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中文ᄔ要

本篇論文討論的是 SIR模型的反應擴散方程

st = d1sxx − βsi/(s + i),

it = d2ixx + βsi/(s + i)− γi,

rt = d3rxx + γi,

之行進波的存在性，其中模型描述的是在一個封閉區域裡流行疾病爆發的狀

態。這裡的 β是傳播係數，γ是治癒或移除 (即死亡)速率，s是未被傳染個
體數，i是傳染源個體數，d1、d2及 d3分別為其擴散之係數。

我們將使用 Schauder不動點定理 (Schauder fixed point theorem)、
Arzela-Ascoli定理和最大值原理 (maximum principle)來證明：該系統存在最
小速度為 c = c∗ := 2

√
d2(β − γ)之行進波解。我們的結果回答了 [11]裡所

提出的開放式問題。
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Abstract

In this thesis, we study the existence of traveling waves of a reaction-diffusion

equation for a diffusive epidemic SIR model

st = d1sxx − βsi/(s + i),

it = d2ixx + βsi/(s + i)− γi,

rt = d3rxx + γi,

which describes an infectious disease outbreak in a closed population. Here β is

the transmission coefficient, γ is the recovery or remove rate, and s, i, and r rep-

resent numbers of susceptible individuals, infected individuals, and removed in-

dividuals, respectively, and d1, d2, and d3 are their diffusion rates. We use the

Schauder fixed point theorem, the Arzela-Ascoli theorem, and the maximum prin-

ciple to show that this system has a traveling wave solution with minimum speed

c = c∗ := 2
√

d2(β − γ). Our result answers an open problem proposed in [11].

iii
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Chapter 1

Introduction.

Traveling wave solutions for the epidemic systems have received a lot of attention by several

researchers because the existence of traveling waves implies spread of the disease. For the

disease control and prevention, it is important to investigate that whether traveling waves exist

and what the propagation speed c is.

One important epidemic model is the following SIR model

st = d1sxx − f (s, i), (1.1a)

it = d2ixx + f (s, i)− γi, (1.1b)

rt = d3rxx + γi, (1.1c)

where s(x, t) represents the number of individuals not yet infected with the disease at position x

and time t, or those susceptible to the disease; infected i(x, t) denotes the number of individuals

who have been infected with the disease and are capable of spreading the disease to those in

the susceptible category; and r(x, t) represents individuals who have been infected and then

removed from the disease, either due to immunization or due to death. Here γ denotes the

recovery rate; d1, d2, and d3 are the diffusion rates of the susceptible, infective, and removed

individuals, respectively. There are various types of the incidence term f (s, i). The common

types include bilinear incidence (or mass action incidence) βsi and standard incidence βsi
Λ or

βsi
s+i , where β and Λ are positive constants.

1



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Since r does not occur in the first two equations (1.1a) and (1.1b), we can only consider

st = d1sxx − f (s, i), (1.2a)

it = d2ixx + f (s, i)− γi. (1.2b)

Such a system with a kinetic planar vector field also provides a simple example of the general

diffusive predator-prey system.

The existence and non-existence of traveling wave solutions of system (1.2) for the bilinear

incidence have been investigated by Källén [10] for the case d1 = 0, Hosono and Ilyas [7] for

the case d2 = 0, Hosono and Ilyas [8] and Dunbar [2, 3] for the case d1 ̸= 0 and d2 ̸= 0.

Now, we consider system (1.2) for the standard incidence. i.e.,

st = d1sxx −
βsi

(s + i)
, (1.3a)

it = d2ixx +
βsi

(s + i)
− γi. (1.3b)

In [11], Wang, Wang, and Wu studied the existence and non-existence of traveling wave so-

lutions of system (1.3) by using Laplace transform, shooting method, and a similar method

in [1, 9]. They proved that if R0 := β/γ > 1, then there exists a traveling wave solution

with speed c > c∗ := 2
√

d2(β − γ) and there exists no traveling wave solution with speed

c < c∗; Howerver, if R0 ≤ 1, then there exists no traveling wave solutions. Nevertheless,

when R0 > 1, the existence and non-existence of traveling wave solutions with speed c = c∗

of system (1.3) is still unknown. Therefore, in this thesis, we would like to tackle this gap. By a

traveling wave solution of system (1.3), we mean a nonnegative solution of system (1.3) of the

form (s, i)(x, t) = (S(x − ct), I(x − ct)) with the boundary conditions

S(±∞) = s±∞ and I(±∞) = 0, (1.4)

for some constants s∞ and s−∞ with s∞ > s−∞. Here c denotes speed of the wave.

2
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Hence to show the existence of traveling wave solutions of system (1.3) is equivalent to

show the existence of nonnegative solutions of the following system on R:

d1S′′ + cS′ − βSI
(S + I)

= 0 , (1.5a)

d2 I′′ + cI′ +
βSI

(S + I)
− γI = 0, (1.5b)

S(±∞) = s±∞, I(±∞) = 0. (1.5c)

Specifically, we use the Schauder fixed point theorem, the Arzela-Ascoli theorem, and the

maximum principle to show the following:

Theorem 1.1. Suppose that R0 > 1. For a given s∞ > 0, there exists s−∞ ∈ [0, s∞) such that

the system (1.3) has a traveling wave solution with speed c = c∗.

Our method in this thesis is mainly based on Fu [4, 5]. We make a compendium of our

approach. First, we consider system (1.5a)-(1.5b) in a finite interval [−l, l] with appropriate

boundary conditions. Using the Schauder fixed point theorem, we show that this boundary value

problem has a solution, denoted by (Sl, Il), sandwiched by the super- and sub-solutions. Then,

letting l → ∞ and usingAscoli-Arzela theorem and a diagonal process, we can get a nonnegative

solutions of system (1.5). Note that system (1.5) has no maximum principle. Here we just apply

the maximum principle for a single equation to compare the super- and sub-solutions with the

solutions.

This paper is organized as follows. In Chapter 2, we first construct the super- and sub-

solutions, and consider the system (1.5a)-(1.5b) in a finite interval [−l, l]. Then, by passing to

the limit l → ∞, we obtain a candidate of a nonnegative solution of (1.5). Finally, in Chapter

3, we use this candidate to show the existence of nonnegative solutions of system (1.5). This

completes the proof of our main theorem.

3
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Chapter 2

Preliminary.

2.1 Construction of super- and sub-solutions.

In this section, we construct super- and sub-solutions which will be used in Section 2.2. For

a given s∞ > 0, we set S+ ≡ s∞. To built I+, we introduce the polynomial

p(λ) = d2λ2 − cλ + (β − γ). (2.1.1)

Note that when c = c∗, the equation p(λ) = 0 just has a repeated root, saying λ1 = c∗/2d2,

and p(λ) ≥ 0 for all λ in R. Let b1 := 1/λ1 and η := eλ1s∞(β − γ)/γ be positive constants.

Lemma 2.1.1. The function

I+(z) :=


s∞(β − γ)/γ, if z < b1,

ηze−λ1z, if z ≥ b1,

satisfies the following inequality

d2(I+(z))′′ + c∗(I+(z))′ +
βs∞ I+(z)

s∞ + I+(z)
− γI+(z) ≤ 0, (2.1.2)

for all z ̸= b1.

4
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Proof. For z < b1, it is clear that inequality (2.1.2) holds. For z > b1, since I+(z) =

ηze−λ1z, c∗ = 2d2λ1, and p(λ1) = 0, it follows that

d2(I+)′′ + c∗(I+)′ +
βS+ I+

S+ + I+
− γI+

≤ d2(I+)′′ + c∗(I+)′ + βI+ − γI+ = ηe−λ1z(c∗ − 2d2λ1) + p(λ1)I+ = 0.

Thus the inequality (2.1.2) holds.

Select 0 < ε3 < min
{

c∗/d1, λ1
}
. Then c∗ − d1ε3 > 0 and λ1 − ε3 > 0. Since

ηze−(λ1−ε3)z → 0 as z → ∞,

there exists b2 > 0 such that

ηze−(λ1−ε3)z ≤ s∞ + ηze−λ1z

β

[
ε3(c∗ − d1ε3)

]
, ∀z ≥ b2.

Let z0 := max
{

b1, b2
}
. Then, for z ≥ z0, we have

I+(z) = ηze−λ1z and ηze−(λ1−ε3)z ≤ s∞ + ηze−λ1z

β

[
ε3(c∗ − d1ε3)

]
,

which implies that

e−ε3z[ε3(c∗ − d1ε3)
]
≥ βI+

s∞ + I+
. (2.1.3)

Set M3 := eε3z0 > 1.

Lemma 2.1.2. The function S−(z) := max
{

0, s∞(1 − M3e−ε3z)
}
satisfies the inequality

d1(S−(z))′′ + c∗(S−(z))′ − βS−(z)I+(z)
S−(z) + I+(z)

≥ 0, (2.1.4)

for all z ̸= z0.

5
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Proof. For z < z0, the inequality (2.1.4) holds immediately since S− ≡ 0 in (−∞, z0). For

z > z0, S−(z) = S∞(1 − M3e−ε3z). It is easy to see that 0 < S− < S∞. So we have

S∞ I+

S∞ + I+
≥ S− I+

S− + I+
. (2.1.5)

Together with (2.1.3) and (2.1.5) and the fact that M3 > 1, we have

d1(S−)′′ + c∗(S−)′ = S∞M3e−ε3z[ε3(c∗ − d1ε3)
]
≥ βS∞ I+

S∞ + I+
≥ βS− I+

S− + I+
.

Hence the inequality (2.1.4) holds.

Select M4 > 0 sufficiently large such that M4 > max{(7/(2λ1))
1/2, z0

1/2} and

βηM4
6e−λ1 M4

2 ≤ d2

4
[
s∞(1 − M3e−ε3 M4

2
)
]
. (2.1.6)

Let z1 := M4
2, then z1 > z0 > 0.

Lemma 2.1.3. The function I−(z) := max
{

0,
(
ηz − ηM4z1/2)e−λ1z} satisfies the inequality

d2(I−(z))′′ + c∗(I−(z))′ +
βS−(z)I−(z)

S−(z) + I−(z)
− γI−(z) ≥ 0, (2.1.7)

for all z > z1.

Proof. For z > z1, I−(z) =
(
ηz − ηM4z1/2)e−λ1z. Then it is easy to deduce that

d2(I−)′′ + c(I−)′ + (β − γ)I− =
d2

4
ηM4z−3/2e−λ1z. (2.1.8)

Multiplying both sides of (2.1.6) by ηM4 and using the fact that z1 = (M4)
2, we deduce that

βη2z1
7/2e−λ1z1 ≤ d2

4
ηM4

[
s∞(1 − M3e−ε3z1)

]
.

6
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For all z > z1, we get

d2

4
ηM4

[
s∞(1 − M3e−ε3z1)

]
≤ d2

4
ηM4

[
s∞(1 − M3e−ε3z)

]
=

d2

4
ηM4S− ≤ d2

4
ηM4(S− + I−)

and

βη2z1
7/2e−λ1z1 ≥ βη2z7/2e−λ1z ≥ βz3/2eλ1z[e−λ1z(ηz − ηM4z1/2)

]2
= βz3/2eλ1z(I−)2.

Combining the above three inequalities, we have

−β(I−)2

S− + I−
≥ −d2

4
ηM4z−3/2e−λ1z. (2.1.9)

Then, by summing up (2.1.8) and (2.1.9), we finally obtain (2.1.7).

2.2 System in a finite interval [-l, l].

In this section, we consider the system

d1S′′ + cS′ − βSI
(S + I)

= 0 in (−l, l), (2.2.1a)

d2 I′′ + cI′ +
βSI

(S + I)
− γI = 0 in (−l, l), (2.2.1b)

together with the boundary conditions

(
S, I

)
(−l) =

(
S−, I−

)
(−l) and

(
S, I

)
(l) =

(
S−, I−

)
(l). (2.2.2)

We will apply the Schauder fixed point theorem to show the existence of solutions of problem

(2.2.1)-(2.2.2). Let l > z1. For convenience, we set Rl := [−l, l], X := C(Rl)× C(Rl), and

A :=
{
(S, I) ∈ X | 0 ≤ S− ≤ S ≤ S+ ≡ s∞ and 0 ≤ I− ≤ I ≤ I+ in Rl

}
.

7
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To make it more comprehensible, we recall the theorem in the following:

Theorem (Schauder fixed point theorem). Let A be a closed convex set in a Banach space and

let T : A → A be a continuous mapping such that T
(
A

)
is precompact, then T has a fixed

point.

It is easy to verify that A is a closed convex set in the Banach space X equipped with the

norm ∥
(

F1, F2
)
∥X=∥ F1 ∥C(Rl)

+ ∥ F2 ∥C(Rl)
. Because S− and I− are non-negative, it

follows that S ≥ 0 and I ≥ 0 for any
(
S, I

)
∈ A .

Lemma 2.2.1. For a given
(
S0, I0

)
∈ A , there exists a unique solution to the boundary value

problem

d1S′′ + cS′ − ϕ(S, z)S = 0 in (−l, l), (2.2.3a)

d2 I′′ + cI′ + ϕ(S0, z)S0 − γI = 0 in (−l, l), (2.2.3b)(
S, I

)
(−l) =

(
S−, I−

)
(−l),

(
S, I

)
(l) =

(
S−, I−

)
(l), (2.2.3c)

where

ϕ(ξ, z) =


I0(z)β

ξ + I0(z)
, if I0(z) ̸= 0,

0, if I0(z) = 0.

Moreover, this solution
(
S, I

)
satisfies S > 0, I > 0, and S′ > 0 in (−l, l).

Proof. Note that system (2.2.3) is not a coupled system, so that we can consider the existence

and uniqueness of S and I, respectively. Because l > z1 > z0 > 0 > −l, the definition of S−

and I− implies that S−(−l) = I−(−l) = 0, S−(l) > 0, and I−(l) > 0.

Since the equation for I is a non-homogeneous linear equation, we can use [6, Theorem 3.1

of Chapter 12] to obtain the existence and uniqueness of I. Moreover, since d2 I′′ + cI′ − γI =

−ϕ(S0, z)S0 ≤ 0 in (−l, l) and I(±l) ≥ 0, it implies that I > 0 in (−l, l) by the maximum

principle.

8
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Nowwe check the existence and uniqueness of S. First, we consider the initial value problem

d1S′′ + cS′ − ϕ(S, z)S = 0, (2.2.4a)

S(−l) =
(
S−)(−l), S′(−l) = m, (2.2.4b)

where m is constant. Using the existence and uniqueness theorem, we can prove that, for each

m, the initial value problem (2.2.4) has a unique local solution S(z, m) and this solution can be

continued as long as S + I0 ̸= 0. When m = 0, S(z, 0) ≡ 0 due to the uniqueness. For any

fixed m < 0, since S(−l, m) =
(
S−)(−l) = 0 and S′(−l, m) = m < 0, implies that there

exists δ > 0 such that S(z, m) < 0 for all z ∈ (−l, −l + δ]. On the other hand, integrating

(2.2.4a), we have

S′(z, m) = me−c(z+l)/d1 + e−cz/d1

∫ z

−l

β

d1

S(τ, m)I0(τ)

S(τ, m) + I0(τ)
ecτ/d1dτ, (2.2.5)

which implies that S(z, m) < 0 and S′(z, m) < 0 as long as S(z, m) exists for z > 0. For each

fixed m > 0, we can use a similar method as the case m < 0 to find that S′(z, m) > 0 and

S(z, m) > 0 as long as S exists for z > 0. So that the solution can be extended to the interval

Rl. Note that S−(l) > 0 because that l > z1 > z0 and definition of S−. From above reasoning,

we see that S(l, m) = S−(l) unless m > 0. Now, we will use the shooting method to show

that there exists m∗ > 0 such that S(l, m∗) = S−(l). First, discussing m > 0. Recall that

S(z, m) > 0 and I0(z) ≥ 0 for z ∈ (−l, l]. Together with equation (2.2.5), we can infer that

S′(z, m) ≥ me−c(z+l)/d1 .

Then, integrating both sides of the above inequality from −l to l yields

S(l, m) ≥ md1

c
(
1 − e−2cl/d1

)
> S−(l)

if m is large enough. Note that S(l, 0) < S−(l) since S(z, 0) ≡ 0 and S−(l) > 0.

9
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Since S(z, m) is a continuous function with respect to m ≥ 0, there exists m∗ > 0 such that

S(l, m∗) = S−(l). At last, set S(z) := S(z, m∗). Then S is a solution of equation (2.2.3a) with

S(−l) =
(
S−)(−l) and S(l) =

(
S−)(l). This implies the existence of S. Moreover, we infer

that S > 0 and S′ > 0 in (−l, l) from the above discussion. Using the maximum principle, we

can easily get the uniqueness of S. Hence the proof of this lemma is complete.

Now we define the mapping T : A → X by

T(S0, I0) = (S, I), ∀
(
S0, I0

)
∈ A ,

where
(
S, I

)
is the unique solution of the boundary value problem (2.2.3). Clearly, any fixed

point of T must be a solution of the problem (2.2.1)-(2.2.2).

Lemma 2.2.2. T
(
A

)
⊆ A .

Proof. For
(
S0, I0

)
∈ A , let

(
S, I

)
:= T(S0, I0).

We are going to claim that I− ≤ I ≤ I+ on Rl. Note that 0 ≤ S− ≤ S0 ≤ S+ ≡ s∞ and

0 ≤ I− ≤ I0 ≤ I+, then we get that

ϕ(S0, z)S0 ≤ βs∞ I+

s∞ + I+
,

which yields

d2 I′′ + cI′ +
βs∞ I+

s∞ + I+
− γI ≥ 0. (2.2.6)

Let I∗ := s∞(β − γ)/γ. Note that for all z ∈ R, I+(z) ≤ I∗. Then, we consider the system

10
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on (−l, l):

d2(I∗)′′ + c(I∗)′ +
βs∞ I∗

s∞ + I∗
− γI∗ = 0,

d2 I′′ + cI′ +
βs∞ I∗

s∞ + I∗
− γI ≥ 0.

It is easy to see that (I∗ − I)(z) satisfies (I∗ − I)(−l) = I∗ > 0, (I∗ − I)(l) = I∗ − I(l) ≥

I+(l)− I(l) ≥ 0, and d2(I∗− I)′′+ c(I∗− I)′−γ(I∗− I) ≤ 0. Then by using the maximum

principle theorem, we get that I∗ − I ≥ 0 on (−l, l), and so I ≤ I∗ on (−l, l), i.e.

I ≤ I+ in (−l, b1). (2.2.7)

Together with (2.1.2) and (2.2.6), we find that the function ω1 := I+ − I satisfies

d2ω1
′′ + cω1

′ − γω1 ≤ 0 in (b1, l)

and

ω1(b1) = I+(b1)− I(b1) = I∗ − I(b1) ≥ 0,

ω1(l) = I+(l)− I(l) = I+(l)− I−(l) ≥ 0.

By the maximum principle theorem, we get I ≤ I+ in [b1, l). Together with (2.2.7), we have

I ≤ I+ in (−l, l).

Next, let ω2 := I − I−. Since I− = 0 and I ≥ 0 in [−l, z1], it follows that

ω2 ≥ 0, in [−l, z1]. (2.2.8)

Since S− ≤ S0, it follows that

ϕ(S0, z)S0 ≥ βS− I−

S− + I−

11
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and therefore,

d2 I′′ + cI′ +
βS− I−

S− + I−
− γI ≤ 0, (2.2.9)

for all z ∈ (z1, l). Moreover, note that (2.1.7) and (2.2.9) imply that d2ω2
′′ + cω2

′ − γω2 ≤ 0

in (z1, l), and ω2(±l) = 0 from (2.2.3c). So that we have ω2 ≥ 0 in [z1, l] by the maximum

principle. At last, together with (2.2.8), we obtain that I ≥ I− in Rl.

Now we prove that S− ≤ S in Rl. Since S− ≡ 0 in [−l, z0] and S ≥ 0 in [−l, z0], it

follows that

S ≥ S− in [−l, z0]. (2.2.10)

So it remains to show that S ≥ S− in (z0, l]. Due to I0 ≤ I+, we get that

βSI0

S + I0
≤ βSI+

S + I+
,

and thus we have the inequality

d1S′′ + cS′ − βSI+

S + I+
≤ 0 in (z0, l). (2.2.11)

Together with (2.1.4) and (2.2.11), we find that the function ν1 := S − S− satisfies

d1ν1
′′ + cν1

′ − q1(z)ν ≤ 0 in (z0, l),

where

q1(z) =


β(I+)2

(S + I+)(S− + I+)
, if S ̸= S−,

0, if S = S−.

It is easy to verify that q1(z) ≥ 0. Moreover, from (2.2.10) and (2.2.3c), we get that ν1(z0) ≥ 0

and ν1(l) = 0. Then, by using maximum principle, we have ν1 ≥ 0 in [z0, l]. Hence S− ≤ S

12
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in [−l, l].

Finally, we show that S ≤ S+ in Rl. Since S+ ≡ s∞ and I0 ≥ 0, we see that S+ satisfies

d1(S+)′′ + c(S+)′ − βS+ I0

S+ + I0
≤ 0 in (−l, l),

and S(±l) = s∞ ≥ S−(±l) = S(±l). By a similar argument as the proof for the case S ≥ S−

in [z0, l], we get that S ≤ S+ in Rl. This completes the proof of this lemma.

Lemma 2.2.3. T is a continuous mapping.

Proof. For
(
S0, I0

)
and

(
S̃0, Ĩ0

)
in A , let

(
S, I

)
= T(S0, I0) and

(
S̃, Ĩ

)
= T(S̃0, Ĩ0). (2.2.12)

Clearly, ω1 := S − S̃ satisfies ω1(±l) = 0 and

ω1
′′ +

c
d1

ω1
′ + g1(z)ω1 = h1(z),

where

g1(z) = − βI0 Ĩ0

d1(S + I0)(S̃ + Ĩ0)
and h1(z) =

βSS̃
d1(S + I0)(S̃ + Ĩ0)

·
(

I0 − Ĩ0
)
.

It is easy to see that

−g1(z) =
βI0 Ĩ0

d1(S + I0)(S̃ + Ĩ0)
≤ β

d1
,

and

| h1 |≤ β

d1
· ∥ I0 − Ĩ0 ∥C(Rl)

,

so we find that −K1 ≤ g1 ≤ 0 with K1 = β/d1.

13
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Then, by [4, Lemma 3.2], there exists a positive constant C1, depending only on d1, c, K1,

β, and l, such that

∥ ω1 ∥C(Rl)
≤ βC1

d1
· ∥ I0 − Ĩ0 ∥C(Rl)

,

i.e.

∥ S − S̃ ∥C(Rl)
≤ βC1

d1
· ∥ I0 − Ĩ0 ∥C(Rl)

. (2.2.13)

Now we set ω2 := I − Ĩ. Then ω2 satisfies ω2(±l) = 0 and

ω2
′′ +

c
d2

ω2
′ − γ

d2
ω2 = h2(z),

where

h2 =
1
d2

·
[

ϕ̃(S̃0, z)S̃0 − ϕ(S0, z)S0

]
.

Clearly,

| h2 |≤ β

d2
· ∥ I0 − Ĩ0 ∥C(Rl)

+
β

d2
· ∥ S0 − S̃0 ∥C(Rl)

.

Again, by [4, Lemma 3.2], there exists a positive constant C2, depending only on d2, c, β, and

l, such that

∥ ω2 ∥C(Rl)
≤ βC2

d2
· ∥ I0 − Ĩ0 ∥C(Rl)

+
βC2

d2
· ∥ S0 − S̃0 ∥C(Rl)

,

i.e.

∥ I − Ĩ ∥C(Rl)
≤ βC2

d2
· ∥ I0 − Ĩ0 ∥C(Rl)

+
βC2

d2
· ∥ S0 − S̃0 ∥C(Rl)

. (2.2.14)

14
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Together with inequality (2.2.12), (2.2.13), (2.2.14), and the definition of the norm ∥ · ∥X,

we obtain

∥ T(S0, I0)− T(S̃0, Ĩ0) ∥X ,

= ∥ (S, I)− (S̃, Ĩ) ∥X ,

≤ ∥ S − S̃ ∥C(Rl)
+ ∥ I − Ĩ ∥C(Rl)

,

≤ βC1

d1
∥ I0 − Ĩ0 ∥C(Rl)

+
βC2

d2
∥ I0 − Ĩ0 ∥C(Rl)

+
βC2

d2
∥ S0 − S̃0 ∥C(Rl)

,

=
βC2

d2
∥ S0 − S̃0 ∥C(Rl)

+

(
βC1

d1
+

βC2

d2

)
∥ I0 − Ĩ0 ∥C(Rl)

,

≤ C3
(
∥ I0 − Ĩ0 ∥C(Rl)

+ ∥ S0 − S̃0 ∥C(Rl)

)
,

= C3 ∥
(
S0, I0

)
−

(
S̃0, Ĩ0

)
∥X ,

where

C3 =
βC1

d1
+

βC2

d2
.

For a given ε > 0, we choose 0 < δ < ε/C3. Then, if ∥
(
S0, I0

)
−

(
S̃0, Ĩ0

)
∥X < δ, then

∥ T(S0, I0)− T(S̃0, Ĩ0) ∥X < ε,

for any
(
S0, I0

)
and

(
S̃0, Ĩ0

)
in A . This shows that T is a continuous mapping. Hence the proof

of this lemma is done.

Lemma 2.2.4. T
(
A

)
is precompact.

Proof. For a given sequence
{(

S0,n, I0,n
)}

n∈N
in A , let

(
Sn, In

)
= T(S0,n, I0,n). Note

that S± and I± are bounded in Rl. From definition of the set A , the sequences

{
S0,n

}
,
{

I0,n
}
,
{

Sn
}
, and

{
In
}

are uniformly bounded in Rl. In addition, by lemma 2.2.2, S− ≥ 0 and I0 ̸= 0, the sequences

15
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{
βI0,nSn

Sn + I0,n

}
and

{
βI0,nS0,n

S0,n + I0,n

}

are also uniformly bounded in Rl. Therefore, by [4, Lemma 3.3], it follows that the sequences

{
Sn

′} and
{

In
′}

are also uniformly bounded in Rl. By using Arzela-Ascoli theorem, we have a subsequence{(
Snj , Inj

)}
of

{(
Sn, In

)}
such that

(
Snj , Inj

)
→

(
S, I

)
uniformly on Rl as j → ∞, for some pair of functions

(
S, I

)
∈ A . Hence the set T

(
A

)
is

compact in A . So T
(
A

)
is precompact.

According to all the above lemmas of this section, we have already proved that the mapping

T satisfies all the conditions of Schauder fixed point theorem. So T has a fixed point, which is

a non-negative solution of problem (2.2.1)-(2.2.2). Therefore we have the following lemma:

Corollary 2.2.5. System (2.2.1)-(2.2.2) has a solution
(
S, I

)
on Rl. Moreover,

0 ≤ S− ≤ S ≤ s∞ and 0 ≤ I− ≤ I ≤ I+ (2.2.15)

on Rl.

16
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Chapter 3

Proof of Theorem 1.1.

Now we are in a position to show Theorem 1.1.

Proof of Theorem 1.1: Let {ln}n∈N be an increasing sequence in (z1, ∞) such that ln → ∞

as n → ∞, and let
(
Sn, In

)
n∈N

be a solution of problem (2.2.1)-(2.2.2) in Rln . For any fixed

N ∈ N, the functions I+ and S+ are bounded above in [−lN, lN]. Thus, by (2.2.15), the

sequences

{Sn}n≥N and {In}n≥N

are uniformly bounded in [−lN, lN]. Moreover we can use [4, Lemma 3.3] to obtain that the

sequences

{Sn
′}n≥N and {In

′}n≥N

are also uniformly bounded in [−lN, lN ]. In addition, it is easy to see that the sequence

{ βInSn

Sn + In

}
n≥N

is uniformly bounded in [−lN, lN ]. So, by (2.2.1), we get that {Sn
′′}n≥N and {In

′′}n≥N are

uniformly bounded in [−lN, lN ] . Moreover, differentiating (2.2.1) yields that the sequences

{Sn
′′′}n≥N and {In

′′′}n≥N are also uniformly bounded in [−lN, lN]. With the help of Arzela-

17
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Ascoli theorem, we can use a diagonal process to get a subsequence
{(

Snj , Inj

)}
of

{(
Sn, In

)}
such that

Snj → S, Snj
′ → S′, Snj

′′ → S′′ and Inj → I, Inj
′ → I′, Inj

′′ → I′′

uniformly in any compact interval of R as n → ∞, where
(
S, I

)
is a non-negative solution

of system (1.5a)-(1.5b) with S′ ≥ 0 over R and satisfies (2.2.15). Due to S+, S− → s∞ and

I+, I− → 0 as z → ∞, (2.2.15) implies that

(
S, I

)
(+∞) = (s∞, 0). (3.1)

Now it remains to show that S(−∞) = s−∞, for some constant s−∞ with s−∞ < s∞, and

I(−∞) = 0. We divide the proof into several steps:

Step 1: We claim (
S′, I′

)
(+∞) = (0, 0). (3.2)

Integrating both sides of (1.5a) from 0 to z , we have

d1[S′(z)− S′(0)] + c[S(z)− S(0)] =
∫ z

0

βS(τ)I(τ)
S(τ) + I(τ)

dτ. (3.3)

Recall that S(+∞) exists. From equality (3.3), we get that S′(∞) exists if and only if the

improper integral ∫ ∞

0

βS(τ)I(τ)
S(τ) + I(τ)

dτ (3.4)

converges. Note that if (3.4) diverges, then the equation (3.3) gives that S′(∞) = ∞ as z → ∞

and so S(∞) = ∞, which leads to a contradiction to the existence of S(∞). Hence S′(∞) exists.

Moreover, it is easy to see that S′(∞) = 0 since S(∞) = s∞ and S ≤ s∞. Similarly, we show

that I′(∞) = 0 by a similar argument.

18
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Step 2: We show that

S(−∞) = s−∞ and S′(−∞) = 0, (3.5)

for some s−∞ ∈ [0, s∞).

First, since S is increasing and S > 0, it follows that S(−∞) exists, denoted by s−∞. Clearly,

s−∞ ≥ 0. Next, we show that S′(−∞) = 0. Integrating equation (1.5a) from z to ∞ and

recalling that S′(∞) = 0, we have

− d1S′(z) + c(s∞ − S(z)) =
∫ ∞

z

βS(τ)I(τ)
S(τ) + I(τ)

dτ. (3.6)

Since S > 0, d1 > 0 and S′ ≥ 0, equation (3.6) implies that

∫ ∞

z

βS(τ)I(τ)
S(τ) + I(τ)

dτ ≤ cs∞.

Thus the improper integral

∫ ∞

−∞

βS(τ)I(τ)
S(τ) + I(τ)

dτ

converges. Then we get the fact S′(−∞) exists by letting z → −∞ in equation (3.6) and using

the fact that S(−∞) exists. Moreover, since S′ ≥ 0, it implies that S′(−∞) ≥ 0. Actually,

S′(−∞) = 0 since S′(−∞) > 0 leads to S(−∞) = −∞, which is a contradiction to the

fact that S(−∞) = s−∞ exists. Finally, letting z → ∞ in equation (3.6) and recalling that

S′(−∞) = 0 yields s−∞ < s∞.

Step 3: We show that I(−∞) = 0.

To this end, we first claim that B := (d2 I′+ cI)(−∞) exists. Summing up (1.5a) and (1.5b)

and then integrating the resulting equation over R and using the fact (3.1), (3.2) and (3.5), we

get

c(s∞ − s−∞)− (d2 I(−∞)′ + cI(−∞)) = γ
∫ ∞

−∞
I(τ)dτ. (3.7)
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Note that the improper integral ∫ ∞

−∞
I(τ)dτ (3.8)

converges. If not, then (d2 I′ + cI)(−∞) = −∞. Therefore, together with the boundedness of

I, it follows that I′(−∞) = −∞, which contradicts to the fact that I is bounded over R. Thus,

(d2 I′ + cI)(−∞) exists.

Next, we prove that I(−∞) = 0. Since I > 0 on R and the improper integral (3.8) con-

verges, it follows that lim inf
z→−∞

I(z) = 0. Recall that I is bounded. For contradiction, we assume

that ξ := lim sup
z→−∞

I(z) > 0. Choose two sequences {yn}n∈N and {zn}n∈N ↘ −∞ such that

yn+1 < zn < yn, I(yn) < ξ/2, I(zn) > ξ/2 for all n ∈ N, and

lim
z→∞

I(yn) = 0 and lim
z→∞

I(zn) = ξ. (3.9)

For each n ∈ N. Since I is continuous, it follows that there exist yn
∗ ∈ [yn+1, yn] and

zn
∗ ∈ [zn+1, zn] such that

I(yn
∗) = max

z∈[yn+1, yn]
I(z) and I(zn

∗) = min
z∈[zn+1, zn]

I(z).

Since yn+1 ∈ [zn+1, zn], the minimality of I at zn
∗ implies that 0 ≤ I(zn

∗) ≤ I(yn+1).

Together with (3.9), we have

lim
n→∞

I(zn
∗) = 0. (3.10)

Note that, if yn
∗ is not a critical point, then it must be an endpoint of [yn+1, yn]. Thus, I(yn

∗) <

ξ/2. Note that zn ∈ [yn+1, yn], and I(zn) > ξ/2. It implies that I(yn
∗) < ξ/2 < I(zn),

which contradicts the definition of I(yn
∗). From similar arguments, we know that zn

∗ is also a

critical point. Therefore

I′(yn
∗) = 0 and I′(zn

∗) = 0. (3.11)

Using (3.11) and (3.10), we have the equality

B = (d2 I′ + cI)(−∞) = lim
n→∞

(d2 I′ + cI)(zn
∗) = 0.
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Therefore, lim
n→∞

(d2 I′ + cI)(yn
∗) = (d2 I′ + cI)(−∞) = 0. Moreover, by (3.11), we get that

lim
n→∞

I(yn
∗) = 0. (3.12)

Since zn ∈ [yn+1, yn], it follows that 0 ≤ I(zn) ≤ I(yn
∗). By (3.12), we obtain lim

n→∞
I(zn) = 0,

which contradicts (3.9). Hence, we have lim sup
z→−∞

I(z) = 0 and so I(−∞) = 0. This completes

the proof of Theorem 1.1.
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