DATABASE ABSTRACTIONS =
DATA ABSTRACTIONS + SEMANTIC INTEGRITY
CONSTRAINTS ABSTRACTIONS

Heng-Li Yang

i3 £

o 4 0 R AT SR T A A WS O R AT B Y RE - R1T —EE RS
VU355 L TE BE BN R i R P (R IR P AR R R - — (A R Y B
FERLE THSHE BERIY R T AARESCRMMEIRG . E000 - FIERM 0 T AREHRIE
@@@ﬁréﬂ%%kJ&rﬁf%Eﬁmﬂ%%kJ°réﬂm%kjﬁu
%Eﬁﬁﬁ% A SR - R - AR B BT R LB LU
TIRESTEMEIRG | N - SR WA R E 2 RoR R SR R
AT U AR SR P PR A S AR B T

g AGESTRIRE AR EEREER R | BRI
K 3

Abstract

Traditiona! datadase design techniques focus on structure and efficiency. However,
a relational database in fourth or fifth normal form may still represent little of the
data semantics. A database schema should consist of both structures and semantic
integrity constraints (SICs). Similarly, database abstractions should also include data
abstractions and semantic integrity constraints abstractions. Data abstractions have been
applied to conceptualize the structure part of the real world. This paper proposes new
abstractions to model the semantic integrity constraints. It would reduce the number
of SICs, which must be represented explicitly and fully, and help the SIC organization
and management.

Keywords: Semantic Integrity Constraints; Data Abstractions: SIC Abstractions; Database
Design, Enhanced Databases

1 Introduction

Traditionally, a database schema includes only the structural specifications. For

* R B AR ﬁ" AR LT

— 189 —

The Journal of National Chengchi University, Vol. 75, 1997

example, if the relational model is adopted, a database designer would only specify
the names of tables, the names and widths of columns in each table, etc. The data
semantics are missing. Semantic integrity is concerned with the logical meaning (i.e.,
the intension) of stored data and preserving the correctness of database contents even
though users and application programs try to modify it incorrectly [11,10]. A database
schema should consist of structures and semantic integrity constraints (hereafter abbreviated
as SICs) [46,12,50]. The structure part tells us relatively little information other than
the basic structure — what elementary items of data are grouped into what larger units;
but the SIC part provides information about all allowable occurrences — current and
future [29]. These SICs express data integrity semantics, that is, the part of the meaning
of stored data needed to determine correctness. They are invariant restrictions on the
static states of the stored data and the state transitions caused by the primitive operations:
insertion, deletion, or update. They express what is and is not allowed in the part
of the universe that is represented by the stored data.

An abstraction is a simplified description of a system that suppresses specific
details while emphasizing those pertinent to the problem. Database abstractions should
consist of data abstractions and SIC abstractions that are proposed in this paper. Data
abstraction concerns abstraction applied to the structure part. SIC abstraction concerns
abstraction applied to semantic integrity constraints.

There are a lot of benefits, such as enhanced integrity, easier query formulation,
and database design localization, can be received by incorporating data abstractions
(e.g., [6,25]). It is therefore an important construct in most of semantic data models
[18]. However, in literature, researchers might have different perspectives or use the
same terminology to imply different things [16], which causes confusion.

Traditionally, there has been little interaction between researchers in the areas
of Al and databases. Recent trends have shown that techniques or ideas developed
in each of these areas may be adapted for use in the other (references, e.g.,
[47,20,21,48,27,4,1,2,39,23,32]). There are several ways to integrate expert systems
and database systems. Researchers [21,1] have classified these integrated systems into
three classes: (1) intelligent databases (enhanced databases); (2) enhanced expert systems;
(3) inter-system communication (coupling of existing expert systems and databases).

There are some ways to enhance databases by expert system capabilities or methods,
e.g., deductive database approach [14,22], incorporating more semantic integrity constraints
or rules into database [29,50,38,40,37,49]. One major related research for incorporating
semantic integrity constraints or rules is on the new database type: object-oriented
databases (e.g., [15,3,19]). The term “database” in this paper in fact represents an
enhanced relational database. This research retains the traditional relational model

— 190 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

because of its popularity, but proposes to include the necessary SICs in addition to
relation structures in a relational schema. Under this architecture, a database management
system should have an integrity maintenance subsystem to enforce SICs. A more closely
related research is on active relational databases [38,40,37,49,28,7]. However, the aspects
of SIC design, organization and management have been seldom discussed. In addition,
their SIC representations are not precise.

The objectives of this paper is twofold. The first objective of this paper is to
review and synthesize data abstractions from the literature to clarify the confusion.
The second objective is to explore the possibilities of applying the important abstraction
construct to the SIC specifications — SIC abstractions. Benefits of incorporating SIC
abstractions are such as, facilitating SIC design, organization and management.

The paper organization is as follows. The remainder of this section provides an
introduction to the SIC Representation model. Section 2 performs the review and
clarification of data abstractions. Section 3 proposes the new SIC abstractions. Applying
SIC abstractions, Section 4 introduces a new idea to represent the SICs in a database
schema. This idea will apply SIC abstractions and the SIC Representation model. It
would help not only incorporate SICs in a database schema, but also represent and
manage them in the populated database. Its subsection 4.2 gives some examples. Section
5 concludes this paper.

1.1 SIC Representation Model

This subsection only gives some introduction to a new SIC representation form.
The details of this SIC Representation model are described in [50,51,42].

In literature, there are a number of researchers proposing languages to represent
SICs (see [50,51] for good review). However, their representations are not precise.
Su & Raschid [43] and Shepherd & Kerschberg [34] suggest that “constraints” must
explicitly specify both declarative semantics as well as process oriented or operational
semantics. Declarative semantics correspond to logical formulas describing relationships
between objects in a database. The information needed to check that these relationships
are true or to maintain these relationships is the operational semantics. Therefore, any
single SIC representation in the schema should contain the following components in
order to express its features precisely [50]:

1. Certainty Factor: measures the certainty of the SIC.
2. Object: represents the data object to which the SIC applies.

— 191 —

The Journal of National Chengchi University, Vol. 75, 1997

3. Operation Type: specifies the type of database manipulation operation (insertion,
deletion, or update) to which the SIC is applicable.

4. Precondition: specifies the general state of the database that makes the SIC
relevant,

5. Predicate: is an assertion specifying something that must be true about the
object after the operation.

6. Violation Action: specifies how the system to behave if the predicate is false
when the SIC is checked.

Each SIC is then represented as:

SIC-Name
CERTAINTY F (Certainty Factor)
FOR O (Object)
ON T (Operation Type)
IF C (Precondition)
ASSERT P (Predicate)
ELSE A (Violation Action)

In terms of the usual production rule syntax, the above whole statement (except
for SIC-Name) is interpreted as:

with certainty F
IF (O,T,C) THEN
(IF NOT P THEN A)

SIC-Name is used as an identifier that conveys some meaning of a SIC. It is
not essential to the Representation model.

The following example, named as project_employee_minimum_salary for
convenience, will be used for illustration. Suppose that there is an Emplyoyee entity,
and a Work_for relationship in the Entity-Relationship (E-R) model. A SIC might state
“if an employee works for any project, then his (her) salary should be greater than
$10,000". By applying the algorithms proposed in [50,51], this general SIC can be
decomposed into several sub-SICs represented in the above format. Each sub-SIC is
operation-dependent and only relevant to a single object. In addition to the related
sub-SICs on the update of Work_for’s primary key, two sub-SICs are:

— 192 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

— one for Employee.Salary on update;
— one for Work_for on insertion

The first one may be represented as the following.
Employee.Salary-U-RshipDepEntVal-(Work_for)

CERTAINTY certain

FOR Employee.Salary

ON update

IF 3 Work_for, rship_occ_part (Work_for, “Employee”, Employee)
ASSERT Employee.Salary > 10000

ELSE reject

Interpretation: The first line is the SIC name. It indicates that this is a
SIC for Employee.Salary on update and it is a “RshipDepEntVal”
type because it asserts that the existence of a relationship (Work_for)
depends on the value of an entity attribute (Employee.Salary). The
rship_occ_part is an assertion that stands for “relationship occurrence
participant”. In this example, it is used to specify the Work_for occurrence
in which the currently checked Employee occurrence participates with the
entity type, “Employee”. This SIC states that with 100% certainty, when
an Employee.Salary occurrence is to be updated, if the Employee participates
in at least one Work_for, his or her Salary must be greater than $10,000.
Otherwise, the update operation is rejected. Note that the database designer
might choose “propagate (delete (Work_for))” as the violation action. In
that case, the propagation action might imply that if the organization could
not afford the minimum salary for an employee, it could not require that
the employee be associated with any project (so the current Work_for
occurrence must also be deleted).

Unfortunately, a complete set of SICs are not easily specified because of the
complexities of data semantics. Furthermore, the number of SIC specifications represented
in the above format might become so huge that a database designer could not specify
them all.

— 193 —

The Journal of National Chengchi University, Vol. 75, 1997
2 Data Abstractions

In the following, three kinds of data abstractions are reviewed and clarified:
inclusion, aggregation, and association [50]. They are discussed here for two reasons
as follows.

* First, in literature, these three have been the most common abstractions. However,
their definitions, especially for the aggregation and association, are confusing.
For example, the association abstraction is sometimes referred to as membership,
grouping, partitioning, or cover aggregation [31].

* Second, the proposed new SIC abstractions in Section 3 are similar to these
three abstractions.

Other data abstractions (e.g., materialization [17]) or semantic relationships (e.g.,
case relationships, antonyms [41] are not discussed here.

2.1 Inclusion Abstraction

The inclusion abstraction concept [16] encompasses classification, generalization,
and specialization. Classification is a form of abstraction in which a type is defined
as a collection of occurrences with common properties. Specialization occurs when
every occurrence of a type is also an occurrence of another type. Specialization is
indicated by the term, is_a, that is, S is_a G, where S is a subtype and G is a supertype.
It is possible to have generalization or subset hierarchies [44]. A generalization hierarchy
occurs when a type is union of non-overlapping subtypes. A subset hierarchy occurs
when a type is union of possibly overlapping subtypes.

Property inheritance, which means that attributes, associated relationship and
imposed SICs of the super-type are inherited by each subtype (or a type’s are inherited
by its occurrences), is the most important characteristic of the inclusion abstraction.
In the case of the classification abstraction (related occurrences to types), the property
inheritance principle has been enforced traditionally by any DBMS. This paper assumes
that DBMS (either in the E-R model or the relational model) would also automatically
implement property inheritance for the specialization abstraction. That is, the principle
of redundancy minimization, i.e., properties that can be inherited from another entity
type via an is_a relationship should not be stored explicitly [16], has been followed.

— 194 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

Otherwise, the inherited attributes, relationships and imposed SICs would need to be
explicitly and redundantly stored for each specific subtype and other SICs would be
required to assure that these properties have been really “inherited” !

2.2 Aggregation Abstraction

Aggregation is an abstraction that allows a relationship between objects (i.e.,
attributes, entities, relationships) to be considered as a higher level object [35]. The
term, component_of, is used to indicate the aggregation, that is , C component_of A,
where C is a component and A is an aggregate.

This paper classifies aggregation abstractions in the E-R model into five types
as follow. Note that the classification here is more complete and clearer compared
to the discussions about aggregations in literature [6,25,18,16,35,30,33,36,45].

1. Anribute aggregation is the abstraction in which an attribute may be defined
as the aggregation of attributes.

2. Simple entity aggregation is the abstraction in which an entity is defined by
aggregation of attributes. This is the traditional entity concept.

3. Complex entity aggregation is the abstraction in which an entity is defined
by aggregation of attributes, other independent entities, and probably sets. For
example, an entity type Department could be thought of as an aggregation
of its Name, Budget (both are attributes), Manager (an independent entity),
and Employee (a set). The aggregate object does not really “own” them as
components. This is an abstraction used in a semantic data model, SHM+[5].
One should note that in SHM+, there is no “relationship” construct, its
aggregation abstraction indeed implies a number of implicit “relationships”
between the aggregate object and its components.

4. Relationship aggregation is the abstraction in which a “relationship” is obtained
by aggregation of entities and some attributes. For example, a relationship type
Reserve could be thought of as the aggregation of Person, Hotel, and Time.
It is just another way to represent a relationship.

5. Composite entity aggregation is the abstraction in which an entity contains

— 195 —

The Journal of National Chengchi University, Vol. 75, 1997

other dependent entities and some attributes as real components. The aggregate
entity “owns” these other entities [24]. That is, the existence of these other
entities is dependent on their aggregate and are owned by exactly one aggregate.
Although some researchers argue that in aggregation the inheritance is upwards
[5,26,31], this paper arguse that it is probably more suitable to state that the
aggregate “owns” components and components “own” their attributes, so the
aggregate “owns”, rather than “inherits”, components’ attributes. For example,
we may state “a car owns engine.weight, engine.brand, and brake.brand, etc.”.

2.3 Association Abstraction

Association is the abstraction in which a collection of member objects is considered
as a higher level (more abstract) set object [S]. The term member_of is used to indicate
the association, that is, M member_of S, where M is a member and S is a set. Brodie
[5] states “as with aggregation, the inheritance goes upward” and some researchers
(e.g., [26]) even state that association may support both upward and downward
inheritance. This paper takes the position that there is no inheritance in association.
That is, set is distinguished from type and a “set” in association is considered to represent
a pure mathematical set.

Before Brodie mentioned association, dos Santos et al. [9] had already proposed
a useful data abstraction “correspondence”, which was later referred to by Furtado
and Neuhold [13] as “grouping”. Grouping is more general than association. It creates
a group of sets, i.e., grouping is an abstraction that defines a new entity type in which
each occurrence is a set formed from a collection of occurrences of the source entity
type.

According to the correspondence idea in [9], a group of sets is formed by an
indexing mechanism. Applying the idea of correspondence, This paper classifies association
abstractions in the E-R model into three types as follow. Note that the classification
here is more complete and clearer compared to the discussions about association in
literature [6,25,18,16,30,33,36,45,5,9].

1. Natural Set Association: A set, is defined to contain all occurrences of an
entity M type. Classification is the indexing mechanism to form a set. For
example, we have: “Employee member_of Employees” where Employees is a
set consisting of all Employee occurrences in the employee type.

— 196 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

If these sets only have attributes that are derived from those of their members,
their explicit representations may be redundant and may not be efficient after
considering the enforcement of SICs. However, there may be a priori attributes,
for example, Employees.Representative. In the whole database, there are a number
of such sets, e.g., Employees, Departments. Since they may have different derived
attributes and a priori attributes, they form different entity set types containing
a single occurrence, respectively. This accociation abstraction relationship,
member_of, should not have its own attributes and need not be explicitly
represented.

2. Indexing Derived Set Association: This is the original correspondence abstraction
discussed by dos Santos et al. [9]. The indexing mechanism can be an indexing
attibute that is an attribute of the indexed entity type, or an indexing entity
type that is related to the indexed entity type via an indexing relationship type.
An example is cosets of employees of the same age, where Employee.Age is
the indexing attribute for the indexed entity type Employee. If the indexing
attribute is an attribute that disallows null (*‘unknown”), the cosets obtained
by grouping would form a partition of the indexed entity type occurrences.
Another example is shown in Figure 1, where DS is the indexing derived set
(e.g., cosets of employees who work_for the same project), M (e.g., Employee)
is the indexed entity type, I (e.g., Project) is the indexing entity type, and
R (e.g., Work_for) is the indexing relationship. Grouping is a powerful abstraction.
There may be more than one indexing type, which can be combined with indexing
attributes as the indexing mechanism. Although we can get a group of sets
from the indexing mechanism, we may only be interested in some of these
(e.g., the set of employees who work_for project pl100).

Figure 1: Grouping: Member (M), Derived Set (DS), Indexing Entity (I),
Indexing Relationship (R)

— 197 —

The Journal of National Chengchi University, Vol. 75, 1997

In general, this association abstraction relationship, member_of does not have
its own attributes and need not be explicitly represented. This kind of set has
some attributes derived from the indexed entity type, some are defined a priori.
Two kinds of attributes in a set are important for membership derivation: the
indexing attribute (e.g., Employee.Age) and the primary key of the indexing
entity type (e.g., Project.ld).

. Enumerated Set Association: There is no indexing mechanism in this kind

W

of association because the database designer does not know or does not care
about the indexing entity types or attributes. The set membership can only
be explicitly enumerated by the member_of relationship.

3 SIC Abstractions

Three kinds of SIC abstractions are proposed: aggregation, specification, and
association.

SIC Aggregation Assume that O/ and T/ are the data objects and operation types
for SIC-1, respectively; and Oi and Ti, where i=2,3,..., are the data objects and operation
types for SIC-i, respectively. SIC-1 (called aggregate-SIC) is the aggregation of other
SICs (called component-SICs) if all the following hold:

* Ol contains all Oi’s as components;

* the operation 7/ on O/ can be conceptually thought of as the conjunction of
operations 17 on O,

* component-SICs and aggregate-SIC are sub-SICs decomposed from the same
general SIC.

The certainty factors of these component-SICs and aggregate-SIC are the same.
Each component-SIC can exist on its own. It has its own precondition, assertion and
violation action. The violation action of a component-SIC will be taken in the context
of its own enforcement.

An aggregate-SIC may have its own assertions and violation action. The enforcement
of an aggregate-SIC can be simulated by checking all of its component-SICs and its
own assertions. If an object violates any component-SIC, the violation action of the
aggregate-SIC will be taken. Thus, a special logical predicate could be used (e.g.,

— 198 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

checkcomSIC)' to refer to all its component-SICs by their SIC names in the oggregate-
SIC and avoid having to write the same assertions explicitly for O/ on T1I.

One example is that the domain constraint on insertion of an entity can be simulated
by checking the domain constraint of updating its attributes (from unknown values
to some values). We would have SICs asserting not-null, value, unique, etc., for each
of its attributes on update. These assertions need not be repeated for the entity on
insertion.

SIC Specialization Assume that O/ and T/ are, respectively, the object and operation
type for SIC-1; and O2 and T2 are, respectively, the object and operation type for
SIC-2. SIC-2 is the specialization of SIC-7 if 02 is a specialization (i.e., sub-type)
of Ol, and TI = T2,

The specialized SIC would inherit assertions from its parent SIC with the proper
variable substitution (O2 for O/). Thus, representation of the specialized SIC can be
omitted unless it has special restrictions. The specialized SIC’s own assertions can
only refine its parent SIC’s assertions, but not overwrite them. For example, suppose
that the database designer defines SIC-1 for Employee.Salary on update: “(Employee.Salary
> 1000) N\ (Employee.Salary < 1000000)”. The SIC representation for Manager.Salary
on update is not needed unless there are special restrictions (e.g., “(Manager.Salary
> 20000)”).

SIC Association A SIC is a set of other SICs if conceptually the enforcement of
the set-SIC is the same as the enforcement of all of its member-SICs and nothing
more. The violation action of the set-SIC is dummy because if an object violates any
member-SIC, the violation action of that member-SIC will be taken. The certainty factors
of these member-SICs and set-SIC are the same. Thus, we can use a special logical
predicate (e.g., checkmemSIC, see Section 4.2) to refer to all its member-SICs by their
names in the set-SIC and avoid having to write the same representations of the member-
SICs explicitly for the object asserted by the set-SIC.

The concept of SIC association may be useful for SIC enforcement in a DBMS.
For example, all SICs for the same object on the same operation may be grouped
as a set-SIC or several set-SICs according to their certainty factors and/or scheduling
requriements. This kind of set-SIC is not a new type of SIC. However, in SIC

! For example, checkcomSIC (“Entity* Attribute*-U-DomNull”, EntAttOcc) could be used to
refer to a component-SIC called “Entity* Attribute*-U-DomNull” (see Section 4.2) for
restricting the attribute EntAttOcc not-null.

— 199 —

The Journal of National Chengchi University, Vol. 75, 1997

specifications, conceptually, a SIC on updating the primary key of an entity (or
relationship, or relation) can be simulated as two ser-SICs that refer to SICs for deleting
the corresponding old entity (relationship, or relation), and inserting a corresponding
new entity (relationship, or relation), respectively.

Advantages of SIC Abstractions The benefits of incorporating SIC abstractions are
the following:

* Facilitating database design: SIC abstractions permit the database designer
to suppress the attention to common SICs and to emphasize those SICs specially
pertinent to the object. For example, by SIC aggregation, the database designer
need not specially consider domain constraint on insertion of an entity. He (she)
can pay attention to others. Similarly, by SIC specialization, while specifying
SICs for an entity subtype (relationship, or relation), the database designer need
not specify SICs of its super-type that are also relevant to it. The number of
explicit SIC representations is thus reduced.

* Helpful for SIC verification: It is necessary to verify a set of SICs for
nonredundancy and consistency. Redundancy occurs in a set of constraints if
some constraints subsume other constraints. Constraints are consistent if there
exists a batabase state or a state transition that is allowable with regard to
all of the restrictions. SIC specialization is useful for verification since a
specialized SIC can only refine its parent SICs, but not overwrite them.

* Useful for SIC organization and management: SIC abstractions allow us to
organize the SICs in a hierarchy. It also facilitates SIC maintenance and
enforcement (e.g., by SIC association).

4 Generic SICs

By applying the above abstraction concepts, we can reduce the number of SICs
that must be specified explicitly using the full six components. The concept of generic
SICs is introduced to reduce the number of required explicit representations even further.
Assume we have the following generic object rypes:

— (1) Entity* is the generalization (i.e., union) of all entity types that are defined

by the database designer. Entity* Attribute* is the generalization of all

— 200 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

attributes of all entity types that are defined by the database designer.
— (2) Relationship* is the generalization of all relationship types that are defined
by the database designer. Relationship*.Attribute* is the generalization of
all attributes of all relationship types that are defined by the database designer.
These generic object types are conceptual modelling objects. They do not actually exist
in a database. That is, neither data definition operations nor data manipulation operations
will actually be applied to them. However, we can write some common SIC types
(e.g., domain constraints) for them. These SIC representations for generic object types
can be called generic SICs (SICs for specific object types can be called specific SICs
in contrast).

The precondition component of a generic SIC includes logical predicates to indicate
clearly the contexts where the SIC type is applicable (e.g., the fact that two entity
types are exclusive) and/or identify the related information (e.g., its primary key, etc.)
of the object type for which the SIC type applies. These logical predicates contain
some uninstantiated variables. For example, Primary_Key is a variable in the logical
predicate entity (“Entity*”, Primary_Key,...). These variables will be instantiated when
a specific entity type (e.g., Employee) has the constraint information to satisfy the
precondition and inherit the SIC. (For example, the above Primary_Key can be
instantiated to be “Empld” if the database designer has specified Employee as an entity
type with the primary key “Empld”, that is, the assertion entity (“Employee”, “Empld”,...)
has been given. Most SIC types (e.g., two entity types are exclusive) only apply to
some specific object types. The precondition component of such a generic SIC indicates
the conditions for the specific object type where the SIC type is applicable. A few
SIC types (e.g., domain constraints) are common to all entity types. In that case, the
precondition component of a generic SIC is used to indentify the relevant object in
this contex so that its variables can be instantiated with proper values when a specific
object type inherits the SIC.

Suppose that we keep the constraint information for specific object types as logical
predicates in the database (e.g., in the data dictionary). Also suppose that the DBMS
would support SIC inheritance properly. Since all object types defined by the database
designer are sub-types of these generic object types, if they satisfy the preconditions
of some generic SICs, these SICs would be applied to them by the principle of SIC
specialization. Thus, these generic SICs serve as “templates” for common SIC
representations and are expected to be inherited by specific object types. We would
need only one representation for each SIC type (e.g., two entity types are exclusive
or domain constraints) in a database regardless of the number of specific object types

to which the SIC type applies.

— 201 —

The Journal of National Chengchi University, Vol. 75, 1997

The idea here is similar to the following simple case. In a database, there are
entity types Employee, Customer, Supplier, etc. Though the Person entity type does
not actually in the database, we can write some SICs for Person, which would be
inherited by the specific entity types (e.g., Customer). The level of our Entity* type
is still higher than Person.

The advantage of this approach is to reduce the possibly huge number of explicit
representations of SICs so that the conceptual structure and future maintemamce
(management) of SICs become easier. In addition, since generic SICs can be pre-defined
in an automated database design system, the consultation to elicit SICs would be more
efficient.

4.1 Usefulness of the Representation Model

The reasons of why the SIC Representation model is introduced in Section 1.1
are obvious now. It is necessary to identify the object and operation type when applying
SIC aggregation or specialization abstractions. The explicit component separation in
the SIC Representation model helps identify these components easily. In addition, the
representation of generic SICs relies heavily on the precondition component. Most SIC
types (e.g., two entity types are exclusive) only apply to some specific object types.
The precondition component of such a generic SIC indicates the conditions for the
specific object type where the SIC type is applicable. A few SIC types (e.g., domain
constraints) are common to all entity types. In that case, the precondition component
of a generic SIC is used to identify the relevant object in this context so that its variables
can be instantiated with proper values when a specific object type inherits the SIC.

4.2 Representation of Generic SICs

This sub-section introduces the representation of generic SICs for some common
SIC types. It is assumed that the database has been designed using E-R model. Therefore,
the generic SICs are also represented in terms of E-R schema. The corresponding ones
in relational model can be obtained by transformation (references to {50,51]) and are
not described here. In all of the following cases, the principle of SIC specialization
allows us to omit the explicit SIC representations for specific object types if we have
the representations for generic object types.

— 202 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

Domain constraint Representation using SIC Aggregation and Specialization By
the principle of SIC aggregation, domain constraints on insertion of an entity/
relationship occurrence can be simulated by applying the domain constraints of all
its attributes. There are three separate sub-SICs for restricting not-null, uniqueness,
and nonvolatility, respectively, and another sub-SIC dealing with data-type, format,
and value. For restricting the insertion of an entity, we need one sub-SIC, which would
call the above related sub-SICs (except for the nonvolatility) for asserting attribute
domain constraints. In total, the five sub-SICs are sufficient to represent all domain
constraints regardless of the number of entity types and their attributes in a database!
The number of SICs that must be specified explicity is dramatically reduced through
using the SIC abstraction concepts. Similary, five sub-SICs are needed for relationship
types and their attributes in a database.

One sub-SIC for restricting not-null is listed here for illustration. Here, the predicate
attribute(Entity/Relationship_Type, Attribute_Name, Domain_Name, Special_Value_Range,
Null?, Unique?, Candidate_Key_Attribute?, Changeable?) is used to specify information
about an attribute of an entity or relationship type. Each attribute in the database has
such a logical predicate that is stored somewhere, e.g., in the data dictionary. Domain_Name
is its value domain definition. Special_Value_Range is its specific value range information
(e.g., Employee.Salary has the domain of money with the specific value range between
$2,000 and $100,000). The four binary variables, Null?, Unique?,
Candidate_Key_Attribute?, Changeable? indicate whether the attribute is allowed to
be null, unique, a part of a candidate key, and changeable. The is_not_null (x) predicate
is evaluated to be true if and only if x is not “null”.

Entitv* Attribute*_U_DomNull
CERTAINTY certain

FOR Entity*. Attribute*
ON update
IF attribute (“Entity*”, “Attribute*”, Domain, SpecialVRange,
Null?, Unique?, Key?, Changeable?),
Null=no
ASSERT is_not_null (entity*.Attribute*)
ELSE reject

This SIC will be inherited by a specific attribute of an entity type, which Null?
has been specified to be “no”. It will be checked on updating the attribute to disallow
the new value to be null. We only need one such a generic SIC representation no

— 203 —

The Journal of National Chengchi University, Vol. 75, 1997

matter how many attributes in the database have such a restriction.

The representation of generic SIC for domain constraints on insertion of an entity
occurrence is not listed here. Rather, its brief description is given as follows. It includes
a “set” predicate to retrieve all its attribute names. Then, for each attribute value, three
proper sub-SIC names (e.g., Entity* Attribute* U_DomNull as above) are constructed,
and sequentially three checkcomSIC (Component_SIC_Name, Checked_Occurrence)
predicates are used to call proper sub-SICs (one of them is as above) to check whether
Checked_Occurrence satisfies the restrictions: (1) not-null, (2) uniqueness, and (3) lawful
data-type, format, and value. If any of these assertions is not satisfied, the insertion
is rejected.

Primary Key Constraint Representation using SIC Association and Specialization
In the traditional E-R model and relational model, there is no internal identifier
(surrogate) to represent an occurrence of an entity, relationship, or relation. Rather,
some attribute or combination of attributes is used as the primary key. Unfortunately,
this overloading causes the semantics implied by an update of a primary key to
be ambiguous 7~ it may imply a simple update of an attribute or it may imply the
deletion of an “old” entity (relationship or tupe) followed by an insertion of a “new”
one. Without further information, the SICs related to deletion and insertion must be
enforced.

Therefore, a number of SICs must be specified to capture the possible inconsistent
states of a database when updating a primary key. The SIC association and specialization
concepts will be used ot reduce the number of explicit SICs required. During the database
design phase, if a SIC is identified for the insertion (or deletion) of a relationship
and there should be a sub-SIC for checking the update of a part of its key, its SIC
name is added into an associated SIC_Name_Set of the affected key attribute. The
SIC_Name_Sets of key attributes of a relationship type may be different. However,
in the case of a SIC that is relevant to the insertion (or deletion) of an entity type,
all affected key attributes of the entity have the same SIC_Name_Set.

For example, suppose that we have a SIC such as “if an employee is assigned
to a project, he (she) must participate in an insurance plan”, and assume the key
of the Employee and Project are Empld and Projld, respectively. The involved two
relationship types are Assigned_to connecting Employee to Project, and Insure connecting
to Employee to Insurance. The name of the sub-SIC restricting an insertion of the
relationship Assigned_to would be inserted into the SIC_Name_Set of a special logical
predicate (associated_PKSICs_I) for the key attribute Assigned-to.Empld. The general
format of this special predicate is as follows:

— 204 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

associated_PKSICs_I (Relationship_Type, PKAnt, SIC_Name_Set)

For example, associated_PKSICs_I (“Assigned_to”, “Empld”, SIC_Name_Set)
Note that since the non-sharing entities are not concerned, the update of another key
attribute Assigned_to.Projld of the relationship is not restricted. Similarly, the name
of another sub-SIC restricting a deletion of the relationship Insure, is inserted into
associated_PKSICs_D for Insure. Empld. The general format of this special predicate
is as follows:

associated_PKSICs_D (Relationship_Type, PKAut, SIC_Name_Set)

For example, associated_PKSICs_D (“Insure”, “Empld”, SIC_Name_Set)

Two set-SICs are needed for the key attributes of Relationship*. They are listed
here for illustration. By the principle SIC association, the enforcement of such a sez-
SICs is the same as the enforcement of its all member-SICs.

Though these two SICs seem to be for any attribute of any relationship, only
those having primary key SICs (i.e., having associated_PKSICs_D or associated_
PKSICs_I information) are relevant. In either SIC, the “set” predicate is used to retrieve
all member SIC names that belong to SIC_Name_Set. Then, the predicate checkmemSIC
(Member_SIC_Name, Checked_Occurrence) is used to call each member SIC to check
whether Checked_Occurrence satisfies it. The violation action of the member SIC will
be taken if the Checked_Occurrenece violates it. The new/old function references the
new/old value of the referenced object after/before checking the SIC.

Relationship*.Attribute*-U-PrimaryKeyDel
CERTAINTY certain

FOR Relationship*. Attribute*

ON update

IF associated_PKSICs_D (“Relationship*”, “Attribute*”, SIC_
Name_Set)

ASSERT set {SIC_Namelbelongs—to (SIC_Name, SIC_Name_Set)},
checkmemSIC (SIC_Name, old (Relationship*))

ELSE reject

Relationship* Attribute*-U-PrimaryKeylns
CERTAINTY certain

FOR Relationship*.Attribute*
ON update
IF associated_PKSICs_I (“Relationship*”, “Attribute*”,

— 205 —

The Journal of National Chengchi University, Vol. 75, 1997

SIC_Name_Set)

ASSERT set {SIC_Namelbelongs_to (SIC_Name, SIC_Name_Set)},
checkmemSIC (SIC_Name, new (Relationship*))
ELSE reject

Similarly, there are two ser-SICs for key attributes of Entity*.

Other Common SIC Representation using SIC Specialization A number of other
common SIC types can be similarly represented by using generic SIC “templates”.
Usually, these SICs types can be described in the “closed form” of predicates, that
is, without further arbitrary restrictions. If a DBMS finds the related information on
a specific entity, relationship or attribute type, e.g., symmetric (Married-to) indicating
its symmetry, the related sub-SICs would be automatically inherited from the generic
types.

In {50] generic SICs for twenty-five common SIC types are listed. Generic SICs
for two SIC types are described here for illustration. The first is Absolute Maximum
Cardinality Constraint of an Entity Type, the second is Incidence Constraint. It
is assumed that DBMS stores the following predicate information for each entity or
relationship type.

* The predicate entity(Entity_Type, Primary_Key, Composite_Key_Set,
Absolute_Max_Cardinality) is used to describe Entity_Type. Primary_Key specifies
its primary key. Composite_Key_Set is a set comprised of all composite keys
(including primary and non-primary composite keys). Absolute_Max_Cardinality
specifies the maximum number of occurrences that are allowed in the Entity_Type.

* The predicate relationship_participant(Relationship_Type, Entity_Type,
Min_Cardinality, Max_Cardinality) specifies Relationshiv_Type’s participant,
Entity_Type, and the usual relationship cardinalities relative to it. That is,
Min_Cardinality and Max_Cardinality specify the maximum and minimum
number of occurrences of the Relationship_Type in which each Entity_Type in
which each Entity-Type occurrence is allowed and is required to participate,
respectively. For example, an employee is allowed to participate in 10 projects
and is required to participate in at least one.

A subscript notation is used to simulate the “cursor” in Date’s UDL [8] to emphasize
that a SIC is enforced on an occurrence although it is specified intensionally for an

— 206 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

entity/relationship/relation type. Since a SIC is enforced on an occurrence, if there
are other occurrences of the same entity, relationship or relation type referred in the
precondition or predicate component, different subscripts will be used to distinguish
them. The one to be checked is referenced by attaching a default subscript 0, e.g,
E,. Variables with subscripts other than O (e.g., E)) represent any occurence of
the same object (e.g., E) type. (If there is only one occurrence (i.g., the one to be
checked) referred in the precondition and predicate components, the default subscript
0 is omitted.)

In addition, the following manipulation predicates are used in these two examples:

+ The predicate “rship_occ_part (R, Role Type, E)” is used to evaluate whether
an entity occurrence E participates in a relationship occurrence R with the Role-
Type.

» The predicate ent_occ (Entity_Type, E) is used to evaluate whether an E is
an occurrence of Entity_Type, or used to fetch any occurrence E from Entity_Type
depending on its variable instantiation.

« The predicate rship_occ (Relationship_Type, R) is used to evaluate whether R
is an occurrence of Relationship_Type, or used to fetch any occurrence from
Relationship_Type depending on its variable instantiation.

Absolute Maximum Cardinality Constraint of an Entity Type An absolute maximum
cardinality constraint of an entity type restricts the maximum number of occurrences
of an entity type that can exist in a database. For example, we might only allow 10000
students or 10 departments in a database. If it is infinite, it is not a restriction. The
notation “*” is used to denote either the infinite, or the case that it is not infinite
in the mathematical sense, but there is no restriction on the maximum cardinality.

Only one generic SIC representation is needed to for all entity types regardless
of the actual number of entity types in the database! The count function calculates

the number of existing occurrences (including the one to be inserted) of the specified
entity type in the database. This number must be less than or equal to the maximal
cardinality.

Entiry*-1-AbsCard
CERTAINTY certain
FOR Entity*

— 207 —

The Journal of National Chengchi University, Vol. 75, 1997

ON insertion
IF entity (“Entity*”, Primary_Key, Composite_Key_Set,
Abs_Max_Card),
Abs_Max_Card # «*»

ASSERT 3 Entity*,
count (Entity"l‘) = Abs_Max_Card
ELSE reject

Incidence Constraint Incidence constraints are very fundamental in the database though
only few commercial DBMS enforce them. An incidence constraint requires that the
existence of a relationship occurrence always depends on the existence of the participating
entity occurrences. That is, a relationship occurrence is allowed to exist only if the
participating entity occurrences exist.

Two sub-SICs are needed for this SIC type. The first is to assert that while inserting
a relationship occurrence, its participated entity occurrences must exist; otherwise, the
insertion is rejected or the system tries to insert some entity occurrences that participate
in this relationship. The second is to assert that while deleting an entity occurrence,
it must not still participate in any relationship occurrence; otherwise, the deletion is
rejected or the system propagates to delete its related relationship occurrence.

Relationship*-1-Incidence-(EntType)
CERTAINTY certain

FOR Relationship*
ON insertion
IF relationship-participant (“Relationship*”, EntType,
Min_Cardinality, Max_Cardinality)
ASSERT =) EntOcc, ent_occ (EntType, EntOcc),
rship_occ_part (Relationship*, EntType, EntOcc)
ELSE reject or propagate (insert (EntType, EntOcc))

Entity*-D-Incidence- (RshipType)
CERTAINTY certain

FOR Entity*

ON deletion

IF relationship-participant (RshipType, “Entity*”,
Min_Cardinality, Max_Cardinality)

ASSERT E RshipOcc, rship_occ (RshipType, RshipOcc),

— 208 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

rship_occ_part (RshipOcc, “Entity*”, Entity*))
ELSE reject or propagate (delete (RshipOcc))

A DBMS should include an integrity maintenance subsystem to enforce SICs.
The number of such generic SICs stored in a database would depend on the complexity
of the application.

5 Conclusions

This paper claims that database abstractions should consist of data abstractions
and SIC abstractions. Data abstractions have been reviewed and clarified. The abstraction
concept has been applied to SICs to have SIC abstractions — aggregation, specialization
and association. All aspects of data abstractions can not be directly applied. There
are new interpretations in terms of the characteristic components of SIC representations.
One practical implication of these new SIC abstractions is to facilitate SIC design
(specifications), verification, organization and maintenance.

A further research area is to design an automated database design system to assist
the database designer to incorporate the necessary SICs and represent them using the
above SIC abstractions in a database schema. It would be an expert system with rich
heuristics and sophisticated algorithms to elicit SICs and transform them into suitable
representations.

References

1. Al-Zobaidie, A., and Grimson, J.B., “Expert Systems and Database Systems: How Can They
Serve Each Other? », Expert Systems, Vol. 4, No.l, february 1987, pp. 30-37.

2. Al-Zobhaidie, A. and Grimson, J.B., “Use of Metadata to Drive the Interaction Between
Database and Expert Systems,” Information and Software Technology, Vol. 30, No.8, October
1988, pp. 484-496.

3. Beeri, C. and Milo, T., “A Model for Active Object Oriented Database,” in Proceedings
of the 17th International Conference of Very Large Data Bases, Barcelona, September 1991,
pp. 337-422.

4. Bic, L. and Gilbert, 1., “Learning from Al: New Trends in Database Technology,” Computer,
March 1986, pp. 44-54.

5. Brodie, M.L., “Association: A Database Abstraction for Semantic Modelling,” in Chen, P.P.
(ed.), Entity-Relationship Approach to Information Modelling and Analysis (the Second
International Conference on E-R Approach), North-Holland, Amsterdam, 1983, pp. 577-
602.

— 209 —

10.

1.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22

23.

24

25.

The Journal of National Chengchi University, Vol. 75, 1997

. Brodie, M.L., “On the Development of Data Models,” in Brodie, M.L., Mylopoulus, J.,

and Schmidt, J.W. (eds.), On Conceptual Modelling, Spring-Verlag, Berlin, 1984, pp. 19-
47

. Charkravarthy, S. and Mishra, D., “Snoop: An Expressive Event Specification Language

for Active Databases,” Data & Knowledge Engineering, Vol.14, 1994, pp. 1-26.

- Date, C.J., An Introduction to Database System, Vol. II, Addison-Westey, Reading, Mass,

1983.

. dos Santos, C.S., Neuhold, E.J,, and Furtado, A.L., “A Data Type Approach to the Entity-

Relationship Model,” in Chen, P.P. (ed.), Entity-Relationship Approach to System Analysis
and Design, North-Holland, Amsterdam, 1980, pp. 103-119.

Fernandez, E.B., Summers, R.C., and Wood, C., Database Security and Integrity, Addison-
Wesley, Reading, MA, 1981.

Fong, E. and Kimbleton, S.R., “Database Semantic Integrity for a Network Data Manger,”
in AFIPS Proceedings of National Computer Conference California, 1980, pp. 261-268.
Frost, R.A., Database Management Systems, Granada Publishing Ltd., London, 1984,
Furtado, A.L. and Neuhold, E.J., Formal Techniques for Data Bases Design, Springer-Verlag,
Berlin, 1986.

Gallaire, H, Minker, I., and Nicolas, J., “Logic and Databases: A Deductive Approach,”,
Computing Surveys, Vol. 16, No. 2, June 1984, pp. 153-174.

Gehani, N. and Jagadish, H.V., “Ode as an Active Database: Constraints and Triggers,”
in Proceedings of the 17th International Conference of Very Large Data Bases, Barcelona,
September 1991, pp. 327-336.

Goldstein, R.C. and Storey, V.C., “Data Abstraction: The Impact on Database Management,”
Working Paper, Faculty of Commerce and Business Administration, The University of British
Columbia, 1991.

Goldstein, R.C., and Storey, V.C., “Materialization,” I[EEE Transactions on Knowledge and
Data Engineering, Vol. 6, No. 5, 1994, pp. 835-842.

Hull, R. and King, R., “Semantic Database Modelling: Survey, Applications, and Research
Issues,” ACM Computing Surveys, Vol. 19, No. 3, September 1987, pp. 201-260.
Jagadish, H.V. and Qian, X, “Integrity Maintenance in an Object-Oriented Database,” in
Proceedings of the 18th International Conference of Very Large Data Bases, Vancouver.
British Columbia, Canada, 1992, pp. 469-480.

Jarke, M. and Vassiliou, Y., “Coupling Expert Systems with Database Management Systems,”
in Artificial Intelligence Applications for Business, Reitman, W.R. (ed.), Ablex Publishing,
Norwood, NJ, 1984, pp. 65-85.

Jarke, M. and Vassiliou, Y., “Databases and Expert Systems: Opportunities and Architectures
for Integration,” in New Applications of Data Bases, Gardarin, G. and Gelenbe, E. (eds.),
Academic Press, London, 1984, pp. 185-201.

Kellogg, C., “From Data Management to Knowledge Management,” Computer, Vol. 19,
No. 1, January 1986, pp. 75-84.

Kennedy, A.J. and Yen, D.C., “Enhancing a DBMS Through the Use of an Expert System,”
Journal of Information System Management, Spring 1990, pp.55-60.

Lee, K. and Lee, S., “An Object-Oriented Approach to Data/Knowledge Modelling Based
on. Logic,” in Sixth International Conference on Data Engineering, California, February
1990, pp. 289-294.

Mattos, N.M., *Abstraction Concepts: The Basis for Data and Knowledge Modelling,” in

— 210 —

Database Abstractions = Data Abstractions + Semantic Integrity Constraints Abstractions

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Eighth International Conference on Entity-Relationship Approach, 1988, pp. 331-350.
Mees, M. and Put, F. “Extending a Dynamic Modelling Methods using Data Modelling
Capabilities: The Case of JSD,” in Spaccapietra, S. (ed.), Entity-Relationship (Fifth International
Conference on E-R Approach), North-Holland, Amsterdam, 1987, pp. 399-418.
Missikoff, M. and Wiederhold, G., “Towards a Unified Approach for Expert and Database
Systems, in Expert Database systems (Proc. of the 1st International Workshop), Kerschberg,
L. (ed.), Benjamin/Cummings, Reading, 1986, pp. 383-399.

Morgenstern, M., “Active Databases as a Paradigm for Enhanced Computing Environments,”
in Proceedings of the 9th International Conference of Very Large Data Bases, Florence,
Italy, 1983, pp. 34-42.

Morgenstern, M., Borgida, A., Lassez, C., Maier, D., and Wiederhold, G., “Constraint-Based
Systems: Knowledge about Data,” in Kerschberg, L. (ed.), Expert Database Systems (Proc.
from the Second International Conference on EDS), Benjamin/Cummings, Menlo Park, CA,
1989, pp.23-43.

Peckham, J. and Maryanski, F., “Semantic Data Models,” ACM Computing Surveys, Vol.
20, No. 3, September 1988, pp. 153-189.

Potter, W.D. and Kerschberg, L., “A Unified Approach to Modelling Knowledge and Data,”
in Meersman, R.A. and Sernadas, A.C. (eds.), Data and Knowledge (DS-2), North-Holland,
Amsterdam, 1988, pp. 265-291.

Rundensteiner, E.A., “The Role of Al in Databases versus the Role of Database Theory
in AL, in Artificial Intelligence in Databases and Information Systems (DS-3), Meersman,
R.A., Shi, Z., Kung, C-H, (eds.) North-Holland, Amsterdam, 1990, pp. 233-252.
Schrefl, M., Tjor, A.M., and Wagner, R.R., “Comparison — Criteria for Smantic Data Models,”
in International Conference on Data Engineering, 1984, pp. 120-124.

Shepherd, A. and Kerschberg, L., “Constraint Management in Expert Database Systems,”
in Kerschberg, L. (ed.), Expert Database Systems (Proc. form the First International
Workshop), Benjamin/Cummings, Menlo Park, CA, 1986, pp. 309-331.

Smith. T.M. and Smith, D.C.P., “Database Abstractions: Aggregation,” Communications of
the ACM, Vol. 20, No. 20, No. 6, June 1977, pp. 405-413.

Smith. J.M. and Smith, D.C.P., “Database Abstractions: Aggregation and Generalization,”
ACM Transactions on Database Systems, Vol. 2, No.2, June 1987, pp. 105-133.
Stonebraker, M., “The Integration of Rule Systems and Database Systems,” [EEE Transactions
on Knowledge and Data Engineering, Vol. 4, No. 5, October 1992, pp.415-423.
Stonebraker, M., Hanson, E.N., and Potamianos, S., “The POSTGRES Rule Manager,” IEEE
Transactions on Software Engineering, Vol. 14, No. 7, 1988, pp. 897-907.
Stonebraker, M. and Hearst, M., “Future Trends in Expert Data Base Systems,” in Expert
Database Systems (Proc. from 2nd International Conference), Kerschberg, L. (ed.), Benjamin/
Cummings, Reading, 1989, pp. 3-19.

Stonebraker, M. and Kemnitz, G., “The POSTGRES Next Generation Database Management
System,” Communications of the ACM, Vol. 34, No. 10, October 1991, pp. 78-92.
Storey, V.C., “Understanding Semantic Relationships”, Very Large Data Bases Journal, Vol.
2, No. 4, 1993, pp.455-488.

Storey, V.C., Yang, H.-L., and Goldstein, R.C., “Semantic Integrity Constraints in Knowledge-
Based Database Design Systems,” Data & Knowledge Engineering, Vol. 20, No. 1, June
1996, pp.1-37.

Su, S.Y.W. and Raschid, L. “Incorporating Knowledge Rules in a Semantic Data Model:

— 211 —

44,

45.

46.

47.

48.

49.

50.

51

The Journal of National Chengchi University, Vol. 75, 1997

An Approach to Integrated Knowledge Management,” in the Second Conference on Artificial
Intelligence Application, Miami, Florida, 1985, pp. 250-256.

Teorey, T.]., Yang, D., and Fry, J.P,, “A Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model,” Computing Surveys, Vol. 18, No. 2, June
1986, pp. 197-222.

ter Bekke, J., Semantic Data Modeling, Prentice Hall, New York, 1992.

Tsichritzis, D.C. and Lochovsky, FH., Data Models, Prentice-Hall, Englewood Cliffs, NJ,
1982.

Vassiliou, Y., Clifford, J., and Jarke, M., “How Does an Expert Systems Get Its Data,”
in Proc. 9th International Conference on VLDB, Florence, Oct. 1983, pp. 70-72.
Vassiliou, Y., Clifford, J., and Jarke, M., “Database Access Requirements of Knowledge-
Based Systems,” in Query Processing in Database Systems, Kim, W., Reiner, D.S. and
Batory, D.S. (eds.), Springer-Verlag, Berlin, 1985, pp.156-170.

Widom, J. and Finkelstein, S. J., “Set-Oriented Production Rules in Relational Database
Systems”, in Proceedings of ACM SIGMOD International Conference on Management of
Data, Atlantic City, May 1990, pp. 259-270.

Yang, H.-L., Incorporating Semantic Integrity Constraints in a Database Schema, PH.D.
Dissertation, Faculty of Commerce and Business Administration, The University of British
Columbia, 1992,

Yang, H.-L., “Reformulating Semantic Integrity Constraints Precisely,” Journal of Information
Science and Engineering, Vol. 11, No. 4, December 1995, pp. 513-540.

— 212 —

