考試科目從積分	所》作用影片系	考試時間	2月25日大第一節
---------	---------	------	-----------

- 1. Use Lagrange multipliers to find the points on the ellipsoid $x^2+y^2+z^2-3y+yz-6z+5=0$ that are closest and farthest from the xy-plane. (20%)
- 2. Let $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$

Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist on \mathbb{R}^2 , but f(x,y) is not continuous on \mathbb{R}^2 . (20%)

- 3. Let G be the ellipse $\frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$. Compute the line integral $\frac{1}{2} \oint_C x dy y dx. \tag{20\%}$
- 4. Show that the sequence $\{a_n\}$ and the series $\sum_{n=1}^{\infty} (a_{n+1} a_n)$ both converge of both diverge. (20%)
- 5. Let $\{a_n\}$ be a sequence in $\mathbb R$ and $\lim_{n\to\infty}a_n=A$ exist. Show that $\lim_{n\to\infty}\frac{a_1+\dots+a_n}{a_n}=A. \tag{20\%}$

線性代數 考試科目

8111.8116 別應用事獨

考試時間 2月25日(六)第

- 1. (20%) Prove or give a counterexample: Let A be a 3×3 real invertible matrix. Then A is diagonalizable. (Justify your answer.)
- 2. (20%) Let $P_3(\mathbb{R})$ be the collection of all real polynomials of degree at most 3. Let $T: P_3(\mathbb{R}) \to$ $P_3(\mathbb{R})$ be the function defined by $T(ax^3 + bx^2 + cx + d) = 3ax^2 + 2bx + c$, for all a, b, c, d in \mathbb{R} . Show that
 - (a) T is a linear transformation.
 - (b) Find the rank and nullity of T.
- 3. (20%) Let

$$A = \begin{bmatrix} 2 & 4 & 6 & 2 & 4 \\ 1 & 2 & 3 & 1 & 1 \\ 2 & 4 & 8 & 0 & 0 \\ 3 & 6 & 7 & 5 & 9 \end{bmatrix}.$$

Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ be the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^5$.

- (a) Show that the image of T is spanned by the column vectors of the matrix A.
- (b) Choose some of the column vectors of A to form a basis for the image of T.
- 4. (20%) (a) What are the criteria for a function $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ being an inner product on
 - (b) Let A be an $n \times n$ invertible symmetric matrix. Define $\langle \cdot, \cdot \rangle$ by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^t A \mathbf{x},$$

where \mathbf{x}, \mathbf{y} are column vectors in \mathbb{R}^n , and \mathbf{y}' is the transpose of \mathbf{y} . Is $\langle \cdot, \cdot \rangle$ always an inner product? Justify your answer.

5. (20%) Show that the matrices

$$A = \begin{bmatrix} 13 & -2 & 3 \\ 7 & 1 & 1 \\ -38 & 9 & -9 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

are similar by finding the matrix Q and its inverse Q^{-1} such that

$$Q^{-1}AQ = B.$$