考試科目 添性代數 所引護用數學多考試時間 4月20日选午第2節

4. Let $V = M_{3\times 3}(R)$ be the vector space of all 3×3 real matrices. Let

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}.$$

Define a linear operator T on V by T(B) = AB for $g \in V$.

- (1) Find the nullspace (kernel) of T.
- (2) Evaluate $2A^5 11A^4 13A^3 + 100A^2 50A + +30I$.
- (3) Show that the minimal polynomial of T is the same as the minimal polynomial of A.
- (4) Is T diagonalizable? Why? (20%)

※指本四微積分 炎云 製學 ※指當回 4四20日刊 +班 一根

- 1. (a) Show that for every real x the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ converges. (5%)
 - (b) Denoting $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$, then f(x) is continuous in $[0, \pi]$. (5%)
 - (c) Prove that $\int_0^{\pi} f(x) dx = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3}.(5\%)$
- 2. Evaluate the limits
 - (a) $\lim_{x\to 0^+} \left(\ln \frac{1}{x}\right)^x$. (7%)
 - (b) $\lim_{h\to 0} \frac{1}{h} \int_{h}^{2h} \left(\frac{\sin^{-1}x}{x}\right)^{\frac{1}{x^2}} dx. (10\%)$
- 3. Let $F(x) = \int_0^x f(t)dt$. Determine a formula (or formulas) for computing F(x) for all real x, if f is defined as follows

(a)
$$f(t) = \frac{2t+5}{t^2+2t-3}$$
. (7%) (b) $f(t) = \frac{1}{\cos t + \sin t}$. (8%)

- 4. Let $f(x, y, z) = x^2 + y^2 + z^2$.
 - (a) Find an equation of the tangent plane to the sphere $x^2 + y^2 + z^2 = 6$. (5%)
 - (b) What is the maximum rate of increase of f at (1,-1,2). (5%)
 - (c) Find the minimum of the values $\frac{|x-y+2z|}{\sqrt{6}}$ on the sphere f(x,y,z)=6. (8%)
- 5. Calculate the iterated integral $\int_0^1 \int_0^y (x \sin x + y^2 \cos x) dx dy.$ (10%)
- 6. Prove or disprove the following statements.
 - (a) If f_n and f are C^{-1} functions and f_n converges uniformly to f in S, then f_n' converges to f' in S. (10%)
 - (b) Let f and g be two functions continuous in a closed interval [a, b] and having derivatives in open interval (a, b). Then there exists c in (a, b) such that

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).$$
 (15%)

國立政治大學九十一 學年度研究所博士班入學考試命題紙

战科目線性代數 所别應用數學系 考試時間 4月20日生午第2

- 1. Prove or disprove: (48%)
 - If a square matrix A has orthonormal columns, then A has orthonormal rows.
 - (2) Let A be a $m \times n$ matrix. Then rank $A^T A = \operatorname{rank} A$.
 - (3) The matrix $A_{7\times7} = B_{7\times5}C_{5\times7}$ has no inverse.
 - (4) There exists a linear transformation on R^2 which maps a rectangle to an ellipse.
 - (5) Every diagonal entry of a positive definite matrix must be positive.
 - (6) There exist no square matrices A and B such that AB BA = I.
 - (7) For every real symmetric $n \times n$ matrix A, there is a real constant k such that the matrix $A + kI_n$ is positive definite.
 - (8) For every $n \times n$ matrix A, there is a constant k such that $A + kI_n$ is nonsingular.
- 2. Let $A_{m \times n} x_{n \times 1} = b_{m \times 1}$ be a consistent linear system with real coefficients.
 - (1) Show that this system has one and only one solution x_0 in RS(A), the row space of A. (Hint: What is the orthogonal complement of RS(A)?) (6%)
 - (2) If x_0 is the solution in RS(A) and x_1 is any other solution of Ax = b, show that $||x_0|| \le ||x_1||$. The vector x_0 is called the minimal solution of the linear system Ax = b. (6%)
 - (3) Find the minimal solution of $\begin{cases} x + 2y + z = 4 \\ x y + 2z = -11. \end{cases}$

(Hint: Find one solution, then project it into RS(A)). (8%)

- 3. (1) On the surface $-x_1^2 + x_2^2 x_3^2 + 10x_1x_3 = 1$, find the two points closest to the (6%)origin.
 - (2) Find the maximum and minimum of $x_1^2 + 2x_2^2 + 3x_3^2 + x_1x_2 + 2x_1x_3 + 3x_2x_3$ on (6%)the unit sphere.