the
average difficulty estimate. That is, this test is more suitable for use in measuring
middle ability persons. The estimation of ability parameters in middle ranges will
be more precise than those at the extremes of the ability continuum.

The black bars shown in Figure 4 are the ranges of ability levels which
correspond to peaked item and test information. They mean that the range of ability
levels inside such a bar is precisely measured by a given item. Becuase the item
information is summed from the step information, the ability levels which each item
precisely measured are different from item to item. Taken as a whole, since the
test information is the sum of the item information functions, the middle ability
levels are most precisely measured by this 16-item test. The evidence is also shown
in Figure 4.

Generally speaking, the two-parameter partial credit model fits this test. That
1s to say, each item can be used for screening different ability levels, although three
items did not function well and needed to be revised. Especially, this test is suitable
for use in scoring partial knowledge of middle ability persons. For lower ability
persons, this test may not function well. Because most items are too difficult for
them, their unexpected successes on some items may be due to other factors (as
noted by Wright, 1977) that the test is not intended to measure. For some higher
ability persons, this test may not work well either. Because most items are easy
for them, unexpected failures on some items may be due to some personal problems
(for example, fatigue, boredom, mindlessness, anxiety, stereotype, etc.) that the test
cannot measure. Hence, persons’ partial knowledge can be more precisely assessed
by the use of the two-parameter partial credit model.

V. Discussion

From the analysis of an empirical example shown in the preceding section,
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we know that step discriminations really exist. That is, the discrimination for each
step of each item will not be same as the one-parameter partial credit model assumed.
This finding not only proves the possibility of the two-parameter partial credit model,
but also answers Masters’ (1982, p. 172) interpretation that item steps [that is,
difficulties| which interact with ability level to become ‘‘poorly or too discriminating”’
result in a misfit item. In fact, it is step discriminations, not step difficulties,
interacting with person ability which highlights an item misfit or a person’s response
to be unusual or inconsistent as expected. This interactive and discriminating feature
shown in Figure 3 makes person performance different and cause residual analyses
to be examined. These deviations from expected values are summarized in the
interpretation of fit statistics.

When step difficulties are very close to each other for an item, step
discriminations may easily interact with different ability persons. Step characteristic
curves may cross each other for such an item. This makes the interpretation of
performance levels partitioned by step characteristic curves difficult. Persons whose
ability estimates go beyond the intersection of two step characteristic curves may
score more or less points on such an item. The reversed situation can be applied
to someone whose ability estimate is below the intersection of two step characteristic
curves. Hence, the performance levels bounded by intertwined step characteristic
curves become very unstable. Several factors may contribute to this interaction of
step discriminations and person abilities, for example, the content of test item, the
instructions for test administration, and some nuisance variables described in Wright
(1977). Such an interaction may result in a misfit item. A misfit item not only
loses its original function made up to partially score persons’ partial knowledge,
but also contaminates the test of goodness-of-fit of the whole model. Therefore,
a misfit item deserves to be remodified or redesigned for future use.

When step difficulties are not close to each other for an item. step characteristic
curves may also intertwine with each other, depending on how step discriminations
are distributed. But this situation will not make the interpretation of performance
levels partitioned by step characteristic curves ambiguous and unreliable. Because
partitions of ability areas are more obvious than those described above, the
interpretation of goodness-of-fit of items will be easier than before. In addition,
step difficulties may not be increasingly ordered in step sequence. This is basic
feature of the partial credit model. But we have to indicate that a reversed order
in step difficulties may make the item lose its constructional purpose and easily
result in a misfit item, simply cooperating with different step discriminations.

From the above analysis and discussion, we may induce an important feature

— 245 —



The Journal of National Chengchi University Vol. 66, 1993

about a good item. An item with intertwined step characteristic curves may not
necessarily be a bad item. But a good item with a clear and well-constructed purpose
should not have intertwining step characteristic curves. A good item should have
salient step characteristic curves and make the partition of performance space more
obvious.

Although writing test-items is more of an art than a science, several suggestions
may be made when creating such an art in partial scoring items. First, identify
salient subfactors, major steps, or conscepts (totally, call them ‘‘components’
for short) of an item purported to measure. Second, locate the underlying
hierarchical relationships or orders among these components of an item. Third,
design any possible format that randomly mixes these components. So far as the
persent author knows, the multiple-choice item (including the Likert-type scaled
questionnaire) with partial credits assigned to each choice and the open-ended
eassay or test with expers’ judgments or scoring are the most suitable formats.
This also depends on designers’ writing skills. Fourth, conduct a preliminary test
to collect values of step parameters and test goodness-of-fit for such items. Fifth,
revise bad items and save good items for future use. These suggestions may help
to create good partial scoring items.

The existence of step discriminations can both improve the estimation of person
abilities and information functions for item selection. Persons with the same raw
scores will not necessarily get the same ability estimates. This is due to their different
response patterns and different step discriminations and difficulities. Since step
discriminations are provided, the estimation of ability parameters can be more
precisely determined than the one-parameter partial credit model does. In addition,
not as the one-parameter partial credit model does — the peaked step information
always corresponds to the zero logit on the ability continuum, the two-parameter
partial credit model has different locations on the ability continuum which correspond
to the peaked step informations. Scuh locations are the same as the step difficulities.
This finding can help interpret how person performance is discriminated by item
steps. For example, by mapping persons’ abilities in Figure 3 and checking their
response patterns, the unusual responses are easily spotted by eye. And how many
scores they should have are also easily understood by merely watching how many
steps they have passed.

The Wald test (1943) used in testing of goodness-of-fit of the whole model
may not be the most appropriate approach. Although this test provides an easy way
to analyze response residuals, an extreme misfit item or several inconsistently
answering persons will inflate this statistic, because the fit statistic of the whole
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model is the sum of fit statistics of all items or all persons. One item wiht an
extremely large chi-square value will easily explode such a summation and make
the fit statistic of the whole model significant. Consequently. a significant lack-of-
fit statistic showing that the two-parameter partial credit model does not fit the dataset
may be quite misleading.

If we modify such an extremely bad item and readminister such a test to
the same sample, the fit statistic may show that this model still fits the dataset.
Therefore, when we use this fit statistic to check the model-fitness, we have
to consider the contribution of fit statistics from other items to the whole at the
same time. If the lack-of-fit statistic for the whole model is significant and some
items also have significant lack-of-fit statistics, or many persons with unusual
responses and significant lack-of-fit statistics, then we may say that this model
does not fit the dataset. Otherwise, we have to trace back which items have
large lack-of-fit statistics, delete or revise them and readminister them to the
same persons and see what happen to the whole model. If the lack-of-fit statistic
is still significant, we may say that this model really does not fit the dataset.
Revising the bad items and readministering such a test should be suggested in fitting
the model to the dataset.

Finally, one warning that should be mentioned here regards to the method
used for creating the 16 items. The component scoring method, often used in
modern analysis of human cognitive abilities with a latent trait model (for example,
Andrich, 1985), treating combined items as subtests or components may suffer
from two weaknesses that violate the basic assumptions of item response theory.
One is that there are several ways to combine items into a subtest or a component.
No way is certain to be better than others. The other is that, unless theories or
reasons are provided, no ways guarantee which combination will not violate the
independence assumption. Since several items are combined together to be a subtest
or a component, each component score will depend on how many original successtul
items there are. Hence, any possible component score (ranging from 0 to m,
where m. is the number of steps) may not be exclusively and independently
determined for each item.

Fortunately, each of the original 48 items were equally weighted to measure
a person’s proficiency in algebra. Hence, three successive items summed to be a
“‘big item’’ that purport to measure the amount of a latent trait (that is, component)
are reasonable for creating the current dataset. Factor analysis also shows that this
test is dominated by a major factor. Thus, the basic assumptions of item response
theory hold in the application of the two-parameter parrtial credit model to the
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current dataset. However, we still have to be aware of the basic assumptions of
item response theory, no matter how this model fits the dataset or not.

V1. Summary and Conclusion

The assessment of partial credit has a long-term history in the literature of
psychometrics. Many solutions based on classical test theory have been suggested
and proposed. Thereafter, due to their failure in satisfying rigorous theory background
and precise estimation, new methodologies based on modern test theory are currently
being examined.

Since Masters (1982) proposed a Rasch-type partial credit model, it became
the best-known model to score persons’ partial knowledge. Unfortunately, several
weaknesses criticized above may be occurring in real testing situations too. Hence,
the present author takes the step discrimination into account in Masters’ partial credit
model and expands it to the two-parameter partial credit model as follows:

X
exp L [aij(Bn—b”)]
j=0 |

nix m. k
Y exp X [:;1ii(Bn —bii)]
k=0 j=0 '

The maximum likelihood estimation solutions and a FORTRAN 77 computer
program, TPPCM, are described and used to estimate such model parameters. An
illustrative example is also shown and analyzed to show how model parameters are
calibrated, goodnesses-of-fit are tested, and information functions are provided. Hence
the major purposes of this research are accomplished.

From the analysis and discussion of this illustrative example, four conclusions
can be drawn from the findings of this research as follows.

I. The existence of the two-parameter partial credit model is confirmed. This
model becomes an alternative model to score persons’ parrtial knowledge or calibrate
any questionnaire or test with ordered-response formats.

2. Step discriminations provide a good help in partitioning persons’ performance
levels, hence the fitnesses of person ability estimates on the map of performance
space are easily spotted.
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3. Step information functions are uniquely and differently determined from
step discriminations of each item. Hence it implies potentials for item and test design,
selection, and construction.

4. The two-parameter partial credit model shares the same features of the one-
parameter partial credit model, except that of specific objectivity and parameter
separability.
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