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We use a strong-disorder renormalization group (SDRG) method and ground-state quantum Monte Carlo
(QMC) simulations to study S = 1/2 spin chains with random couplings, calculating disorder-averaged spin
and dimer correlations. The QMC simulations demonstrate logarithmic corrections to the power-law decaying
correlations obtained with the SDRG scheme. The same asymptotic forms apply both for systems with standard
Heisenberg exchange and for certain multispin couplings leading to spontaneous dimerization in the clean system.
We show that the logarithmic corrections arise in the valence-bond (singlet pair) basis from a contribution that
cannot be generated by the SDRG scheme. In the model with multispin couplings, where the clean system
dimerizes spontaneously, random singlets form between spinons localized at domain walls in the presence of
disorder. This amorphous valence-bond solid is asymptotically a random-singlet state and only differs from the
random-exchange Heisenberg chain in its short-distance properties.
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I. INTRODUCTION

A remarkably simple but powerful method was introduced
some time ago by Ma et al. for studies of quantum magnets
with random couplings [1]: In a repeated decimation procedure
that gradually lowers the energy scale, the strongest coupled
spin pair is identified and put into a singlet state, which
decouples from the rest of the system after new effective
couplings are generated among the remaining spins. This
strong-disorder renormalization group (SDRG) scheme often
flows toward a random-singlet (RS) fixed point [2], which
is universal for a broad class of spin chains [3]. The SDRG
method has become a standard tool for studying a wide range
of systems [4–18] and the RS phase represents a cornerstone of
our understanding of disorder in quantum many-body physics.

Here we compare SDRG calculations and ground-state
projector quantum Monte Carlo (QMC) simulations in the
valence-bond (VB) basis for two types of S = 1/2 spin
chains which in the absence of disorder have very different
ground states; the standard quasiordered (critical) Heisenberg
antiferromagnet with nearest-neighbor exchange and a chain
with multispin interactions that lead to a spontaneously
dimerized (VB solid, VBS) ground state. In the latter case, in
the presence of disorder, we demonstrate an amorphous VBS
(AVBS) with out-of-phase dimerized chain segments separated
by spin-carrying domain walls, as illustrated in Fig. 1. Despite
the very different local properties of the two systems, they
both exhibit characteristic RS properties in their long-distance
correlations.

In addition to the spin-spin correlation function, on which
past analytical and numerical calculations have been focused,
we also compute the dimer-dimer correlation functions (where
the dimer operator measures the density of singlets on a
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nearest-neighbor bond). The SDRG spin-spin correlations are
known to decay asymptotically with distance r as r−2, and
this behavior is very well reproduced by numerically iterating
the SDRG procedures. We here find numerically that the
SDRG dimer-dimer correlations decay as r−4. Surprisingly,
in light of the large number of previous studies and the widely
accepted notion that the r−2 asymptotic form for the mean
spin-spin correlations is exact [3], our QMC results show that
the SDRG method misses universal multiplicative logarithmic
(log) corrections to the power-law decays. Similar corrections
were noted [19,20] in other classes of disordered spin chains
but had not been anticipated in the present case. By studying
different contributions to the spin-spin correlation functions
in QMC calculations in the VB basis, we find that the log
corrections arise from a contribution that is completely missing
in the simple singlet-product ground state resulting from the
SDRG method. We find the same multiplicative logs both in
the standard random-J model and the random-Q model (i.e.,
in the AVBS), thus reinforcing our claim that these corrections
constitute a universal characteristic of the RS phase for SU(2)
spin chains.

The outline of the rest of the paper is as follows: In
Sec. II we define the models and outline the SDRG and QMC
methods. We also show results for the energy flow in the SDRG
calculations for both the random-J and random-Q models,
demonstrating the same asymptotic flow in both cases, but with
interesting crossovers between different decimation stages for
the random-Q model. In Sec. III we compare SDRG and
QMC results for spin-spin and dimer-dimer correlations in the
random-J model and discuss the origin of the log corrections
in the VB basis. The random-Q model and its AVBS state are
discussed in Sec. IV. We briefly summarize our conclusions
and provide some further remarks on the significance of our
findings in Sec. V. Technical details of the SDRG scheme in
the presence of the Q term are presented in Appendix A, and
in Appendix B we tabulate numerical results for the spin-spin
correlations and discuss minor discrepancies with previous
calculations.
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FIG. 1. Qualitative AVBS ground state of an S = 1/2 spin chain.
The open and solid circles represent the two sublattices of the
bipartite lattice and the arches indicate singlets (valence bonds).
The short valence bonds form ordered domains, between which
spinons localize. In the ground state the spinons freeze pairwise into
long-bond singlets.

II. MODELS AND METHODS

We consider interactions written with singlet projectors on
two spins i,j ,

Pi,j = 1/4 − Si · Sj . (1)

The antiferromagnetic Heisenberg Hamiltonian for a chain
with N spins can be written as

HJ = −
N∑

i=1

JiPi,i+1, (2)

where Ji > 0 is a random antiferromagnetic coupling. To
achieve a robust VBS state (an AVBS in the presence
of disorder) accessible to QMC calculations without sign
problems, we use the six-spin interaction [21] to construct
a chain described by

HQ = −
N∑

i=1

QiPi,i+1Pi+2,i+3Pi+4,i+5, (3)

with random Qi > 0. A similar four-spin coupling also
leads to a VBS, but with a much smaller order parameter.
Note that the clean Hamiltonian (Qi = 1∀i) is translationally
invariant and the system dimerizes by spontaneous symmetry
breaking, leading to a twofold degenerate ground state. In both
models we use periodic boundary conditions and the following
distribution of the random couplings (λ = Ji or λ = Qi):

π (λ) =
{
d−1λ1/d−1, for 0 < λ � 1,

0, else,
(4)

which is uniform within the range (0,1] for d = 1 and becomes
singular when d → ∞.

A. Strong-disorder RG

The basic idea of the strong-disorder renormalization-group
(SDRG) scheme is to find a system’s ground state by succes-
sively eliminating degrees of freedom with high energy. The
SDRG method for the random Heisenberg chain (the random-
J model) is well documented and we refer to the literature
for details [1–4,12]. In essence, the RG procedure for the
random Heisenberg chain consists of iteratively locating the
two spins connected by the strongest coupling � = max{Ji},
putting these in their singlet ground state, and perturbatively
generating an effective coupling between the neighboring spins
with strength

J̃ = J ′J ′′

2�
< �, J ′, J ′′, (5)

where J ′ and J ′′ are couplings between the singlet and the
neighboring spins. One can also do this step nonperturbatively

by diagonalizing the relevant subspace exactly [7], but this
does not change the asymptotic behavior. The decimated spins
are now “frozen out” and will form a VB in the ground state that
is successively generated by repeating the steps. This process
yields an effective Hamiltonian with gradually fewer degrees
of freedom and lower energy scale. For the antiferromagnets
considered here, the final ground state is a product of singlet
pairs, i.e., a single VB configuration.

The generalization of the SDRG to the random-Q model
(3) with three singlet projectors (also called Q3 interactions)
is nontrivial, as the multispin interaction generates various
terms of the forms Pi,i+1Pi+2,i+3 (Q2 interactions) and Pi,j

(J interactions) under SDRG, with several different cases in
the perturbative treatment of the decimated operators. The
technical details of the method is described in Appendix A.
Here we comment on the energy flows and demonstrate
identical asymptotic behaviors for the random-J and random-
Q systems.

Since the decimation procedure applied in the SDRG
is an approximation relying on the flow toward a singular
coupling distribution, the method is in general not suitable for
studying systems where the quenched disorder is irrelevant
in the renormalization-group sense. For systems governed
by strong disorder, the approximation made in perturbation
calculations and the “freezing” of degrees of freedom becomes
inconsequential in the long-distance limit; in essence, because
these systems, when studied at ever larger length scales (lower
energy), appear more and more disordered. The RS state,
which is the SDRG solution for the approximate ground state
of the random Heisenberg chain (as well as many other spin
chains, e.g., the random XX chain [3]), is a prominent example
for extremely strong randomness, called infinite randomness
fixed-point solutions. The fixed point is characterized by
unconventional dynamic scaling,

ln ξt ∼ ξψ, (6)

of the correlation length ξ and the correlation time ξt , implying
an infinite dynamic exponent, in contrast to the conventional
power-law scaling,

ξt ∼ ξz, (7)

with a finite dynamic exponent z < ∞. In SDRG, the dynamic
scaling behavior can be identified, for example, by examining
the RG flow of the logarithmic energy scale ln(�); here the
energy scale is the strongest effective coupling at each step of
RG.

Figure 2 shows the RG evolution of the log-energy scales
for the two systems considered in this work, both with chain
length N = 8192 and disorder parameter d = 1. In both these
cases, the log-energy scale tends to a power-law relation with
the number N� of the active spins (the spins that are not yet
decimated at a given energy scale �) as

− ln(�) ∼ N
−1/2
� , (8)

corresponding to a non-power-law dynamic scaling given in
Eq. (6) with ψ = 1/2 and an infinite dynamic exponent z →
∞, as predicted for an RS state [3].

The convergence of the energy scale for the random-Q
chain in Fig. 2 is slower than for the random-J chain.
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FIG. 2. SDRG evolution of the disorder-averaged log-energy
scale for the random-Q chain (thicker red curve) and the random-J
chain (thinner black curve), both with disorder parameter d = 1 and
chain length N = 8192. The energy is graphed versus the fraction
n = N�/N of the active (not yet decimated) spins under the action of
the RG (thus, n = 2/N at the final step). Asymptotically the curves
for the both models tend to a power law − ln(�) ∼ 1/

√
n in the late

stage of the RG, as indicted by the dashed line.

Furthermore, the evolution for the random-Q chain exhibits
an interesting three-stage structure, which correspond to
predominant Q3 decimation in the early stage, mixed Q2 and
J decimation in the intermediate stage, and predominantly J

decimation in the late stage. The ultimately same asymptotic
energy flows already is an indication of both systems flowing
to the same RS fixed point. In later sections we will present
QMC calculations demonstrating this in an unbiased (nonap-
proximate) way using correlation functions.

In comparison to the RS phase in the random XX chain [12],
the energy-length relation for the random Heisenberg chain
shows slower convergence to the fixed-point solution given in
Eq. (8) due to the factor 1/2 in the recursion relation Eq. (5),
which is missing in the corresponding recursion relation for
the XX chain [3]. For the random-Q chain studied here, the
recursion relations are more complex and factors like 1/32
appear in the effective couplings (see Appendix A); therefore
the convergence is even slower than for the random-J case.

B. Projector QMC

For the QMC calculations, we employ a ground-state
projection technique operating in the VB basis [22,23]. For our
unfrustrated systems with bipartite interactions, we choose a
restricted VB basis in which all bonds connect sites on different
sublattices; we denote such a basis vector by

|v〉 =
⊗

i∈A,j∈B
|(i,j )〉, (9)

where

|(i,j )〉 = 1√
2

(|↑i↓j 〉 − |↓i↑j 〉) (10)

is the singlet state of two spins i, j in different sublattices
A and B. This basis is ideal for singlet ground states, as

S > 0 excitations are excluded from the outset, unlike finite-
temperature methods which include the full Hilbert space.
In the present case, the convergence to the ground state is
accelerated by projecting from “trial states” obtained using
the SDRG method for each set of random couplings.

For the projector filtering out the ground state from the trial
state, we use a power (−H )m of the Hamiltonian and carefully
check for convergence as a function of m. Individual strings of
operators contributing to (−H )m are sampled, with each such
string of terms in HJ and HQ forming a long list (of between m

and 3m elements) of singlet projectors Pi,j , each successively
acting on two spins in a VB state and propagating this state
according to

Pi,j |· · · (i,j ) · · ·〉 = |· · · (i,j ) · · ·〉,
Pi,j |· · · (i ′,i)(j,j ′) · · ·〉 = 1

2 |· · · (i,j )(i ′,j ′) · · ·〉. (11)

In practice, the VB basis is explicitly used only when collecting
measurements of the quantities computed. Here an advantage
of the VB basis is the easy access to correlation functions
expressed in terms of transition-graph loops [24–26]. The
sampling of the operator strings is most efficiently done by
re-expressing the operator strings and the VB trial state are
re-expressed in the conventional basis of spin-z components,
where a powerful loop algorithm can be employed [23].

III. CORRELATIONS IN THE RS PHASE

Field theory approaches predict multiplicative logarithmic
corrections to a power-law decay of correlation functions in the
clean Heisenberg antiferromagnetic chain at zero temperature.
The staggered spin-spin correlation function behaves as
[27–30]

C(r) = (−1)r〈Si · Si+r〉 ∼ ln1/2(r)

r
, (12)

where logarithmic correction appears due to a marginally
irrelevant operator in the field theory description [27–29]. Also
the dimer correlation function, defined as

D(r) = 〈Bi · Bi+r〉 − 〈Bi〉2, (13)

where Bi = Si · Si+1 acquires a log correction and decays with
distance as [29]

D(r) ∼ (−1)r
ln−3/2(r)

r
, (14)

i.e., with only the power of the log correction being different
from that in the spin correlations.

One of the key analytical SDRG results in one dimension
is that the long-distance staggered mean spin-spin correlation
function C(r) decays with distance r as

C(r) ∼ 1

r2
(15)

in the RS phase [3], in contrast to Eq. (12) for the clean
Heisenberg chain, Eq. (15) is obtained by assuming that the
mean spin correlation function is dominated by rare long VBs
in the ground state, a consequence of the distribution of VB
lengths P (�) at � → 0 in the SDRG framework, which to
leading order has an inverse-square form as a function of the
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bond length � [3,31]:

P (�) ∼ 1

�2
. (16)

Different from the rare events, a typical pair of widely
separated spins i and j do not form a singlet and the correlation
between two such spins decays exponentially with the distance

C typ(|i − j |) ∼ exp(−c
√

|i − j |). (17)

This behavior can be computed within the SDRG procedures
by perturbatively taking into account the neglected correlations
mediated by the decimated singlets [3].

The asymptotic r−2 decay of the mean spin-spin correlation
in the RS phase has been tested by numerical calculations
in spin chains with anisotropic interactions, in particular in
the random XX chain [31,32], which can be mapped to free
fermions. Systems with isotropic Heisenberg interactions have
proved much more challenging and the available numerical
evidence is less convincing [7,31,33–35]. In previous works
it was implicitly assumed that the asymptotic form should
be exactly ∝ 1/r2, as in the SDRG. Logarithmic corrections
have been predicted and found in some types of random
quantum spin chains [19,20], but so far no such corrections
have been considered in the case of random Heisenberg chain.
Here we reach larger system sizes than in previous QMC
studies and we also impose strict convergence controls, to
ensure that true ground-state properties are obtained. The
results reach a level of precision where we can unambiguously
detect deviations from the expected behavior that cannot be
explained by standard higher-order power-law corrections. It
is then natural to consider log corrections, and, indeed, we find
strong evidence for their presence in QMC results for d = 1
and d = 2 in the coupling distribution (4).

We first use the unbiased zero-temperature QMC method
described in Sec. II B to investigate the spin correlation
in the RS phase of the Heisenberg chain. We detect the
multiplicative log correction to the universal inverse-square
law by comparing the data with the correlation obtained by
the numerical SDRG. In addition, we have computed the
dimer-dimer correlation function, which to our knowledge has
not been previously considered, neither in SDRG nor QMC
calculations.

A. Spin correlations

The ground state of the random Heisenberg chain with
an even number N of spins is a total-spin singlet and can
be expressed in the VB basis. The approximate ground state
resulting from the SDRG is described by a single set of bipartite
valence bonds |ψ0〉 = |v〉, with no bonds crossing each other,
while the ground state projected out by the QMC method is a
superposition of VB states,

|ψ0〉 =
∑

v

αv|v〉, (18)

with nonnegative coefficients αv that are determined stochas-
tically. In practice, the state by itself is not very useful and
one instead samples the contributions to the normalization
〈ψ0|ψ0〉 and accumulates the corresponding contributions to
expectation values of interest.

(a)

(b)

FIG. 3. Two different types of loop structures in the transition
graph of the overlap between two VB states |v〉 (upper, black bonds)
and |v′〉 (lower, red bonds). The gray and white sites belong to two
different sublattices. Type (a) indicates the case where |v〉 �= |v′〉 and
type (b) is a single-bond structure with |v〉 = |v′〉. The correlation
C(|i − j |) for any pair of spins (i and j ) located in the same loop is
a finite constant.

The matrix elements needed for computing the correlation
function in the valence-bond basis are given by [24,25]

〈v′|Si · Sj |v〉 =
{± 3

4 〈v′|v〉, (i,j ),
0, (i)(j ),

(19)

where (i,j ) and (i)(j ) denote sites i and j belonging to the
same loop and different loops, respectively. The sign in the
one-loop case (i,j ) is positive for spins on the same sublattices
and is negative otherwise. The overlap 〈v′|v〉 between any two
VB states is nonzero and can be determined in terms of the
total number of loops N◦ in the transposition graph,

〈v′|v〉 = 2N◦−N/2 (20)

for N -spin VB states. In the SDRG case of a single bond
configuration constituting the ground state we have |v〉 = |v′〉
and then the matrix for the two-spin operator in Eq. (19) is
reduced to

〈v|Si · Sj |v〉 =
{− 3

4 , if i,j are connected by a bond,
0, if i,j are not connected.

(21)

In Fig. 3 we illustrate two different types of one-loop
structures, corresponding to |v〉 �= |v′〉 and |v〉 = |v′〉, in the
transition graph of the overlap 〈v′|v〉. A loop of type (b), which
is the only kind of loop appearing in an overlap 〈v|v〉 between
same states (as in the SDRG ground state), contains only two
sites in different sublattices separated by an odd number of
lattice spacings. A loop of type (a) can have an arbitrary even
number of sites greater than two. Thus the spin correlation
function C(r) for even r is determined solely by loops of type
(a). Since only loop-type (b) is present in the approximate
SDRG ground state, in this case C(r) = 0 for even r .

Using the projector QMC method, for the random-J model
we have achieved ground-state convergence for system sizes
up to N = 144 with d = 1 in the distribution (4) and up to
N = 64 for d = 2, in each case using between 104 and 106

disorder realizations to achieve sufficiently small error bars on
mean values. As an example of a convergence test, in Fig. 4(a)
we show results for the disorder-averaged spin correlation
function at the longest distance r = N/2 of a random-J
system with d = 1. The two different trial states lead to

174442-4



PROPERTIES OF THE RANDOM-SINGLET PHASE: FROM . . . PHYSICAL REVIEW B 94, 174442 (2016)

100 101 102 103 104
0.0000

0.0005

0.0010

0.0015

C
(N

/2
)

AP trial state
SDRG trial state

100 101 102

m/N

0.0000

0.0005

0.0010

0.0015

0.0020

C
(N

/2
)

(a)

(b)

FIG. 4. Projection-power convergence of the disorder-averaged
long-distance spin correlations in QMC calculations for the (a) the
random-J system and (b) the random-Q system, both with d = 1
and N = 128. Results are shown for two different trial states; the
SDRG state obtained for each individual disorder realization and a
translationally invariant amplitude-product state [23,24] with bond-
length (l) amplitude h(l) = l−2.

values agreeing within error bars, but with faster convergence
observed with the SDRG states than a translationally invariant
amplitude-product state (where valence bonds are sampled ac-
cording to probabilities given by products of bond amplitudes
in the QMC procedure) [23,24]. For the random-Q model the
convergence is much faster [Fig. 4(b)], and we have results for
N almost twice as large as for the random-J model (the results
for the random-Q model will be discussed in the next section).
To speed up the equilibration of the QMC calculations with
high powers of m, an m-doubling procedure analogous to the
doubling procedure for the inverse temperature in Ref. [36] was
used, where each simulation starts from m = N , after which
m is gradually doubled by constructing an operator string of
length 2m out of two consecutive copies of the original string.

In Fig. 5 results for the spin correlation function C(r)
at the largest distance r = rmax is shown versus the chain
length N (even) and compared with SDRG results. The
largest distance is rmax = N/2 for the QMC results, and
rmax = N/2 − 1 for the SDRG data—there are no VBs of
even length in the a 1D bipartite system, thus C(N/2) = 0
in the SDRG case when N is a multiple of 4. The SDRG
results follow the expected r−2 decay for both distributions.
We have here included a higher-power correction term to fit
the data very closely also at short distances, but the correction
is very small and of no consequence for the longest distances
shown. The QMC results clearly deviate from the expected
form and the deviations cannot be reasonably accounted for
by any conventional correction. Previous works have not
discussed how the asymptotic form is approached; it has
merely been expected that, for long enough distances, results
should approach the SDRG power law. At r = N/2 we observe
clear deviations from r−2 even for rather long distances.

10 100
N

10-4

10-3

10-2

10-1

C
(r

m
ax

)

d=1, QMC
d=2, QMC
d=1, SDRG
d=2, SDRG

FIG. 5. SDRG and QMC results for spin correlations at the largest
distance of the random-J model with disorder parameters d = 1,2.
The largest distance is rmax = N/2 for the QMC results, and rmax =
N/2 − 1 for the SDRG data. The SDRG results have been fitted to
the form C(r) = αr−2 + βr−4, with adjustable constants α and β.
The form C(r) ∝ r−2 ln1/2(r/r0) was used in fits to the QMC data.

Remarkably, the data for both d = 1 and 2, and even for very
small r , can be described by the form C(r) ∝ r−2 lnσs (r/r0)
with 0.3 � σs � 0.7 and a scale parameter r0 of order one.
To see the corrections more clearly, we multiply the results
by r2 in Fig. 6 and show an excellent fit to the form with a
multiplicative correction with σs = 0.5 (in the middle of the
range of acceptable powers of the log factor),

r2C(r) = a
√

ln(r/r0), (22)

here with r = N/2. This multiplicative correction increases
with r , and is clearly different from the additive correction

101 102 103

N

101

N
2 C

(r
m

ax
) 

d=1, QMC
d=2, QMC
d=1, SDRG
d=2, SDRG

FIG. 6. The correlation functions in Fig. 5 multiplied by N 2

shows the presence of a multiplicative logarithmic correction to the
1/N 2 scaling for the QMC results, which increases with distance.
The dashed line and the solid line for d = 1 are both described by
the same correction form given in Eq. (22), but with slightly different
fitting parameters; the dashed line for d = 1 is the best fit for all data
points, while the solid line (also shown in Fig. 5) is the best fit to
the N � 12 data. The correction for the SDRG results shows a small
enhancement for very small r and fast convergence to a constant,
implying a small conventional subleading power-law correction.
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FIG. 7. Upper panel: QMC results for the spin correlation
function at the longest odd distance of the random-J chain with
d = 1 and its two components corresponding to the different types
of loop structures in the overlap graph. The dashed line indicates the
inverse-square function 1/N2. Lower panel: Corrections to the 1/N2

scaling made visible by dividing out the leading power law. The
logarithmic form in Eq. (22) was used to fit the corrections for the
full correlation function and the (a) part. The (b) part of the correction
has been fitted to a power-law form α + βN−1.

term found in the numerical SDRG results graphed in the
same way.

As discussed above, the correlator 〈Si · Sj 〉 consists of
two components corresponding to two different types of loop
structures in the overlap graph. The QMC results shown in
Fig. 5 for the correlation at even r are obtained entirely
from loops of type (a), while the SDRG results are solely
from the single-bond structure (b) and contain no even-r
correlations. This intriguing observation may explain the
discrepancy between the SDRG and QMC results, and we
explore this possibility next.

To compare the QMC and SDRG results directly for the
same distance, we have also calculated the spin correlation
at the longest odd r using QMC calculations at d = 1 to
examine the scaling of the two different C(r) components
originating from the loop structures in Fig. 3 (and we note
here that these calculations were computed at a later stage
and we did not go to the same large chain lengths as in the
previous calculations focused only on r = N/2). As shown
in Fig. 7, the component (a) is the dominant part of the
correlation and also exhibits multiplicative log correction to
the inverse-square power-law scaling, consistent with the form
in Eq. (22). The component originating from loops of type (b)
deviates from the r−2 decay only at short distances and can
be described by an additive subleading power law, as in the
SDRG case. All together, the correlation for odd r is also
well described by C(r) ∝ √

ln(r/r0)/r2. Since the loops of
type (a) are completely missing in the SDRG ground state,
no multiplicative log correction of the origin identified here
can be present within this approximation. This fundamental

difference between the exact (QMC) and the single-VB SDRG
ground states at least provides a technical explanation of why
no log corrections appear within the SDRG, though we do
not know the root cause for why the log is generated in the
contribution of type (a) to the exact correlation function.

Our discussion about the SDRG treatment has so far focused
on the mean spin correlation, i.e., the dominant part of spin
correlations originating from rare spin pairs that are strongly
coupled by VBs. To incorporate the correlations between the
uncoupled singlets in the approximate SDRG ground state,
we need to keep track of weak effective couplings in the RG
procedure that induce correlations between typical pairs of
spins [3,6]. For example, at some RG step of energy scale �,
a pair of spins Sj , Sk with the strongest coupling of strength
� is decimated. The spin Sj will become strongly correlated
with Sk and form a singlet pair, but is only weakly correlated
to its other neighbor, say Si , which is a spin that survives at this
decimation step. The correlation between this just-decimated
spin Sj and its weak-side neighbor Si can be obtained by
first-order perturbation theory [3,6], yielding

〈Si · Sj 〉 ≈ J̃i

�
〈Sj · Sk〉, (23)

where J̃i is the (effective) coupling between i and j at energy
scale �, and |〈Sj · Sk〉| ≈ 3/4 for the strongly correlated spin
pair. As pointed out in Ref. [3], the distribution of the loga-
rithmic couplings ζi ≡ ln(�/J̃i) becomes broader and broader
under renormalization, and the weak correlations generated by
Eq. (23), which constitute the typical correlations, then decay
exponentially with the distance as in Eq. (17).

In Fig. 8 we incorporate both the mean and the typical
correlation contributions in the perturbative SDRG calcula-
tions. We here graph the results versus the distance r in a
chain of length L = 128, instead of investigating the scaling
at the largest distance versus N . The two ways of analyzing
correlation functions should give the same functional form,
but with different prefactors because of the elevated amplitude
of the correlations close to rmax. While the inclusion of the
typical correlations brings the result significantly closer to the
nonperturbative (numerically exact) QMC result (including
even the expected even-odd oscillations [31]), the asymptotic
decay is still, as expected, governed by the mean spin
correlation, thus following the inverse-square law. The QMC
data deviate from this form but can be well described by
including the multiplicative log (though, as expected, this is
not as clear as in the previous analysis of the system-size
dependence). We do not see any apparent way to modify the
SDRG method to generate the multiplicative log correction
seen in the QMC calculation; likely it originates from a
mechanism which is beyond the capability of a renormalization
scheme such as the SDRG.

As mentioned above, a multiplicative log correction is
present for the clean system (with σs = 1/2, which we also
use in the fits shown although other exponents close to this
value also work well), but the marginal operator responsible
for it is not expected to play any role in a strongly disordered
system. Logs produced by perturbative disorder have been
demonstrated in certain systems without marginal operators
in the clean limit [20], and it has also been argued that the
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FIG. 8. (a) Full spin correlations for an N = 128 random-J chain
with d = 1, incorporating both the mean correlation and the typical
correlation in the SDRG calculations. The results are compared with
QMC results. The black and red dashed lines show, respectively, the
pure 1/N 2 decay and that form modified by a multiplicative log of the
same type used in the fit in Fig. 5. (b) The full SDRG spin correlation
at the largest even and odd distances. The dashed line corresponds to
the form 1/N2.

correlations in the strongly disordered XX chain are affected
by a log correction [19], and this would again not be related to
any marginal operator in the clean limit. We are not aware of
any previous suggestions of log corrections in the random
exchange Heisenberg chain, but we regard the numerical
evidence presented above as very strong.

B. Dimer correlations

Now we turn to four-spin correlations defined in Eq. (13).
For a general case, the matrix elements 〈v′|BiBj |v〉 have finite
values for four different situations depending on the loop
structure in the transition graph of the overlap 〈v′|v〉 [25,26].
Using a notation where sites enclosed by ( ) belong to the
same loop, the four types of site-loop structures are: (a) (i,i +
1,j,j + 1); (b) (i,i + 1)(j,j + 1); (c) (i,j )(j + 1,i + 1); and
(d) (i + 1,j )(i,j + 1). We illustrate these cases for four spins
in Fig. 9. A complete formula for evaluating 〈v′|BiBj |v〉 can
be found, e.g., in Ref. [26].

We define the staggered dimer correlation function using
the definition of D(r) in Eq. (13) as

D∗(r) = [
D(r) − 1

2D(r − 1) − 1
2D(r + 1)

]
(−1)r , (24)

and shows results for r = N/2 versus N in Fig. 10. The
SDRG results can be fitted to the form D∗(r) = αr−4 + βr−5,
with constants α and β depending on d. The slower decay
of the QMC data can again not be reasonably explained by
conventional corrections but are very well accounted for by a
multiplicative log D∗(r) ∝ r−4 lnσd (r/r0), with σd ≈ 1 (good
fits require 0.5 � σd � 1.5) and only the scale parameter r0

depending on d.

i i + 1 j j + 1(a)

i i + 1 j j + 1(b)

i i + 1 j j + 1(c)

i i + 1 j j + 1(d)

FIG. 9. Four types of loop structures in the transition graph of the
overlap 〈v′|v〉 that contribute to dimer correlations. The black and red
bonds correspond to |v〉 and 〈v′|, respectively. The gray and white
sites belong to two different sublattices. Types (a) and (c) are absent in
the SDRG ground state since |v〉 = |v′〉 and only noncrossing bonds
are present, while these cases do contribute in QMC simulations
where type (c) with two loops (i,j )(j + 1,i + 1) can be realized using
more than four spins connected with noncrossing bipartite bonds and
|v〉 �= |v′〉.

It is tempting to interpret D∗(r) as the square of C(r),
but there is nothing obvious in the definition of the dimer
correlation function or its valence-bond estimator to suggest
such a relationship. In the case of the single noncrossing
VB state resulting from the SDRG procedure, there are two
contributions to D(r), from cases (b) and (d) in Fig. 9, out
of four in a completely general state [25]. We find that the
contributions from two nearest-neighbor bonds completely
dominate D(r) and D∗(r) in the SDRG ground state, with
contributions from longer bonds decaying with a higher power
as shown in Fig. 11. In the QMC calculations the full loop

10 50
N

10-6

10-5

10-4

10-3

10-2

D
* (N

/2
)

d=1, QMC
d=2, QMC
d=1, SDRG
d=2, SDRG
d=5, SDRG
d=10, SDRG

FIG. 10. SDRG and QMC results for dimer correlations of the
random-J model with different disorder parameters d . The fitting
forms are D∗(r) = αr−4 + βr−5 (SDRG) and D∗(r) ∝ r−4 ln(r/r0).
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FIG. 11. Contribution to the dimer correlation from the loop case
labeled (d) in Fig. 9 at the largest distance for the random-J chain
with different disorder strength d . Each data point was obtained by
averaging over more than 104 disorder realizations. The solid line
indicates a power-law decay as N−6, showing consistency with an
asymptotic distance dependence ∝ r−6 for large d .

representation of the correlations come into play [25] and the
interpretation of the different contributions to D(r) is less
clear-cut.

IV. AMORPHOUS VALENCE-BOND SOLID

The clean Q model with six-spin interactions is VBS
ordered and when combined with the Heisenberg exchange J it
undergoes a transition to the standard critical antiferromagnet
at J/Q ≈ 6 [21,37]. The dimerization transition is in the same
universality class as that in the well-studied J1-J2 Heisenberg
chain [38–40]. An important question is how disorder affects
such a transition and the VBS state. In the latter, one can
expect an AVBS with alternating domains of the two different
dimerization patterns (which differ by a translation of one lat-
tice unit), and a simple valence-bond picture suggests that the
domain walls between these domains should contain S = 1/2
spin degrees of freedom—localized spinons—corresponding
to long valence bonds between different domain walls as
illustrated in Fig. 1.

Localized spinons were recently observed in a study
combining SDRG, variational, and DMRG calculations for
the J1-J2 chain with disorder added at the special Majumdar-
Ghosh (MG) point J2 = J1/2, where the exact ground state is
a doubly degenerate short-bond VBS [41]. For a certain type
of correlated disorder satisfying the conditions underlying the
MG exact ground state, an Anderson-type spinon localization
mechanism was identified at a critical disorder strength. If the
MG condition is violated, the SDRG procedure can generate
mixed ferromagnetic and antiferromagnetic couplings, leading
to a partially polarized ferromagnet, as in the “large spin” phase
first identified in Ref. [5].

Unlike the Anderson-localization transition found in
Ref. [41], in our model there is no special condition precluding
a transition between the VBS and an AVBS with spinons
at infinitesimal disorder strength, following the Imry-Ma
arguments [42] as applied to gapped Mott insulators turning
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C
(N
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)
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d=2, QMC
d=1, SDRG
d=10, SDRG
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10 100N
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10-2
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D
* (N
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d=1, SDRG
d=10, SDRG
d=50, SDRG
d=100, SDRG

(a)

(b)

FIG. 12. SDRG and QMC results for the spin (a) and dimer (b)
correlations in the random-Q model. The functional forms fitted to
the data (curves shown) are the same as in the corresponding cases in
Fig. 5.

into gapless Anderson insulators [43,44]. Thus, for arbitrarily
weak disorder, in an infinite chain there will be some regions
favoring one ordering pattern (singlets of even or odd bonds)
and some other regions favoring the other pattern. The typical
size of the domains diverges as the disorder strength vanishes.
The resulting state at finite disorder should be similar to the one
with domain-wall spinons found in Ref. [41]. However, in that
case it was argued that strong disorder (small VBS domains)
will lead to some effective ferromagnetic spinon-spinon
couplings and a partially polarized state. As no ferromagnetic
couplings are generated in the random-Q model, this system
offers opportunities to study a generic singlet AVBS where
the size of the VBS domains can be tuned from infinity in the
clean system down to small lengths where the picture of VBS
domains and domain walls breaks down. In a J -Q model,
the ratio J/Q further offers the possibility to also tune the
strength of the dimer order in the domains and the (related)
spinon localization length. Here we focus on the Q model,
which has strong VBS order in the clean limit, adding disorder
according to the distribution (4).

Looking at the QMC spin correlations of the Q-model
graphed in Fig. 12(a), there is first a rapid decay, followed by a
plateau, after which the asymptotic decay is consistent with the
same r−2 form with multiplicative log correction found in the
random-J model. The deviations from the leading power-law
behavior is again made visible by multiplying by N2 in Fig. 13.

The SDRG results show a different short-distance behavior,
but again the asymptotic form is r−2. It is not surprising that the
SDRG method cannot fully capture the correlations at short
distance, since it is expected to become accurate (in an RS
state) only gradually as the process flows toward the RS fixed
point. It is nevertheless interesting to see that the behavior
is quite different from that in the random-J model, where
a behavior very close to r−2 sets in already at the shortest
distances. Both the SDRG and QMC calculations support the
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FIG. 13. Corrections to the 1/r2 scaling of the spin correlations of
the random-Q model, made visible by dividing the data in Fig. 12(a)
at r = N/2 by the leading power law.

notion that there are localized spinons in the AVBS, which
form a gapless random spin subsystem governed by the RS
fixed point.

Next, we analyze the dimer correlations in Fig. 12(b). In the
QMC results the almost flat plateaus at short distances reflect
the presence of ordered VBS segments, with a typical length
(size of the plateau) which depends on the disorder distribution.
Beyond the plateau, the behavior is consistent with r−4 decay
with a multiplicative log correction, again fully consistent with
the behavior of the random-J model. The SDRG results at
very large d show r−4 decays with a correction in the form
of an additive higher power. For smaller d the decay appears
faster, but the behaviors for different values of d indicate that
this is only a crossover to an r−4 decay with a very small
amplitude. The VBS domains of the AVBS for d = 1,2 are
partially captured by the SDRG, though there is no flat plateau,
merely a slower initial decay.

The scale parameter r0 in the log factor lnσ (r/r0) describing
the QMC correlation functions is of the order 10 in the random-
Q model for all the cases (spin and dimer correlations), i.e.,
much larger than the values of order 1 in the random-J model.
This naturally reflects an effective renormalized lattice spacing
in the subsystem of localized spinons, which forms the RS
state.

We comment on the difficulties in observing the expected
asymptotic r−4 decay in the SDRG calculations for random-Q
model with small d in Fig. 12(b). Considering the three-stage
evolution of the energy scale in the RG process demonstrated
by Fig. 2 for d = 1, the dimer correlations should also be
sensitive to these three SDRG stages. Unfortunately, due to the
very small values of the correlation functions and associated
large relative statistical fluctuations [D∗ defined in Eq. (24)
contains positive and negative contributions which almost
cancel each other], we are only able to compute the dimer
correlation to high precision in short chains, typically using
at least 1010 random coupling samples. Therefore, we only
reach the early RG stage, which shows a fast decay for small
d. With larger d, the final stage truly reflecting the RS ground
state can be reached. It can be noted here again that the spin
correlations are only sensitive to the bond-length distribution,

which converges relatively fast, while the dimer correlations
depend on long-distance bond-bond correlations.

V. DISCUSSION

Our SDRG and QMC results show consistently that both
the random-J and the random-Q models are asymptotically
governed by the RS fixed point. Thus, in a J -Q model, we do
not expect any phase transition as a function of the ratio J/Q,
unlike the clean system where there is a dimerization transition
of the same universality class as in the J1-J2 Heisenberg chain
[21,37]. For weak disorder and J/Q in the neighborhood
of its critical value in the clean system, there should be
interesting combined effects of the critical fluctuations and
RS physics. Although there is no phase transition in the sense
of asymptotic, the AVBS can still be considered as a state of
matter different from the Heisenberg-RS, because it possesses
a length-scale—that of VBS domains—which is not present
(or, more precisely, it is of order the lattice spacing) at the RS
fixed-point alone, but which can be made arbitrarily large by
tuning interactions in the AVBS state.

The RS fixed point is exact for the SDRG scheme, but
our findings of log corrections suggest that systems treated
without approximations flow to this point (under, e.g., increase
of the system size or lowering of the energy scale in an infinite
system) slower than expected. The same leading power laws
and log corrections consistently describe the correlations in
the random-J and random-Q models with different disorder
distributions, demonstrating a robust universality of the log
exponents characterizing the RS phase. We have shown
explicitly that the SDRG method is fundamentally incapable of
producing the log correction to the mean correlation function,
because in the unbiased QMC treatment it originates in the VB
basis from a loop structure that is never generated within the
SDRG.

The physics of the VBS and AVBS also applies to
spin chains coupled to phonons. In the classical limit, any
spin-phonon coupling leads to dimerization (the spin-Peierls
distortion), while at finite phonon frequency a critical coupling
is required [45–47]. The relationship between this transition
and that in the J1-J2 chain is well established [48,49] and the
J -Q model provides an alternative to access the same physics
[21,37]. The AVBS state we have identified and characterized
here should be relevant to quasi-one-dimensional spin-phonon
materials, e.g., CuGeO3 [50] and TiOCl [51]. RS scaling
due to localized spinons should be detectable using NMR,
and it would then be desirable to also calculate temperature
dependent magnetic properties. It may also be possible to
study AVBS-related disorder effects in dimerized phases of
a trapped-ion system [52].
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APPENDIX A: SDRG FOR THE RANDOM- Q
INTERACTION

Here we describe the SDRG procedure for the random-Q
chain with six-spin interactions,

HQ3 = −
∑

i

QiPi,i+1Pi+2,i+3Pi+4,i+5, (A1)

where Qi > 0 ∀i and Pij = 1/4 − Si · Sj is a singlet projector
acting on spins Si and Sj . During the decimation process,
effective two-site interactions (J terms) −JPi,j and four-site
interactions (Q2 terms) −QPi,i+1Pi+2,i+3 will be generated;
therefore, the RG procedure described below is valid for a
general random J -Q3 chain obtained by combining HQ3 and
the Heisenberg model,

HJ-Q3 = −
∑

i

JiPi,i+1

−
∑

i

QiPi,i+1Pi+2,i+3Pi+4,i+5, (A2)

and also for the J -Q2 chain where the Q3 terms are replaced
by Q2 terms. In our discussion below, we use the notation
introduced in Fig. 14 to indicate the spins involved in an RG
decimation.

1. Q3 decimation

Consider a six-spin coupling (Q3 term) with coupling
strength Q0, which is the dominant term at some stage of
the RG, i.e., � = Q0, sets the RG energy scale. The ground
state of the associated part of the Hamiltonian

H0 = −Q0PL,L′PM,M ′PR′,R (A3)

is a six-spin singlet and the excited states are 63-fold
degenerate (which in the basis of bond singlets and triplets
simply follows from the fact that at least one of the singlet
projectors give 0 unless they all act on singlets); the energy gap
between the ground state and the excited multiplet is � = Q0.
Different from the SDRG process on the standard Heisenberg
chain, under the action of the RG there are here more than

two possible neighboring terms of H0 in the random-Q chain.
Below we consider the effect of all of these cases of interaction
terms perturbatively. Typically there are several options for
which terms to select for the perturbative treatment to generate
the new couplings, and one can sum the contributions from
all of them or select just the one generating the largest
contribution. We will discuss this aspect of our practical
implementation further below in Appendix A 3 a, after first
discussing how to generate the perturbative coupling for all
possible cases.

Case (i): The neighboring terms form a pair of Q3 couplings
with outermost bonds at [i,L] and [R,j ], where i and j are
nearest neighboring sites to the left and right spins SL and SR ,
respectively, of the six-spin segment to be decimated:

H1 = −QPi,LPL′,MPM ′,R′ − Q′PL′,MPM ′,R′PR,j . (A4)

To obtain a nonzero coupling joining together the spins on both
sides of [L,R] including Si and Sj , we need to use second-
order perturbation theory since the first-order contribution
vanishes. This leads to an effective coupling:

J̃ij = QQ′

32�
. (A5)

Case (ii): The neighboring Q3 terms include outermost
bonds at [a′,a] and/or [b,b′] (see Fig. 14), with the possible
effective Hamiltonians being

H1 = −QPa′,aPi,LPL′,M − Q′PM ′,R′PR,jPb,b′ (A6)

or

H1 = −QPa′,aPi,LPL′,M − Q′PL′,MPM ′,R′PR,j (A7)

or

H1 = −QPi,LPL′,MPM ′,R′ − Q′PM ′,R′PR,jPb,b′ . (A8)

For all these cases we obtain an effective coupling between
the spins Si and Sj :

J̃ij = QQ′

32�
, (A9)

and, in addition, the operator −Pa′,a or −Pb,b′ in H1, which is
outside the decimated region [i, j ], is converted to a J bond of
strength Q/16 or Q′/16 to first order in perturbation theory.

Case (iii): The pair of neighboring Q3 terms includes one
Q3 coupling with the outermost bond [i,L] (or [R,j ]) and one
Q3 coupling with the innermost bond [R,j ] (or [i,L]), i.e.,

H1 = −QPi,LPL′,MPM ′,R′ − Q′PR,jPb,b′Pb′′,b′′′ (A10)

FIG. 14. SDRG rules for the Q3 chain. The thick bonds indicate the strongest coupling [a Q3 coupling (top), a Q2 coupling (middle), or
a J coupling (bottom)] to be decimated; each pair of spins connected to the thick bonds forms singlet. The decimation procedure leads to an
effective coupling between sites i and j .

174442-10



PROPERTIES OF THE RANDOM-SINGLET PHASE: FROM . . . PHYSICAL REVIEW B 94, 174442 (2016)

or

H1 = −QPa′′′,a′′Pa′,aPi,L − Q′PL′,MPM ′,R′PR,j . (A11)

To second order we obtain

J̃ij = QQ′

32�
, (A12)

for an effective coupling between sites i and j , and in the
process to first order the operator −Pa′′′,a′′Pa′,a or −Pb,b′Pb′′,b′′′

is converted to a four-spin Q2-term of strength Q/4 or Q′/4.
Case (iv): There are certain pairs of neighboring Q3 terms

that do not contribute to effective couplings between sites i

and j , for example, when one of the Q3 term contains no bond
at [i,L] and [R,j ], such as

−QPa,iPL,L′PM,M ′ ,
−QPa′′,a′Pa,iPL,L′ ,
−QPM,M ′PR′,RPj,b,
−QPR′,RPj,bPb′,b′′ .

There are also cases of operators containing bonds [i,L] or
[R,j ] but still give zero contribution to J̃ij , such as

H1 = −QPa′′′,a′′Pa′,aPi,L − Q′PR,jPb,b′Pb′′,b′′′ . (A13)

When part of a neighboring Q term is decimated (i.e., the
bonds in the region [i, j ] are removed) as explained above, the
surviving part of the Q3 term outside the decimation region
will be converted to a four-spin Q2 coupling or a two-spin
J coupling. The strength of the surviving part, obtained in
this case via first-order perturbation theory, depends on the
location of the decimated part in the region [i, j ], where three
two-spin singlets at [L,L′], [M,M ′], and [R′,R] are formed.
The general rule is as follows: in the decimated region a bond
operator located between two sites that do not form a singlet
(sites on which no operator in the dominant H0 term acts),
e.g., between sites L′ and M , will reduce the strength of the
surviving part by a factor 1/4 (and, accordingly, the strength
of the surviving part of an operator with two such bonds will
include a factor 1/16), while a decimated bond operator on
a singlet will not modify the strength of surviving part. For
example, a neighboring Q3 term such as −QPa′′′,a′′Pa′,aPi,L

will be converted to a Q2 term −(Q/4)Pa′′′,a′′Pa′,a , while a Q3

term such as −QPa,iPL,L′PM,M ′ will be converted to −QPa,i .
This truncation rule is applied in cases (ii), (iii), and (iv).

As is apparent from the above discussion, during the RG
procedure effective J terms and Q2 terms will be generated in
the system; they are either bonds truncated from perturbative
Q3 terms, or those effective J couplings generated between
the neighboring spins of a decimated Q3 term. These J or Q2

couplings will also generate effective J̃ij when they become
perturbative terms to a dominant Q3 term [cf. cases (i), (ii),
and (iii) above]. We note the following cases:

Case (v): One Q3 coupling and one J coupling as the
perturbative terms, e.g.,

H1 = −QPi,LPL′,MPM ′,R′ − JPR,j , (A14)

where R and j may be arbitrarily distant sites. Up to second
order we obtain an effective coupling between sites i and j :

J̃ij = QJ

32�
. (A15)

Similarly, for the case

H1 = −QPi,LPL′,MPM ′,R′ − Q′PR,jPa,a′′ , (A16)

we obtain

J̃ij = QQ′

32�
. (A17)

Case (vi): One Q2 coupling and one J coupling as the
perturbative terms, e.g.,

H1 = −QPi,LPL′,M − JPR,j . (A18)

Exact diagonalization of the block with H0 and H1 shows the
ground state of the block is fourfold degenerate, indicating
zero couplings between i and j ; also with a perturbation such
as

H1 = −JPi,L − J ′PR,j , (A19)

we obtain no coupling between i and j . These perturbative
terms are simply removed (see Appendix A 3 b for further
discussion of rare special cases where all effective couplings
vanish).

2. Q2 decimation

Consider a Q2 term which is the dominant term at some
stage of the RG. The ground state of the associated part of the
Hamiltonian

H0 = −Q0PL,L′PR′,R (A20)

is a four-spin singlet and the excited states are 15-fold degen-
erate; the energy gap between the ground state and excited
multiplets is � = Q0. Below we list the perturbative terms
which generate effective couplings between the neighboring
spins Si and Sj :

Case (i): The neighboring perturbative terms constitute a
pair of Q couplings (Q3 or Q2) with strength Q and Q′, and at
least one of the coupling does not contain the innermost bond
at [i,L] or [R,j ] (which is equivalent to a J coupling at [i,L]
or [R,j ]). For this case, to second order we obtain an effective
coupling

J̃ij = QQ′

8�
(A21)

between sites i and j . The bonds outside the region [i,j ] will
be converted to Q2 or J couplings, following the truncation
rules discussed after case (iv) of the Q3 decimation. The same
result holds when one coupling of the perturbative terms is a
J coupling and one coupling is a Q3 or Q2 coupling that is
not equivalent to a J term.

Case (ii): The dominant Q2-term H0 = −QPL,L′PR′,R is
embedded in a Q3-coupling −QPi,LPL′,R′PR′,j . To first order,
the effective coupling between i and j is

J̃ij = Q

16
. (A22)

3. J decimation

Here we consider the two cases when a J -term H0 =
−�PL,R is the strongest coupling at some step of RG.
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Case (i): One Q term such as

H1 = −QPi,L PR,j (A23)

or

H1 = −QPi,L PR,j Pb,b′ (A24)

or

H1 = −QPa′,a Pi,L PR,j (A25)

as a perturbation. To first order we obtain

J̃ij = Q

4
. (A26)

Case (ii): The perturbative terms constitute a pair of J

couplings:

H1 = −JPi,L − J ′PR,j . (A27)

This is an RG decimation for the standard Heisenberg chain,
in which an effective coupling

J̃ij = JJ ′

2�
. (A28)

is generated. Similarly, if the perturbative terms constitute a
pair of Q couplings such as

H1 = −QPa′′′,a′′Pa′,aPi,L − Q′PR,jPb,b′Pb′′,b′′′ , (A29)

the effective coupling is

J̃ij = QQ′

2�
. (A30)

Also, with one Q coupling and one J coupling as a perturba-
tion, we obtain

J̃ij = QJ

2�
. (A31)

a. Implementation

In our numerics, we use the maximum rule in the recursion
relations for generating the effective couplings (J or Q

couplings):

ln(λ) = ln(λ1 + λ2) ≈ max[ln(λ1), ln(λ2)], (A32)

where λ1 and λ2 are bonds connecting the same group of spins.
We have compared the results with those obtained by using the
sum rule, in which we sum the newly generated coupling and
the preexisting coupling to obtain the effective coupling. We
have found no significant differences between the results.

The advantage of using the maximum rule is that, working
in terms of logarithmic variables makes it possible to treat
extremely small effective couplings occurring in a near-
singular distribution. The maximum rule is also in the general
spirit of the SDRG approach, where the flow is toward a
singular distribution of couplings and the sum of contributions
generated in the decimation steps becomes increasingly dom-
inated by the maximum contribution as the RG flows toward
the ground state.

FIG. 15. A typical case where unpaired spins occur. The chain
is periodic with two ends (in the figure) coupled to each other. The
orange (gray) rectangular regions indicate blocks of Q terms that are
active (decimated). The black curves are effective J couplings. When
the active Q terms are to be decimated, no effective coupling will
be generated according to the decimation rule; thus the two spins
(indicated by circles) are left unpaired.

b. Unpaired spins

We have noticed that there is a small fraction of unpaired
spins in the approximate ground states of long random-Q
chains. The cause for those unpaired spins is the zero effective
couplings in some cases of the Q3 decimation; for example,
when a Q3 term is decimated and the perturbative terms
are solely a pair of J couplings [see case (vi) in the Q3-
decimation procedure]. Figure 15 shows an example of such
unpaired spins. Since the ground state of the Q chain must
be a spin-zero state, the rare unpaired spins are certainly
in a singlet state with a weak bond which is ignored in
the perturbative RG procedure. In short chains (N � 200)
we do not observe such unpaired spins. For longer chains
where they do appear, one reasonable way to account for
them is simply to pair them up into singlets, to ensure that
the ground state on which we compute correlation functions

TABLE I. Numerical values of the spin correlation function
C(r) = (−1)r〈SiSi+r〉 at r = N/2 for the random-J model with d =
1, averaged over the reference location i and disorder realizations.
The results in this work were obtained using ground-state projector
QMC calculations, while those from Ref. [33] were computed
using finite-temperature QMC calculations at low temperatures (and
adjusted by a factor 3/2 to account for different definitions). The
numbers in parentheses indicate the statistical error (one standard
deviation) of the preceding digit.

N C(N/2) (this work) C(N/2) (Ref. [33])

8 0.0918(2) 0.0909(13)
12 0.0534(1) 0.0529(10)
16 0.03540(6) 0.0346(7)
20 0.02533(3)
24 0.01900(2) 0.0186(5)
28 0.01479(2)
32 0.01183(2) 0.0116(3)
36 0.00970(1)
40 0.00810(1)
44 0.00685(1)
48 0.00590(1) 0.00507(18)
52 0.00511(1)
56 0.00448(1)
60 0.003960(7)
64 0.003521(3)
72 0.002843(3)
80 0.00229(5)
100 0.00152(4)
128 0.00097(2)
144 0.00078(2)
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is a singlet. We have detected no significant differences
between correlation functions computed with these singlet
pairings and with the unpaired spins left in the system, which
demonstrates that they do not play any significant role in
practice.

APPENDIX B: TABULATED SPIN CORRELATIONS

The disorder-averaged spin correlations were previously
calculated using finite-temperature QMC simulations at low
temperatures in Ref. [33]. Results corresponding to our d = 1
distribution were shown in Fig. 8 (the W = 1 data set) of
Ref. [33]. To account for different prefactors in definitions,
the results there should be multiplied by 3/2 to match our
results in Fig. 5. At first sight, the results in Ref. [33] appear
to match well the expected asymptotic r−2 form without the
log correction we have argued for and which is required to fit
our data in Fig. 5. However, by comparing with our projector

QMC results, we find a significant disagreement for the largest
system size (N = 48), which very likely is due to remaining
finite-temperature effects in the previous calculation. The r−2

behavior does not match well the data if the correct result
for the largest system is used in Fig. 8 of Ref. [33]. The
main conclusion in Ref. [33] regarding crossover scaling with
coupling distributions not extending to Ji = 0 is not affected
by this issue.

We list the results from Fig. 8 of Ref. [33] alongside our
projector QMC results in Table I. Good agreement within
statistical errors can be seen for all sizes smaller than N = 48
(note, however, that all other results from [33] are also slightly
below our current values, even though the deviations are within
the error bars). Our error bars are also significantly reduced
relative to those in Ref. [33] and we have extended the range of
reliably convergence considerably, up to N = 144 for d = 1.
We include these results for the benefit of future comparisons
with other calculations.
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