B = gt~ B BRY 88
ML 5 wm=

- 2 it SIR H#03] 2 7 38 f2

Traveling Wave Solutions for a
Diffusive SIR Model

FALFIE 4  AMr B
R FES AL

¢ ER R 105 & 11 ° 11 f



RP

AFRHBFL EFENF T LB DR E O PR o s 0 &35 E54h
T AR e~ ST s R e & BB ch L 0 FlG

EEFchaf o KE S 17 Shime okt o
a2k BRI R § B AR AR 3§ LY
B3 5 oo & 4 gk R e:«"zpw SRR A E S g B EEFEH B kb

EEFOM R A AR X IR R R TR HEL R PR Y
S E T LR

B ERBREGE LR ERIER 2 T2 0 F g MR FE M RS
RAZDR RS > A R FaniE L 2 SRt b i L4 @ o S 0 0 SRR R
B SRR A

AWM E HT

SRASERE FEAE S N
PEAR- 07 EL-



EF £

At L SIR 3] 08 A A2

St = d1Sxx — Psi/ (s + i),
re = daryx + i,

z fFigpenny wid o BV HOA dE N B - BB R SR TR R RA ek
oo spameh B R B fl y s aBE (T )EF s ARDBEB
Wi i LB LR BME - dy~dy 2 d3 » % 5 H hacz frdco

At * Schauder 7 # B % 32 (Schauder fixed point theorem) ~
Arzela-Ascoli 2 v+ & R 72 (maximum principle) R ZEM 3% % 3iiF e
JER L c=c =2 d(B— ) 2 FAIE AP S E 7 [11] e

:h| FﬁF"g {I-’?\“ FFB"EE °

it



Abstract

In this thesis, we study the existence of traveling waves of a reaction-diffusion

equation for a diffusive epidemic SIR model

St = d1Sxx — Bsi/ (s + i),
ip = dpixy + Bsi/ (s +1i) — i,

Tt = daryy + ')’ia

which describes an infectious disease outbreak in a closed population. Here f is
the transmission coefficient, 7 is the recovery or remove rate, and s, i, and r rep-
resent numbers of susceptible individuals, infected individuals, and removed in-
dividuals, respectively, and dy, d», and d3 are their diffusion rates. We use the
Schauder fixed point theorem, the Arzela-Ascoli theorem, and the maximum prin-

ciple to show that this system has a traveling wave solution with minimum speed

c = c*:=24/dp(B — ). Our result answers an open problem proposed in [11].
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Chapter 1

Introduction.

Traveling wave solutions for the epidemic systems have received a lot of attention by several
researchers because the existence of traveling waves implies spread of the disease. For the
disease control and prevention, it is important to investigate that whether traveling waves exist
and what the propagation speed c is.

One important epidemic model is the following SIR model

st = d1Sxx — f(s,1), (1.1a)
iy = dyixy + f(s,1) — 7, (1.1b)
re = dryx + i, (1.1c)

where s(x, t) represents the number of individuals not yet infected with the disease at position x
and time £, or those susceptible to the disease; infected i(x, t) denotes the number of individuals
who have been infected with the disease and are capable of spreading the disease to those in
the susceptible category; and r(x, t) represents individuals who have been infected and then
removed from the disease, either due to immunization or due to death. Here <y denotes the
recovery rate; dq, dp, and d3 are the diffusion rates of the susceptible, infective, and removed
individuals, respectively. There are various types of the incidence term f(s,i). The common

. g .. . . . . Si
types include bilinear incidence (or mass action incidence) fBsi and standard incidence /% or

Bsi .-
+7;» where B and A are positive constants.



Since r does not occur in the first two equations (1.1a) and (1.1b), we can only consider

5t = dlsxx - f(S, 1)5 (123)

Such a system with a kinetic planar vector field also provides a simple example of the general
diffusive predator-prey system.
The existence and non-existence of traveling wave solutions of system (1.2) for the bilinear
incidence have been investigated by Kéllén [10] for the case d1 = 0, Hosono and Ilyas [7] for
the case d, = 0, Hosono and Ilyas [8] and Dunbar [2, 3] for the case d; # 0 and dp # 0.

Now, we consider system (1.2) for the standard incidence. i.e.,

Si
St — dls_xx — —(Sﬁ—i— 1) . (1.33)
) ! Si .
it = doiyy + —(Sﬁ+ B — 7. (1.3b)

In [11], Wang, Wang, and Wu studied the existence and non-existence of traveling wave so-
lutions of system (1.3) by using Laplace transform, shooting method, and a similar method
in [1,9]. They proved that if Ry := B/ > 1, then there exists a traveling wave solution
with speed ¢ > ¢* = A/W and there exists no traveling wave solution with speed
¢ < c¢*; Howerver, if Ry < 1, then there exists no traveling wave solutions. Nevertheless,
when Ry > 1, the existence and non-existence of traveling wave solutions with speed ¢ = c*
of system (1.3) is still unknown. Therefore, in this thesis, we would like to tackle this gap. By a
traveling wave solution of system (1.3), we mean a nonnegative solution of system (1.3) of the

form (s,i)(x,t) = (S(x — ct), [(x — ct)) with the boundary conditions

S(400) = 51 and I(Fo00) =0, (1.4)

for some constants s and s_o With Sec > 5_. Here ¢ denotes speed of the wave.



Hence to show the existence of traveling wave solutions of system (1.3) is equivalent to

show the existence of nonnegative solutions of the following system on IR:

1/ / ﬁSI
—_—— 1-
d1S" + ¢S S+ 1) 0, (1.5a)
SI
dpI" 4 cI' P —ql = 1.5
2" +cl' + N 0, (1.5b)
S(£00) = S1e0, [(F00) = 0. (1.5¢)

Specifically, we use the Schauder fixed point theorem, the Arzela-Ascoli theorem, and the

maximum principle to show the following:

Theorem 1.1. Suppose that Ry > 1. For a given Seo > 0, there exists S_oo € [0, Seo) such that

the system (1.3) has a traveling wave solution with speed c = c*.

Our method in this thesis is mainly based on Fu [4,5]. We make a compendium of our
approach. First, we consider system (1.5a)-(1.5b) in a finite interval [—/, ] with appropriate
boundary conditions. Using the Schauder fixed point theorem, we show that this boundary value
problem has a solution, denoted by (S, I;), sandwiched by the super- and sub-solutions. Then,
letting I — oo and using Ascoli-Arzela theorem and a diagonal process, we can get a nonnegative
solutions of system (1.5). Note that system (1.5) has no maximum principle. Here we just apply
the maximum principle for a single equation to compare the super- and sub-solutions with the
solutions.

This paper is organized as follows. In Chapter 2, we first construct the super- and sub-
solutions, and consider the system (1.5a)-(1.5b) in a finite interval [—1,[]. Then, by passing to
the limit [ — oo, we obtain a candidate of a nonnegative solution of (1.5). Finally, in Chapter
3, we use this candidate to show the existence of nonnegative solutions of system (1.5). This

completes the proof of our main theorem.



Chapter 2

Preliminary.

2.1 Construction of super- and sub-solutions.

In this section, we construct super- and sub-solutions which will be used in Section 2.2. For

a given s, > 0, we set ST = se. To built I, we introduce the polynomial

p(A) = doA® —cA+ (B~ 7).

@2.1.1)

Note that when ¢ = c¢*, the equation p(A) = 0 just has a repeated root, saying Ay = ¢*/2d,,

and p(A) > Oforall AinR. Let by := 1/A1 and 57 := eAq5« (B — ) /¥ be positive constants.

Lemma 2.1.1. The function

I (2) = S(B=7)/7. ifz<b,

nze Mz, ifz > by,

satisfies the following inequality

do(IT(2))" 4+ c*(I(z)) + % —qIt(z) <0,

forall z # by.

(2.1.2)



Proof. For z < by, it is clear that inequality (2.1.2) holds. For z > by, since [T (z) =

erfhz, c* = 2dyAq, and p(A1) = 0, it follows that

d(I+)”+c*(I+)'+ﬂ— It
2 s+rr+ !

<dy(IM)" +c*(IM) + BIT — oIt = e M3 (c* — 2daAq) + p(A)IT = 0.

Thus the inequality (2.1.2) holds.

Select 0 < €3 < min {c*/dy, A1}. Then c¢* — dqez > 0and Ay — €3 > 0. Since
nze~M7EB)Z 40 as 7z — oo,

there exists b, > 0 such that

S0 + 7zeTMZ

p

,723*(/\1*83)2 < les(c* —die3)], Vz > bo.

Let zg := max {by, by }. Then, for z > z, we have

—A
(M—es)z o Sco T 1zE "%

p

I(z) = yze ™ and nze~ [es(c” — dres)],

which implies that

I+

e %% [e3(c* —dyez)]| >

> (2.1.3)

Set M3 := e®3%0 > 1.

Lemma 2.1.2. The function S~ (z) := max {0, seo(1 — Mze™3%) } satisfies the inequality

d1(S™(2))" +c*(S™(2)) — Sﬁs(;)(zfj f?z)) >0, (2.14)

for all z # zy.



Proof. For z < z, the inequality (2.1.4) holds immediately since S~ = 0 in (—o9, zg). For

z > 20,57 (2) = Seo(1 — Mze %), It is easy to see that 0 < S~ < Ss. So we have

+ -+
Seol >SI

. 2.1.5
Seo+ It = ST 41T ( )
Together with (2.1.3) and (2.1.5) and the fact that M3 > 1, we have
N N _ BSeol™ BSTIT
d1(S7)" +¢*(S7) = SewMze % [e3(c* — dye3)] > s 25T
Hence the inequality (2.1.4) holds.
Select M, > 0 sufficiently large such that My > max{(7/(241))"? 20!/?} and
d
ByMs®e MM < B lsco(1 = Maem3M4)]. (2.1.6)

Letz; := M42, then z1 > zg > 0.

Lemma 2.1.3. The function [~ (z) := max {0, (172 — 17M4Zl/2)e*)‘12} satisfies the inequality

da(I (z))" + (I () + Sﬁs(_z)(zfl_(é)) —qI7(z) >0, (2.1.7)

forall z > z.

Proof. Forz > z1, I (z) = (7z — nMaz!/?)e~™MZ. Then it is easy to deduce that
d
dy(I7)" +c(I7) +(B—y) = Zzin4z’3/ze’)‘12. (2.1.8)
Multiplying both sides of (2.1.6) by # My and using the fact that z; = (M4)?, we deduce that

,8172217/2e’Alzl < %nM;l [soo(l - Mge’€3zl)].



Forall z > z, we get

dy
1

My [800(1 — Mge‘is?’zl)} < %ﬂM;} [Soo(l — Mgeis"‘z)] = %WM4S < %HM4(S + Ii)

and
ﬁqzzl7/2€f)\121 > ﬁ”227/2ef/\12 > [323/26/\12 [eiAlZ(ﬂZ - 77M4Zl/2)} 2 _ ,523/23/\12(17)2-
Combining the above three inequalities, we have

—B(I)2

Then, by summing up (2.1.8) and (2.1.9), we finally obtain (2.1.7).

2.2 System in a finite interval [-1, 1].
In this section, we consider the system

BSI

" I _ S
d1S" +cS S+1) 0 in(-1,1), (2.2.1a)
" ’ /35[ > ] ( .
dyI" +cl' + S+1) =0 in (=1, 1), (2.2.1b)
together with the boundary conditions
(S, I)(—l) = (S*,I*)(—l) and (S,I)(l) = (S*,I*)(l). (2.2.2)

We will apply the Schauder fixed point theorem to show the existence of solutions of problem

(2.2.1)-(2.2.2). Let I > z7. For convenience, we set R; := [—1, 1], X := C(R;) x C(R;), and

o ={(5,])eX | 0<S <S<S"=s,0and0<I <I<I"inR}.



To make it more comprehensible, we recall the theorem in the following:

Theorem (Schauder fixed point theorem). Let <7 be a closed convex set in a Banach space and
let T : of — of be a continuous mapping such that T(Ja/ ) is precompact, then T has a fixed

point.

It is easy to verify that o7 is a closed convex set in the Banach space X equipped with the
norm || (Fy, B2) lx=Il Fi llcr) + | B2 llc(r,)- Because S~ and I~ are non-negative, it

follows that S > 0 and I > 0 forany (S, I) € <.

Lemma 2.2.1. For a given (So, Io) € ., there exists a unique solution to the boundary value

problem
d1S" + ¢S — ¢(S,2)S =0 in (=1, 1), (2.2.3a)
doI" + cI' + ¢(So,z)Sg —yI =0 in (=1, 1), (2.2.3b)
(S, I)(=1) = (S, I7) (=D, (S, 1)(1) = (S, I7)(I). (2.2.3¢)
where
bz g
o oA i@ 7 olz) 7.0,
0, lf Io(Z) = 0.

Moreover, this solution (S, 1) satisfies S > 0, 1> 0, and S' > 0in (-1, I).

Proof. Note that system (2.2.3) is not a coupled system, so that we can consider the existence
and uniqueness of S and I, respectively. Because [ > z1 > zp > 0 > —I, the definition of S~
and [~ implies that S~ (—1) =1 (-1) =0,S~(I) > 0,and I (I) > 0.

Since the equation for I is a non-homogeneous linear equation, we can use [6, Theorem 3.1
of Chapter 12] to obtain the existence and uniqueness of I. Moreover, since dpI” + cI’ — I =
—¢(S0,2)So < 0in (—I, I) and I(£]) > 0, it implies that I > 0 in (—I, I) by the maximum

principle.



Now we check the existence and uniqueness of S. First, we consider the initial value problem

d1S" + ¢S — ¢(S,2)S = 0, (2.2.4a)

S(—=1) = (S7)(=1), S'(—1) =m, (2.2.4b)

where m is constant. Using the existence and uniqueness theorem, we can prove that, for each
m, the initial value problem (2.2.4) has a unique local solution S(z, m) and this solution can be
continued as long as S + Iy # 0. When m = 0, S(z,0) = 0 due to the uniqueness. For any
fixed m < 0, since S(—I,m) = (S7)(—I) = 0and S'(—I,m) = m < 0, implies that there
exists 6 > 0 such that S(z,m) < 0 forall z € (—I, —I + ¢]. On the other hand, integrating

(2.2.4a), we have

) _ o —c(z+) /dy —cz/dl/z B S(tm)lo(t) cr/a
S'(z,m) = me +e L dy S(T,m) +IO<T)e T, (2.2.5)

which implies that S(z,m) < 0 and S’(z, m) < 0as long as S(z, m) exists for z > 0. For each
fixed m > 0, we can use a similar method as the case m < 0 to find that $'(z, m) > 0 and
S(z, m) > 0 as long as S exists for z > 0. So that the solution can be extended to the interval
R;. Note that S~ (1) > 0 because that! > z; > z( and definition of S~. From above reasoning,
we see that S(I, m) = S~ (I) unless m > 0. Now, we will use the shooting method to show
that there exists m* > 0 such that S(I,m*) = S~ (I). First, discussing m > 0. Recall that

S(z, m) > 0and Iy(z) > 0 for z € (-1, I]. Together with equation (2.2.5), we can infer that
S/(Z, m) 2 me—C(Z'i‘l)/dl.
Then, integrating both sides of the above inequality from —I to [ yields
md; —2cl/d -

if m is large enough. Note that S(1,0) < S~ (I) since S(z,0) = 0and S~ (I) > 0.



Since S(z, m) is a continuous function with respect to m > 0, there exists m* > 0 such that
S(I,m*) = S~ (l). Atlast, set S(z) := S(z,m*). Then S is a solution of equation (2.2.3a) with
S(—I) = (S7)(—I) and S(I) = (S7)(I). This implies the existence of S. Moreover, we infer
that S > 0and S’ > 0in (—I, 1) from the above discussion. Using the maximum principle, we
can easily get the uniqueness of S. Hence the proof of this lemma is complete.

Now we define the mapping T : &/ — X by
T(So, Io) = (S, 1), Y(So, L) € «,
where (S, I ) is the unique solution of the boundary value problem (2.2.3). Clearly, any fixed
point of T must be a solution of the problem (2.2.1)-(2.2.2).

Lemma 2.2.2. T(«/) C .

Proof. For (SO, Io) € o, let
(S, I) :=T(So, Ip)-

We are going to claim that I~ < I < I on R;. Note that 0 < §S7 < Sy < St = 54 and

0 < I <Iy<It,then we get that

BSoo It

< =
$(50.2)S0 < — 7

which yields

BSco I

dI// I/
27 el + e

— 41> 0. (2.2.6)

o0

Let I* := seo(B — y) /7y. Note that for all z € R, I'*(z) < I*. Then, we consider the system

10



on (—1,1):

wol”
R L )
"
@W+mﬂ+f?+p—ylza

It is easy to see that (I* — I)(z) satisfies (I* — I)(=1) =I* > 0, (I* = I)(I) = I* = I(I) >
IT(I)—I(I) > 0,and do(I* = I)"" + ¢(I* — I)’ — y(I* — I) < 0. Then by using the maximum

principle theorem, we get that I* — I > O on (—I, I),andso I < I* on (I, 1), i.e.
I <TI" in (=1, by). (2.2.7)
Together with (2.1.2) and (2.2.6), we find that the function w; := I — [ satisfies
dywi” + cwi’ —ywy <0 in (by, 1)

and

By the maximum principle theorem, we get [ < I in [by, 1). Together with (2.2.7), we have
[<ITin (=1, 1).

Next, letwp :=1—1". Since - =0and I > 0in [—], z1], it follows that
wy >0, in [—1, z1]. (2.2.8)
Since S~ < Sy, it follows that

BS~I-
> P2
9(S0,2)S0 2 o= =

11



and therefore,

STI™
bl v+ P2 <o 229
forall z € (z1, I). Moreover, note that (2.1.7) and (2.2.9) imply that dyw,” + cwy’ — yw, <0
in (z1, 1), and wy(41) = 0 from (2.2.3¢). So that we have wy > 0 in [z1, [] by the maximum
principle. At last, together with (2.2.8), we obtain that [ > [~ in R;.

Now we prove that S~ < Sin R;. Since S~ = 0in [—/, zg] and S > 0 in [—], zg], it

follows that
S>S  in [—l, zo]. (2.2.10)

So it remains to show that S > S~ in (2o, I]. Dueto Iy < It, we get that

BSIy - BSIT
S+1Iy = S+1It’
and thus we have the inequality
1 / ﬁSI+ :
— < / 2.
diS" +cS S+I+_0m (zo, 1) (2.2.11)

Together with (2.1.4) and (2.2.11), we find that the function v1 := S — S satisfies
din” +cv’ —q1(z)v <0 in (zo, 1),

where

BUI)? e
(s+ﬁ0@—+rﬁ’lfs#s’

0, if S=5".

7m(z) =

It is easy to verify that g1(z) > 0. Moreover, from (2.2.10) and (2.2.3c), we get that v1(z9) > 0

and v1(I) = 0. Then, by using maximum principle, we have v; > 0 in [zg, I]. Hence S~ < S

12



in [—1, I].
Finally, we show that S < ST in R;. Since ST = s., and Iy > 0, we see that ST satisfies

_|_
_BSTh g,

N\ 4N/
di1(S7)" +¢c(ST) A

and S(+!) = s > S™(£l) = S(+!). By a similar argument as the proof for the case S > S~

in [zg, 1], we get that S < ST in R;. This completes the proof of this lemma.
Lemma 2.2.3. T is a continuous mapping.

Proof. For (So, Iy) and (S, Iy) in 7, let

(S, I) =T(So, Ip) and (S, I) = T(So, L) (2.2.12)

Clearly, wy := S — S satisfies w;(£!) = 0 and

w4+ %wf +81(2)wr = hi(z),
where
Bloly BSS -
z) = — ———and hy(z) = ——— - (Io— Ip).
G N R AT A R o T AR ).
It is easy to see that
Bloly B
— zZ) = ~ =~ < EE)
gl( ) d1(5+10)(5+10) —d;

and

| hy |< d% I To—Io llc(r,) »

so we find that —K; < 1 < 0 with Ky = [B/dl

13



Then, by [4, Lemma 3.2], there exists a positive constant Cq, depending only on d1, ¢, Ky,

B, and [, such that

BC1

| w1 [ler) < i N o= Io llcry) »

1.€.

BCr

1S =S llery< 5= Il o= Io lle(ry)

Now we set wy := I — I. Then wj satisfies wyp(£!) = 0 and
wy” + iwzl = lCUz = hy(z),

dy dy

where

Clearly,

B - B <
| ha |< . I 'To —To I e(ry) +a I So —So llc(r,) -

(2.2.13)

Again, by [4, Lemma 3.2], there exists a positive constant Cp, depending only on dy, ¢, B, and

[, such that

< B&

i C, 3
| w2 ller)< r | To—1Io [lcer)) g, | So =50 llc(r)) »

1.e.

,BCZ ﬁCZ

I T=1lcr)<

14

o =T lleqry +75= 1 So = So lleqr,) -

(2.2.14)



Together with inequality (2.2.12), (2.2.13), (2.2.14), and the definition of the norm || - || x,

we obtain

| T(So, Io) — T(So, Io) |Ix
(5, 1)—(51) |Ix

< 1S=Slewy + I1T=Tlle,) -

BCy ~ BCo ~ BCa -
< L= — L — L —
<4 | To—1Io llc(r,) + i | lo—1Io [lc(r,) + i, | So— 50 llc(ry) >
_ G BC1 | BC

1 | So — So lcry +<d_1 + d_z) | Io — Io leer) »

<G To=Ioller,) + I1'So = So lleqry) )

= C3 || (SO, I()) - (S~0/ I~O) HX b

where

_BG | BG
C3 = & +d2.

For a given € > 0, we choose 0 < & < ¢/Cs. Then, if || (So,Io) = (So, Io) ||x < &, then
| T(So, Io) — T(So, To) [|x < e,

for any (SO, Io) and (S~0, I~0) in .o7. This shows that T is a continuous mapping. Hence the proof
of this lemma is done.
Lemma 2.2.4. T(JZ% ) is precompact.

Proof. For a given sequence {(SO,nr IO,n)} in &, let (Sn, In) = T(Son, Ion). Note

nelN
that ST and I™ are bounded in R;. From definition of the set <7, the sequences

{Son}s {onts {Sn}, and {In}

are uniformly bounded in R;. In addition, by lemma 2.2.2, S~ > 0 and I # 0, the sequences

15



{ ﬁIO,nSn } and { ,BIO,nSO,n }

Sn + IO,n SO,n + 10,71

are also uniformly bounded in R;. Therefore, by [4, Lemma 3.3], it follows that the sequences
{Sn’} and {In’}

are also uniformly bounded in R;. By using Arzela-Ascoli theorem, we have a subsequence

{ (Snj, Inj) } of { (Sn, In) } such that

(Snj In;) = (S, 1)

uniformly on R; as j — oo, for some pair of functions (S, I ) € /. Hence the set T(,@/ ) is
compact in «7. So T (/) is precompact.

According to all the above lemmas of this section, we have already proved that the mapping
T satisfies all the conditions of Schauder fixed point theorem. So T has a fixed point, which is

a non-negative solution of problem (2.2.1)-(2.2.2). Therefore we have the following lemma:

Corollary 2.2.5. System (2.2.1)-(2.2.2) has a solution (S, I) on R;. Moreover,
0<S <S<spand 0TI <I<TI" (2.2.15)

on R;.

16



Chapter 3

Proof of Theorem 1.1.

Now we are in a position to show Theorem 1.1.
Proof of Theorem 1.1: Let {/,, },,cN be an increasing sequence in (z1, o) such that [, — co
asn — oo, and let (S, In), _p be a solution of problem (2.2.1)-(2.2.2) in Ry,. For any fixed

N € NN, the functions I and ST are bounded above in [—Iy, Iy]. Thus, by (2.2.15), the

sequences

{Sn}nzN and {In}nzN

are uniformly bounded in [—Iy, Iy]. Moreover we can use [4, Lemma 3.3] to obtain that the

sequences

{Snl}nZN and {Inl}nzN

are also uniformly bounded in [—Iy, Iy]. In addition, it is easy to see that the sequence

BlnSn
{ Su+1I buzn

is uniformly bounded in [—Iy, In]. So, by (2.2.1), we get that {S,” },,>n and {I,” },>N are
uniformly bounded in [—Iy, Iy] . Moreover, differentiating (2.2.1) yields that the sequences

{S,""} >N and {I,,’},,> N are also uniformly bounded in [—Iy, Iy]. With the help of Arzela-
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Ascoli theorem, we can use a diagonal process to get a subsequence { (Sn]., In].) } of { (Sn, In) }

such that
Snj — S, Sn].’ — S, Sn].” — §" and In, = 1, Inj’ — T, Inj” — 1"

uniformly in any compact interval of R as n — oo, where (S, I ) is a non-negative solution
of system (1.5a)-(1.5b) with S’ > 0 over R and satisfies (2.2.15). Due to S™,5~ — s and

IT,I- — 0asz — oo, (2.2.15) implies that
(S, I)(+00) = (S0, 0). 3.1)

Now it remains to show that S(—o0) = s_q, for some constant s_o With s_o < S, and
I(—o0) = 0. We divide the proof into several steps:
Step 1: We claim
(S, ') (+0e0) = (0, 0). (3.2)

Integrating both sides of (1.5a) from 0 to z , we have

d1[S'(z) — §'(0)] +¢[S(z) — S(0)] = OZ %dr. (3.3)

Recall that S(+00) exists. From equality (3.3), we get that S’(co) exists if and only if the

improper integral

© BS(T)I(1)
A mdr (3.4)

converges. Note that if (3.4) diverges, then the equation (3.3) gives that §'(c0) = coas z — oo
and s0 S(o0) = oo, which leads to a contradiction to the existence of S(o0). Hence S’(o0) exists.
Moreover, it is easy to see that §’'(c0) = 0 since S(00) = Soo and S < Seo. Similarly, we show

that I'(c0) = 0 by a similar argument.
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Step 2: We show that
S(—) =$5_o and S§'(—o0) =0, (3.5)

for some s_co € [0, Seo).
First, since S is increasing and S > 0, it follows that S(—o0) exists, denoted by s_. Clearly,
S—co > 0. Next, we show that S’(—oc0) = 0. Integrating equation (1.5a) from z to co and

recalling that §’(c0) = 0, we have

—d1S'(z) + c(500 — S(2)) = Zoo %dt (3.6)

Since S > 0,d; > 0and S’ > 0, equation (3.6) implies that

pS(DI(r)

] S( Y 1(7) T <cs

Thus the improper integral

BS(DI(r)

5( Y+ I(0) "

converges. Then we get the fact S’'(—oc0) exists by letting z — —o0 in equation (3.6) and using
the fact that S(—o0) exists. Moreover, since S’ > 0, it implies that S’(—o0) > 0. Actually,
§'(—o0) = 0 since §'(—o0) > 0 leads to S(—o0) = —oo, which is a contradiction to the
fact that S(—o0) = s_ exists. Finally, letting z — oo in equation (3.6) and recalling that
S'(—o0) = 0 yields s_co < Sco-

Step 3: We show that I(—o0) = 0.

To this end, we first claim that B := (dyI’ 4 cI)(—o0) exists. Summing up (1.5a) and (1.5b)
and then integrating the resulting equation over R and using the fact (3.1), (3.2) and (3.5), we
get

¢(Seo — 5—00) — (dol(—00) +cI(— fy/ (3.7)
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Note that the improper integral

/OO I(t)dt (3.8)

converges. If not, then (dyI’ + cI)(—o0) = —oo. Therefore, together with the boundedness of
I, it follows that I'(—oc0) = —oo, which contradicts to the fact that I is bounded over R. Thus,
(daI’ 4 cI)(—o0) exists.

Next, we prove that [(—oo) = 0. Since I > 0 on R and the improper integral (3.8) con-
verges, it follows that lim inf I(z) = 0. Recall that I is bounded. For contradiction, we assume

Z——00

that ¢ := limsup I(z) > 0. Choose two sequences { }neN and {z, }new \¢ —oo such that
Z——00

Yni1 < Zn < Yn, I(yn) < /2, 1(zn) > &/2 forall n € IN, and

lim I(y,) =0 and Z11_>rr01o I(zn) = ¢. (3.9)

Z—00

For each n € IN. Since [ is continuous, it follows that there exist y,* € [ynﬂ, yn] and

zn™ € [Zn41, Zn) such that

I(y,*) = max I(z) and I(z,") = min I(z).

ZG[]/;H_l, yn] Ze[zn+1r ZH}

Since Y41 € [zp+1, Zn), the minimality of I at z,,* implies that 0 < I(z,*) < I(y;41)-
Together with (3.9), we have
lim I(z,") = 0. (3.10)

n—oo

Note that, if y,* is not a critical point, then it must be an endpoint of [v/,, 11, y»]. Thus, I(y,*) <
¢/2. Note that z, € [y,+1, Ynl, and I(z,) > /2. It implies that I(y,*) < /2 < I(zn),
which contradicts the definition of I(y,*). From similar arguments, we know that z,,* is also a

critical point. Therefore

I'(y,*) =0 and I'(z,*) = 0. (3.11)

Using (3.11) and (3.10), we have the equality

B = (dpI' +cI)(—o0) = lim (doI' + cI)(z,*) = 0.

n—o00
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Therefore, li_r>n (doI' + cI)(yy*) = (doI' + cI)(—00) = 0. Moreover, by (3.11), we get that
n—,oo

lim I(y,") = 0. (3.12)

n—oo

Sincez, € [Ynt1, Yn),itfollowsthat0 < I(z,) < I(y,*). By(3.12), we obtain lgn I(zy) =0,
n—oo
which contradicts (3.9). Hence, we have limsup I(z) = 0 and so I(—o0) = 0. This completes

Z—r—00

the proof of Theorem 1.1.
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